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Treatment of spontaneous EAE by
laquinimod reduces Tfh, B cell aggregates,
and disease progression

ABSTRACT

Objective: To evaluate the influence of oral laquinimod, a candidate multiple sclerosis (MS) treat-
ment, on induction of T follicular helper cells, development of meningeal B cell aggregates, and
clinical disease in a spontaneous B cell–dependent MS model.

Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by
immunization with recombinant myelin oligodendrocyte glycoprotein (rMOG) protein. Sponta-
neous EAE was evaluated in C57BL/6 MOG p35-55–specific T cell receptor transgenic
(2D2) 3 MOG-specific immunoglobulin (Ig)H-chain knock-in (IgHMOG-ki [Th]) mice. Laquinimod
was administered orally. T cell and B cell populations were examined by flow cytometry and
immunohistochemistry.

Results: Oral laquinimod treatment (1) reduced CD11c1CD41 dendritic cells, (2) inhibited expan-
sion of PD-11CXCR51BCL61 T follicular helper and interleukin (IL)-21–producing activated
CD41CD441 T cells, (3) suppressed B cell CD40 expression, (4) diminished formation of
Fas1GL71 germinal center B cells, and (5) inhibited development of MOG-specific IgG. Laquini-
mod treatment not only prevented rMOG-induced EAE, but also inhibited development of spon-
taneous EAE and the formation of meningeal B cell aggregates. Disability progression was
prevented when laquinimod treatment was initiated after mice developed paralysis. Treatment
of spontaneous EAE with laquinimod was also associated with increases in CD41CD25