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Abstract: The biosynthesis of exopolysaccharides (EPSs) is essential for endophytic bacterial colonisa-
tion in plants bacause this exopolymer both protects bacterial cells against the defence and oxidative
systems of plants and acts on the plant colonisation mechanism in Gluconacetobacter diazotrophicus.
The pathway involved in the biosynthesis of bacterial EPS has not been fully elucidated, and several
areas related to its molecular regulation mechanisms are still lacking. G. diazotrophicus relies heavily
on EPS for survival indirectly by protecting plants from pathogen attack as well as for endophytic
maintenance and adhesion in plant tissues. Here, we report that EPS from G. diazotrophicus strain Pal5
is a signal polymer that controls its own biosynthesis. EPS production depends on a bacterial tyrosine
(BY) kinase (Wzc) that consists of a component that is able to phosphorylate a glycosyltranferase or
to self-phosphorylate. EPS interacts with the extracellular domain of Wzc, which regulates kinase ac-
tivity. In G. diazotrophicus strains that are deficient in EPS production, the Wzc is rendered inoperative
by self-phosphorylation. The presence of EPS promotes the phosphorylation of a glycosyltransferase
in the pathway, thus producing EPS. Wzc-mediated self-regulation is an attribute for the control of
exopolysaccharide biosynthesis in G. diazotrophicus.

Keywords: plant growth-promoting bacteria; exopolymer production; bacterial protein phosphoryla-
tion; autophosphorylation

1. Introduction

The use of microbial inoculants with biofertiliser and biostimulant properties has
emerged as an alternative to replace or complement the use of synthetic fertilisers to
promote plant growth and development. As a result, the environmental liabilities of
agricultural practices are reduced. Bio-based agricultural inputs and technologies also
represent tools for increasing national sovereignty in the face of the challenges of producing
food, fibres, and energy in the world.

Gluconacetobacter diazotrophicus is a plant growth-promoting bacteria (PGPB) that
can be found colonising the internal tissues of many plants of agricultural importance,
such as sugarcane (Saccharum officinarum) [1], rice (Oryza sativa) [2] and the C4- energy
crop, and elephant grass (Pennisetum purpureum) [3], in high numbers. In addition to
fixing nitrogen in association with sugarcane plants, it has been demonstrated that this
bacterium has other interesting physiological abilities, such as the production of indole
acetic acid [4] and siderophores [5] and the solubilisation of inorganic phosphate and zinc
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oxide [6]. Its ability to control sugarcane phytopathogens, such as Colletotrichum falcatum
and Xanthomonas albilineans [7], has also been demonstrated. G. diazotrophicus strains
tolerate high concentrations of sucrose (10%) and low pH, suggesting the existence of highly
efficient mechanisms for protection against acidity and osmotolerance [8]. Nitrogenase
activity is inhibited by high concentrations (20 mM) of ammonium sulphate, ammonium
chloride, and glutamate [9], whereas amino acids (asparagine, aspartic acid and glutamic
acid) partially inhibit this activity [10].

It has been reported that some Gram-negative species can synthesise different ex-
opolysaccharides (EPSs) and that Wzc/Wzb-dependent regulatory proteins are also in-
volved in the synthesis of different cell-surface polysaccharides [11,12]. In general, Wzc
contains amino acid sequences that resemble Walker A (GXGK[T/S]) and Walker B (hhhD),
where h represents a hydrophobic amino acid motif that is normally found in nucleotide-
binding proteins but not in eukaryotic tyrosine kinases [12]. A tyrosine cluster (YC)
containing multiple tyrosine residues is also located at the C-terminal end of Wzc; this
cluster varies in length (10 to 25 amino acids) and contains several tyrosine residues (five to
ten) that constitute the self-phosphorylation sites of Wzc. In addition to these two motifs,
there is also the Walker A lysine, which, according to some studies, induces a strong
decrease in the autokinase activity of Wzc [12]. Finally, a tyrosine at position 569 stimulates
the self-phosphorylation of the tyrosine [13].

Bacteria of the genus Gluconacetobacter have been shown to produce large amounts
of EPS. In Gluconacetobacter xylinus, bacterial cellulose is biosynthesised from sugars and
organic acids. In addition to insoluble cellulose, G. xylinus can also produce a water-
soluble EPS, named acetan, which has a backbone of [→4)-β-D-Glcp-(1→]n branched with
a penta- or tetrasaccharide containing Man, Glc, Rha, and GlcA [14]. Within the species
G. diazotrophicus, strain Pal5 has been reported to produce a single EPS type, and it has
been demonstrated that this EPS structure, which lacks deoxy-hexoses and acidic units,
shows 4-O-substituted glucopyranosyl residues in appreciable amounts. It has also been
demonstrated to have a 2-O-linked-α-mannose unit, and those C6-linked units were found
to be more labile and were, therefore, the cleaving point in the structure, which yielded
a pentasaccharide [15].

A series of experiments involving the MGD mutant (Table 1) in G. diazotrophicus Pal5
indicated that the functional gumD gene (glycosyltransferase gene) is involved in EPS
biosynthesis, biofilm formation on glass wool, rice root surface colonisation, and the endo-
phytic colonisation of rice seedlings [16]. Using a mutagenesis approach, we demonstrated
that the gumD gene of G. diazotrophicus Pal5 is involved in EPS production. It has been
shown that a successful endophytic colonisation of rice plants by the G. diazotrophicus
strain Pal5 involves two phases: first, there is an adsorption phase that is mediated by
flagella and other proteins followed by an anchoring phase, which requires the presence
of EPS [16]. Similar EPS activity has been found in several bacterial genera that interact
with plants, such as Azoarcus, Rhizobium, Azospirillum, Sinorhizobium, Paraburkholderia, and
Bradyrhizobium [17–19].

The complete sequencing of the genome of G. diazotrophicus strain Pal5 [20] has opened
new perspectives for understanding the function of many unknown genes. Transposon
mutagenesis has already been applied to G. diazotrophicus strain Pal5 and has allowed the
selection of several mutants with different impaired genes and diverse phenotypes [20,21].

The production of EPS by the G. diazotrophicus strain Pal5 requires 15 genes, which are
clustered in one region on the chromosome [22]. However, the function of each gene in
this cluster still requires more detailed studies. Research involving Escherichia coli (colanic
acid), Xanthomonas campestris (xanthan), several Sphingomonas and Pseudomonas strains,
several Rhizobium, Agrobacterium, Alcaligenes, and Pseudomonas strains (succinoglycan),
Enterobacteria strains (sphigan), Sphingomonas sp. ATCC 53159 (diutan), Sphingomonas
elodea ATCC 31461 (gelan), and Alcaligenes sp. CGMCC2428 (welan) have shown that
EPS biosynthesis takes place in a pathway that is dependent on two regulatory proteins:
Wzc-tyrosine kinase and Wzb-phosphatase [23]. In the Wzc/Wzb-dependent regulatory
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pathway in Escherichia coli, the assembled O-antigen repeat units are translocated from
the cytosolic to the periplasmic face of the inner membrane by a Wzc translocase and
are then polymerised by the integral membrane protein Wzc to form a celullose chain [24].
In the G. diazotrophicus strain Pal5, analyses of the ORFs GDI2535 and GDI2549 have shown
sequence homology with the low molecular weight protein tyrosine phosphatase and the
bacterial tyrosine (BY) kinase [23], where polysaccharides synthesised via Wzc/Wzb have
high sugar pattern diversity. The bacteria that use this system are known to contain genes for
phosphatase (wzb) and the BY kinase (wzc) within extracellular polysaccharide operons [23].

Table 1. Bacterial strains and primers used in the work.

Strains and Primers Characteristics or Sequences Reference

Pal5 Wild-type, AmpS, KmS, TcS, EPS+ [1]
MGD gumD::Tn5, KmR, gumD−, EPS− [16]
MWzc wzc::Tn5, KmR, wzc−, EPS− This study

∆W_Pal5 His6-tagged Wzc recombinant protein of Pal5 This study
∆W_MGD His6-tagged Wzc recombinant protein of MGD This study
∆W_MWzc His6-tagged Wzc recombinant protein of MWzc This study
wzc-sense

wzc-antisense
5′-GACCTGGCCAATATGTTCGT-3′

5′-ATCAGCAGCTTCTTGCGATT-3′ This study

ExpWzcN1-sense
ExpWzcN1-antisense

5′-GACCTGGCCAAAATATGTTCGT-3′

5′-ATCAGCAGCTATATGTTCGT-3′− This study

M13GW-sense
M13GW-antisense

5′-GTAAAACGACGGCCAG-3′

5′-AGGAAACAGCTATGAC-3′ This study

attB1 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3′ Invitrogen
attB2 5′-GGGGACCACTTTGTACAAGAAAGCTGGGT-3′

23S-sense
23S-antisense

5′AAAGCCGGATCAATCCGTTA3′

5′AAGCCGTAGTCGATGGAAAC3′ [20]

RTwzc-sense
RTwzc-antisense

5′GGGGAAATCGAACAGTTGCG3′

5′CGGGCGCGCGGTCCGC3′ This study

gumD encodes a glycosyltransferase I, wzc encodes a tyrosine kinase, Amp (ampicillin), Km (kanamycin), Tc (tetracycline), S Sensitive,
R resistant, + presence and – absence.

Here, we report that the extracellular domain of the membrane component Wzc (GDI2549),
a BY kinase, is a receptor that directly recognises EPS. We propose that the BY kinase activity
in G. diazotrophicus strain Pal5 mediates a previously unrecognised and perhaps widespread
system of intercellular communication that controls exopolysaccharide production.

2. Materials and Methods
2.1. Annotation of the Putative Wzc Protein

The sequence of the G. diazotrophicus strain Pal5 wzc gene (locus GDI2549) is available
in GenBank under accession number AM889285.1. Comparative (orthologue detection) and
functional analyses of the Wzc of this bacterial genome were conducted using BLAST [25].
Pfam [26] and the enzyme nomenclature bank (Expasy Enzyme) [27] were used to confirm
the results.

2.2. Bacterial Strains and Growth Conditions

G. diazotrophicus strain Pal5 (BR 11281, ATCC49037) was obtained from the Dia-
zotrophic Bacteria Culture Collection of Embrapa Agrobiologia, Brazil. G. diazotrophicus
wild type and mutant strains were grown in LGIP [1] liquid media at 30 ◦C. The C2 liquid
medium [28] was used to prepare electrocompetent Pal5 cells. The antibiotics kanamycin
(200 µg/mL) and/or ampicillin (500 µg/mL) were added as required. For cloning pur-
poses, E. coli DH10B cells were cultivated in Luria–Bertani (LB) medium [29] that had been
amended with the selective antibiotics kanamycin (50 µg/mL) or ampicillin (100 µg/mL).
For EPS determination in the culture supernatants, bacterial cells were grown in LGI
medium [1] modified by Meneses [16]. Where indicated, purified exogenous EPS from
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wild-type Pal5 strain (100 µg/mL) was also added. The strains and primers used in this
study are listed in Table 1.

In this work, the following strains of G. diazotrophicus were used: Pa5, wild-type;
MGD, defective in EPS production and with the gumD gene knocked out; MWzc, defective
in EPS production and with the wzc gene (GDI2549) knocked out; ∆W_Pal5, E. coli DH10B
heterologously expressing the G. diazotrophicus Pal5 wzc gene; ∆W_MGD, E. coli DH10B
heterologously expressing the G. diazotrophicus MGD wzc gene; and ∆W_Wzc, E. coli DH10B
heterologously expressing the G. diazotrophicus MWzc wzc gene.

2.3. Construction of Wzc Mutant of G. Diazotrophicus

The complete coding sequence of the Pal5 wzc (GDI2549) orthologue was amplified
by PCR with the primers wzc-sense and wzc-antisense (Table 1), using Taq polymerase
(Invitrogen, Paisley, UK). The 730-bp PCR product was cloned into the pGEM-T easy vector
(Promega Corp., Madison, WI, USA). One recombinant plasmid containing the desired
fragment (pWzc) was selected and mutagenised in vitro by the insertion of the commercial
EZ::Tn5 < KAN-2 > Transposon (Tn5) (EpicentreTechnologies Corp., Madison, WI, USA)
following the instructions of the manufacturer. Putative transformants were selected on
Dygs plate medium containing the selective antibiotics kanamycin (200 µg/mL) and/or
ampicillin (500 µg/mL). The Wzc defective strain was named MWzc.

2.4. EPS Purification and Quantification

The production of EPS by the G. diazotrophicus wild-type and mutant strains was
evaluated after bacterial growth in 50 mL of modified LGI medium with mannitol as
a carbon source (20 g/L) in an orbital shaker (200 rpm, 30 ◦C) for 72 h. The EPS present in
the culture supernatants was precipitated with ethanol and was then dissolved in MilliQ
H2O [30]. The EPS production was determined by quantifying the total carbohydrates
using the colorimetric phenol sulphuric method as described [31].

2.5. Tyrosine Kinase Assay with Radiolabeled ATP

Wild-type Pal5 and MGD and MWzc mutants cells were treated with hydralazine for
2 h. Cells were lysed in lysis buffer (50 mM HEPES, pH 7.7, 1.5 mM MgCl2, 0.2 mM Na3VO4,
1 mM EGTA, 150 mM NaCl, 10% Glycerol, 100 mM NaF, 50 mM beta Glycerophosphate,
0.1% NP40) containing a protease inhibitor cocktail via sonication 2x for 10 s. Cell debris
was removed by centrifugation (15,000× g, 10 min) at 4 ◦C, and supernatants were used
for tyrosine kinase assays after protein measurement. Reactions were initiated by adding
20 µg histone 2B (protein substrate), 50 µM ATP ([γ−32P] ATP 10,000 cpm/pmol) (MP
Biomedicals, Valiant Co., Yantai, Shandong, China), 10 mM MgCl2, 10 mM HEPES pH 8.0,
1 mM DTT, and 1 mM benzamidine for 1 h at room temperature [26]. The reaction was
stopped by adding 5x Laemmli sample buffer followed by heating at 100 ◦C. Samples
were loaded on 4–12% Crit XT Bis-Tris gels (Bio-Rad, Hercules, CA, USA). Gel staining,
drying, and scintillation counting were performed [32]. The histone 2B band from the lane
that lacked cell extract was subtracted to correct for background. In cMWzc and cMGD,
purified exogenous EPS (100 µg/mL) was also added.

2.6. In Vitro IP Kinase Assay

The molecular dynamics of the tyrosine kinase activity (Wzc) were evaluated after the
strains had grown. To do that, 500 µL of cultured cells of each strain were washed three
times in sterile saline solution. Soon after, the cells were resuspended in modified LGI
medium, and, in this case, there was an exchange of K2HPO4 and KH2PO4 by radioactively
labelled γ−32P orthophosphate. Strains were grown in the presence of γ−32P orthophos-
phate for 12 h, and the results were detected by immunoprecipitation. To prepare the total
lysates, the cells were lysed in PBS buffer pH 7.4 containing 1% Triton X-100 protease and
phosphatase inhibitor cocktail ((pH 7.4 and containing 1% Triton X-100 and 200 µg/mL
Lysozyme (Sigma-Aldrich®, St. Louis, MO, USA), a cocktail containing protease and
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phosphatase inhibitors (1:10, Sigma-Aldrich®, individual components and concentration:
aprotinin (bovine lung): serine protease inhibitor (0.08 mM); bestatin: aminopeptidase B
and leucine aminopeptidase inhibitor (5 mM); E-64: cysteine protease inhibitor (1.5 mM);
leupeptin hemisulfate: serine/cysteine protease inhibitor (2 mM); β-Glycerophosphate:
serine/threonine phosphatase inhibitor (10 mM); sodium fluoride: acid phosphatase and
serine/threonine phosphatase inhibitor (50 mM); sodium orthovanadate: protein tyro-
sine phosphatase and alkaline phosphatase inhibitor (1 mM); sodium pyrophosphate
decahydrate: serine/threonine phosphatase inhibitor (10 mM); and EDTA disodium salt:
metalloprotease inhibitor (0.5 mM)). Lysates were passed through a 1 mL 26G 1/2 syringe
three times and were then frozen (−80 ◦C) and thawed three times. The lysates were
further sonicated for 30 min at an amplitude of 60 Hz (Branson Sonifier 250, Hielscher,
Teltow, Germany) with the probe in an ice bath.

The pre-clearing of the lysates was conducted by incubating the samples with 30 µL of
protein G-agarose beads (Life Technologies, Carlsbad, CA, USA) that had been previously
washed with PBS buffer pH 7.4 for two hours at 4 ◦C. After centrifugation at 100× g for
two minutes at 4 ◦C, the supernatant containing the soluble protein lysate was carefully
removed to be used in the immunoprecipitations. Then, 50 µL of protein G-agarose beads
were washed and incubated with antibodies (5 µL of anti-Wzc antibody). Due to the use of
monoclonal antibodies, 5 µg of rabbit anti-IgG antibody was added and shaken, and the
reaction was incubated for a further two hours at 4 ◦C under constant agitation. After that,
the beads were washed three times with PBS pH 7.4 to remove any unbound antibodies.
Then, the beads were blocked with PBS pH 7.4 containing 1 mg/mL BSA for 30 min at 4 ◦C.
For the next step, the protein G-agarose beads containing bound anti-GDIWzc antibodies
were incubated with the cell lysates for 16 h at 4 ◦C under constant agitation. After the
incubation of the samples, the beads were washed by centrifugation three times with PBS
pH 7.4 containing the protease and phosphatase inhibitor cocktails. To elute the proteins
that had bound to the antibodies, the beads were resuspended in Laemmli buffer [33],
heated at 100 ◦C for ten minutes, and analysed as per the previous item.

2.7. Cloning and Expression of the Wzc Gene in E. coli Strain BL21-AI

Specific PCR primers were designed for the wzc gene (GDI2549) from G. diazotrophicus
strain Pal5 and the MGD and MWzc mutants (Table 1). The E. coli expression system
with Gateway® technology (Thermo Fisher Scientific, Waltham, MA, USA) was applied
to express the Wzc heterologous protein in E. coli strain BL21-AI™ using the suitable
plasmids [34,35] and quantified [36]. The functionality of Wzc in different strains from
G. diazotrophicus was tested by using heterologous expression in E. coli strain BL21-AI™. The
E. coli strain BL21-AI™ was transformed, and the recombinant strains ∆W_Pal5, ∆W_MGD,
and ∆W_MWzc were obtained and heterologously expressed His6-tagged Wzc.

2.8. RT-qPCR Analysis

G. diazotrophicus Pal5, MGD, and MWzc strains were grown in LGI medium sup-
plemented with different individual carbon sources (glucose, sucrose, fructose, mannitol;
20 g/L, and exogenous EPS; 100 µg/mL). Cultures were maintained at 30 ◦C and at 200 rpm
for 72 h. When the cultures reached a growth stage of approximately 6.0 × 107 cells/mL,
the cells were centrifuged at 4000× g for 5 min, and the bacterial precipitate was used for
total RNA extraction.

Total RNA was isolated with Trizol, according to the manufacturer’s protocols. RNA
purity and integrity that were appropriate for downstream RT-qPCR applications were
confirmed through measurement with a Qubit 4 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). After DNase I treatment, first-strand cDNA synthesis was conducted
using the Superscript® IV Master Mix (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA), which was performed according to the manufacturer’s manual. The RT-qPCR
reactions were conducted in a StepOnePlus Real-Time PCR thermocycler (Life Technologies,
New York, NY, USA). Each reaction contained 12.5 µL Power SYBR Green PCR Master Mix
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(Applied Biosystems, Waltham, MA, USA); 0.4 µL (1 mM) of each specific oligonucleotide
(RTwzc, Table 1), as was also the case with the endogenous control gene (23S, Table 1);
appropriate amounts of cDNA (1 µL, 1:4 dilution); and 10.7 µL PCR water to yield a final
volume of 25 µL. The qPCR reactions were performed under the following conditions:
initial denaturation at 95 ◦C for three min followed by 40 cycles of 95 ◦C for 30 s, 60 ◦C for
30 s, and a final extension at 60 ◦C for 5 min. Bacterial cells grown in LGI medium were
used to normalise the data. The 2−∆∆CT method was applied to quantify the relative cDNA
gene expression, and the 23S rRNA gene was used as an internal reference control [37]. The
results are the average of six levels of replication (three biological replications and three
technical replications for each biological replication).

2.9. Statistical Analysis

The results are presented as means with standard deviation and were evaluated by
one-way statistical analysis of variance followed by the Tukey test. All experiments were
performed in biological and technical triplicates and were analysed by SigmaPlot 11.0
software (Systat Software, Chicago, IL, USA). In all cases, the differences were considered
significant at p < 0.05.

3. Results
3.1. Homology of the Strain Pal5 Wzc Protein to Other Bacterial Proteins

An analysis of the Wzc protein from strain Pal5 compared to other bacterial species
with a protein found in Genbank showed that it had 92% similarity (individual gene
products) to the cluster from Komagataeibacter sucrofermentans. Furthermore, high (90%)
similarity was also found to a protein from the phylogenetically closely related endophyte
Gluconacetobacter SXCC-1 and to the diazotrophic Azospirillum species A. lipoferum (87%
similarity) and A. brasilense (84% similarity). Therefore, based on the presence of this
protein homology and organisation, the EPS produced by strain Pal5 is most probably
regulated by the Wzc/Wzb system (Figure 1).
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Figure 1. Partial multiple alignment of the conserved C-terminal region of predicted G. diazotrophicus Wzc protein sequence
with those assigned from proteins such as BY kinases. Walker A, B, and Tyrosine cluster (grey), catalytic lysine of Walker
A motif (black), and Tyrosine585 residue (red) are noted.

Gram-negative bacterial Wzc proteins are generally large (~80 kDa) and composed of an
N-terminal transmembrane domain and a C-terminal Wzc domain [38] containing the Walker A
and B active sites (Figure 1). In G.diazotrophicus Pal5, we identified a protein with high similarity
to Wzc from the TY Kinase family that has a molecular mass of 78.1 kDa and possessing well-
characterised functional domains for this family of proteins. As has been described for E. coli
K12 [38], intermolecular self-phosphorylation in the C-terminal tyrosine cluster (five tyrosine’s
from position 708 to position 715) should be stimulated by self-phosphorylation at Tyr569, where
it can be deduced that in G. diazotrophicus happens in Tyr585.

3.2. Tn5 Insertional Inactivation of the PAL5 Wzc Gene

To investigate the role of Wzc in EPS biosynthesis by Pal5, the wzc gene was interrupted
by the insertion of a commercial Tn5 transposon, generating the mutant MWzc. This mutant
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was molecularly validated by Southern blot analysis and reverse polymerase chain reaction
(IPCR) followed by sequencing, which confirmed that the insertion of Tn5 occurred after
position 1755 of the base pair of the wzc gene codon encoding uma tyrosine at position 585,
which stimulates the self-phosphorylation of the tyrosine in Wzc from other bacteria [13].

3.3. EPS Production Is Impaired in a Wzc Mutant

The in vitro production of EPS by G. diazotrophicus wild-type and mutant strains was
investigated. To do this, the total carbohydrates precipitated from the culture supernatants
were quantified and assumed to represent the total EPS produced under the growth
conditions. The results showed that the highest quantities of EPS were produced by the
wild-type strain Pal5 when compared to the control with the LGI medium (Figure 2).
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Figure 2. Quantification of exopolysaccharide (EPS) production by the wild-type strain Pal5 and
mutants MGD and MWzc grown in LGI medium. LGI medium; wild-type Pa5; MGD, defective in
EPS production and with the gumD gene knocked out; and MWzc, defective in EPS production and
with the wzc gene (GDI2549) knocked out. Bars represent the standard deviation (n = 3). Different
letters indicate statistical difference (Tukey’s test, p < 0.05). Inset: EPS from culture supernatants was
precipitated with ethanol and dissolved in water; then, the total carbohydrates were quantified by
the phenol sulphuric method (calibration curve).

In contrast, the production of EPS by the MGD and MWzc mutants was almost elimi-
nated, considering that the EPS level was reduced by 90% in the MGD and 94% in the MWzc
mutants. These results indicate that, as expected, Pal5 (wild type) naturally produces EPS;
MGD [16] was defective in EPS production and had the gumD gene knocked out; MWzc was
also defective in EPS production and had the wzc gene (GDI2549) knocked out.

3.4. Glycosyltransferase Phosphorylation in G. diazotrophicus

After the in silico characterisation of the protein encoded by the wzc (GDI2549),
an assay was performed to detect its kinase activity in vivo (Figure 3). To test whether Wzc
can phosphorylate glycosyltransferases, we used defective mutant strains in the production
of EPS. The cells grown under EPS-inducing conditions (as described in item Section 2.4)
were collected to determine the phosphorylation state of the glycosyltransferases, as shown
in the scintillation analysis (Figure 3). The results demonstrated that the protein was able
to phosphorylate the substrate (γ−32P orthophosphate) used in the assay in the presence
of EPS, thus indicating its BY kinase function as predicted by the in silico analysis. It is also
worth noting that in addition to the kinase activity of MGD, which is conditioned by the
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presence of exogenous EPS, the results showed that the presence of exogenous EPS was
able to promote the BY kinase activity.
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Figure 3. Detection of the glycosyltransferase phosphorylation. LGI medium; wild-type Pa5; MGD,
defective in EPS production and with the gumD gene knocked out; MWzc, defective in EPS produc-
tion and with the wzc gene (GDI2549) knocked out; cMWzc was also defective in EPS production
and with the wzc gene (GDI2549) knocked out and complemented with exogenous EPS from G.
diazotrophicus Pal5; and cMGD, defective in EPS production and with the gumD gene knocked out
and complemented with exogenous EPS from G. diazotrophicus Pal5. Absolute quantification of the
scintillation emitted by different strains. Bars represent the standard deviation (n = 3). Different
letters indicate statistical difference (Tukey’s test, p < 0.05).

The MWzc mutant strain supplemented with exogenous Pal5 EPS (cMWzc) cells
confirmed that the glycosyltransferases were phosphorylated (Figure 3), thus indicating
that the glycosyltransferases had undergone phosphorylation per the tyrosine residues
(in cMWzc, purified exogenous EPS (100 µg/mL) was also added). Decreased counts per
minute (CPM) were observed in the LGI pure medium, MGD, MWzc mutants, and cMWzc
exposed to scintillation (100%) due to the total absence of EPS. However, the application of
exogenous EPS promoted a decrease of only 11.1% (not a statistically significant difference).

3.5. Immunoprecipitation Assay for Detection of Protein Tyrosine Kinase Self-Phosphorylation
Dynamics with Radiolabeled ATP

To determine whether this phosphorylation was indeed dependent on the kinase
activity of Wzc, we analysed the defective mutant strain (MWzc). Increased CPM (self-
regulation) were observed in the MGD mutant and cMGD treatments exposed to scintilla-
tion (100%). There was a statistically significant difference with a decrease of 43.7% when
the exogenous EPS was applied (Figure 4). The results obtained with the MGD mutant
supplemented with 100 µg/mL of EPS purified from Pal5 suggests that the EPS interferes
Wzc autophosphorylation activity in a dose-dependent manner.

Wzc self-phosphorylation was inactivated in Pal5 and in the MWzc mutant and
cMWzc. Therefore, the presence of EPS seems to limit self-phosphorylation and, instead,
promotes the phosphorylation of a glycosyltransferase, thus stimulating the production
of exopolymers. Hence, these data strongly suggest that the wzc gene is involved in EPS
production by strain Pal5 grown in vitro. Autoradiography analyses provided evidence
that the absence of EPS promotes the self-phosphorylation of the Wzc protein both when
it is and is not in the MGD mutant EPS supplement. Because the conditions between
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the treatments remained uniform for all of the samples, absolute measurements of the
specific activity were sufficient to compare treatments. Stimulation by EPS results in the
phosphorylation and activation of the glycosyltransferases, promoting more EPS synthesis
and establishing a positive feedback loop.
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Figure 4. Immunoprecipitation indicating Wzc self-phosphorylation in MGD and MWzc mutants.
LGI medium; wild-type Pal5; MGD, mutant defective in EPS production with the gumD gene knocked
out; MWzc, mutant defective in EPS production with the wzc gene (GDI2549) knocked out; cMWzc
was also defective in EPS production and with the wzc gene (GDI2549) knocked out and comple-
mented with exogenous EPS from G. diazotrophicus Pal5; and cMGD, defective in EPS production and
with the gumD gene knocked out, supplemented with exogenous EPS from G. diazotrophicus Pal5.
Absolute quantification of the scintillation emitted by wild-type strain Pal5 and by mutants deficient
in exopolysaccharide production and by the cMWzc and cMGD complemented with exogenous EPS.
Bars represent the standard deviation (n = 3). Different letters indicate statistical difference (Tukey’s
test, p < 0.05).

3.6. Wzc Expression in E. coli BL21-AI

The heterologous expression of Wzc occurred at an expected band size of ~78.1 kDa
for the ∆W_Pal5 and ∆W_MGD strains. However, the target protein was expressed at
different levels in molecular mass for ∆W_Wzc, and this difference was due to the insertion
of the Tn5 transposon that increased the mass of the knockout protein to ~130 kDa (Figure 5).
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Figure 5. SDS-PAGE of His6-Wzc recombinants proteins. M: Molecular weight marker protein
ladder (Cat No. 10747-012-Invitrogen); lane 1: ∆W_Pal5, E. coli DH10B heterologously express-
ing G. diazotrophicus Pal5 wzc gene; lane 2: ∆W_MGD, E. coli DH10B heterologously expressing
G. diazotrophicus MGD wzc gene; and lane 3: ∆W_Wzc, E. coli DH10B heterologously expressing
G. diazotrophicus MWzc wzc gene.
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3.7. Wzc Gene Expression in Bacterial Strains Grown in Different Carbon Sources

To determine the individual contribution of the Wzc protein to exopolysaccharide pro-
duction during the growth process, the relative expression of the wzc gene was monitored
under different growth conditions: in LGI medium and in LGI medium supplemented with
independent carbon sources: sucrose, glucose, fructose, mannitol (20 g/L), or exogenous
EPS (100 µg/mL). The carbon sources were selected due to their good performance in the
production of EPS of G. diazotriphicus Pal5, and sucrose was chosen in particular because it
is the most abundant carbohydrate in plants [16] and in EPS purified from the supernatant
of the Pal5 growth cultures (Figure 6).
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Figure 6. Relative expression of the wzc gene from G. diazotrophicus strain Pal5 involved in the
regulation of exopolysaccharide biosynthesis. Wild-type Pal5; MGD, defective in EPS production
and with the gumD gene knocked out; and MWzc, defective in EPS production and with the wzc gene
(GDI2549) knocked out. The transcript level is represented as the absolute value of the studied gene
by the absolute value of the gene in the LGI medium growth condition (relative expression). Values
were normalised in relation to the expression of the constitutive 23S gene. Averages followed by
identical capital letters for the same carbon source do not differ among the G. diazotrophicus strains
(Pal5, MGD and MWzc), and averages followed by identical lowercase letters for the same strain
do not differ among the carbon sources. Bars represent the standard deviation (n = 3). * no relative
expression detected.

The results showed an increase in the number of wzc transcripts in Pal5 and MGD
for all of the treatments when compared to when they were grown in the LGI medium
for 72 h, with the exception of the mutant strain (MWzc) grown in sucrose, glucose,
fructose, mannitol, and EPS. It is noteworthy that the lowest relative expression value was
observed for the treatment supplemented with glucose (11.3-fold and 10.4-fold; Pal5 and
MGD, respectively). A generalized increase in the bacterial response with a 101.4-fold and
82.6-fold for Pal5 and MGD, respectively, in the expression of the wzc gene was observed
when grown in the presence of mannitol and EPS. Interestingly, the relative expression of
wzc in MGD was lower when compared to Pal5, where we suggest that this difference is
caused by the amount of EPS that is produced, as shown in Meneses et al. [16].
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4. Discussion

The attachment of plant growth-promoting bacteria (PGPB) to the plant root surface
is the first step in enabling endophytic establishment. In these bacteria, EPS, along with
flagella, pili, bacterial exudates, and signalling molecules, are important for the formation
of biofilms and the first steps of the colonisation process. In addition, EPS contributes
to the growth and survival of bacteria within the plant, helping the colonisation process
and creating a favourable microenvironment where EPS may act as a barrier against plant
defence mechanisms [16,39].

However, attachment to the root surface may not be sufficient for successful endo-
phytic establishment, as demonstrated by Liu and associates [40], who discovered similar
root-attachment capabilities for both exclusively rhizosphere-inhabiting and endophytic
bacterial strains. Furthermore, Meneses et al. [39] proposed a mechanism for the antiox-
idant ability of EPS, wherein the antioxidant effect of polymers, which are significantly
better free radical scavengers than monosaccharides, is independent of intrachain linkage,
molecular weight, or degree of polymer branching. Based on the results of Sabra and
associates [41], it is suggested that the production of EPS, particularly the formation of
a biofilm on the cell surface, forms an effective barrier for O2 transfer into the cell, thus
avoiding nitrogenase inactivation by O2. One of the key elements in the establishment
and maintenance of the biofilm structure and properties is the extracellular matrix. This
matrix is composed of water and EPS—primarily polysaccharides, proteins, and DNA.
Characterisation of the matrix requires component identification as well as determination of
the relative concentration of EPS constituents, including their physicochemical properties
and descriptions of their interactions, in order to hypothesized the precise function of this
extracellular matrix [16].

In the present study, the wzc gene from strain Pal5, hypothesised as being responsible
for EPS production, was investigated using bioinformatic tools and laboratory assays. In
general, the wzc gene from strain Pal5 was orthologous to the wzc gene from the phyloge-
netically closely related K. sucrofermentans. In addition, this gene was also similar to genes
from phylogenetically distant plant-associated bacteria such as Gluconacetobacter SXCC-
1, A. lipoferum, A. brasilense (diazotrophs), and Rastonia solanacearum (phytopathogenic
species), suggesting a horizontal gene transfer mechanism. This speculation also corrobo-
rates the earlier studies on S. pneumoniae, L. delbreuckii, and S. thermophilus as well as those
conducted in Gram-negative bacteria [42,43].

In G. diazotrophicus Pal5, Wzc consists of 738 amino acid residues with a calculated
molecular mass of 78.1 kDa. Wzc contains amino acid sequences that resemble Walker
A (GXGK[T/S]) and Walker B (hhhD). In addition, the G. diazotrophicus Pal5 Walker A
(PXXGK) motif, which is important for Mg2+ binding, was located within the Wzc protein.
A tyrosine cluster (YC) containing multiple tyrosine residues was located at the C-terminal
end of Wzc; this tyrosine cluster is a long one (22 amino acids) and contains several
tyrosine residues (seven) that constitute the self-phosphorylation sites of Wzc. In addition
to these two motifs, we identified the presence of the Walker A lysine, which according
to some studies, induces a strong decrease in the autokinase activity of Wzc. Finally, we
identified a tyrosine G. diazotrophicus at position 585, which was able to stimulate the
self-phosphorylation of the tyrosine.

Using a Tn5-mutagenesis approach, we demonstrated that the wzc gene of G. dia-
zotrophicus strain Pal5 is involved in EPS production. Therefore, unmetabolised sugar is
probably responsible for a large part of this precipitate. However, it is known that mannitol
(carbon source) is soluble in water–ethanol mixtures to a limited extent [44]. Accordingly,
the precipitate observed for the LGI pure medium and in the medium using mannitol as the
carbon source for the MGD and MWzc mutants consisted of typical mannitol-like crystals,
as previously described in similar experiments conducted by Meneses and associates [16]
and Bouchard and associates [44].

It was found that the self-phosphorylation of the protein Wzc attenuates its activity
and reduces the level of EPS in E. coli [45]. Our results indicate that phosphorylation of
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Wzc in G. diazotrophicus strain Pal5 results in the inhibition of EPS biosynthesis. Here, we
present evidence for a novel intercellular signalling system that controls the production of
EPS by acting at the protein modification level in G. diazotrophicus Pal5, namely tyrosine
phosphorylation. Our evidence indicates that the extracellular domain of the Wzc com-
ponent is a receptor that directly recognizes EPS and thereby regulates kinase activity by
the periplasmatic component Wzc. The EPS, as a short-range signalling molecule for cells,
acts in the developing biofilm that triggers a positive feedback loop that stimulates EPS
production (Figure 7).
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The results suggest that in the G. diazotrophicus strain Pal5, EPS reacts with the extra-
cellular membrane component of the Wzc receptor to regulate its kinase activity on a first
glycosyltransferase. In the MGD mutant, the Wzc is inactivated by self-phosphorylation
due to the privation of EPS (Figures 4 and 5). Therefore, the presence of EPS inhibits
self-phosphorylation and promotes the phosphorylation of a glycosyltransferase instead,
thus stimulating EPS production [46]. In gumD glycosyltransferase, any possible polar
effect would only affect the nearby genes (gumM, gumC, gumH, aceG and gumB) that
are all predicted to be involved in the same process of EPS production, in which gumD
catalyses the first step [16].

Because Wzc may be related to the production of exopolysaccharides in bacteria,
we propose that this autoregulation that occurs in G. diazotrophicus may be a hallmark
evolutionary feature in proteobacteria. The findings of this study, which are based on
the presence of an EPS detection process to control EPS production, suggests that under
exponential growth conditions, when the population is dominated by individual cells,
EPS production by a small number of individual chains may be too scarce to allow EPS
to reach sufficiently high levels to stimulate its own production through the kinase BY
detection system [23]. Similar results were observed by Schwechheimer and colleagues [47],
who demonstrated that purified EPS could stimulate its own production, therefore cor-
roborating our study. The phosphorylation of Wzc suppresses EPS synthesis, whereas
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EPS-stimulated the phosphorylation of glycosyltransferase (gumD) mediated by Wzc
promoting EPS production.

Regarding the relative expression of wzc in G. diazotrophicus strain Pal5 and in MGD
and MWzc grown in different carbon sources, a one-off response to Pal5 was observed.
However, there was an increase in the expression of the wzc gene when the Pal5 strain was
grown in the presence of mannitol and was partially restored in the presence of exogenous
EPS. These data suggest that the gene expression pattern can be correlated with the different
carbon sources that are present in the growth medium. These data corroborate those found
by Meneses et al. [16], who observed very similar exopolysaccharide production when
the wild type and mutant of strain Pal5 were grown in different carbon sources. This
fact indicates that the higher the presence of exopolysaccharides in the cell, the more the
expression levels of wzc (GDI2549) in G. diazotrophicus strain Pal5. Relative expression was
observed when the MGD mutant grew in the presence of glucose, fructose, sucrose, and
mannitol, pointing to possible autophosphorylation activity. The wzc gene expression
profile results show that EPS does not regulate the expression of the wzc gene. However,
EPS directs the BY kinase activity since, in the absence of EPS, the Wzc protein auto-
phosphorylates, while in the presence of EPS, it phosphorylates the first glycosyltransferase
in the system.

We experimentally demonstrated that the Wzc is rendered inoperative by self-phosphorylation
and that exopolymers from G. diazotrophicus inhibit self-phosphorylation, thus allowing the
kinase to act on other target proteins in the EPS biosynthesis pathway, such as glycosyltrans-
ferases. Therefore, EPS is commonly found in bacterial biofilms and is a regulating polymer
that promotes its own synthesis. Hence, in addition to having a structural function within
bacterial physiology, it would be interesting to investigate whether the EPS produced by
the G. diazotrophicus Pal5 strain also has other functions in plant signalling.

5. Conclusions

G. diazotrophicus exopolysaccharide plays a critical role in several important biological
processes, including adherence, interactions between bacteria and host plant cells, and
resistance to host immunity. Here, we demonstrate that the self-regulation properties of
Wzc from G. diazotrophicus Pal5 underscore the BY kinases-like proteins that are poten-
tially involved in the polymerisation complex, determining the role of EPS in modulating
self-phosphorylation in the biosynthesis of exopolysaccharides on the surface of G. dia-
zotrophicus Pal5 cells. Wzc-mediated self-regulation may be a widespread feature of the
exopolysaccharide production control in this endophytic diazotrophic bacterium, which is
commonly associated with sugarcane plants.
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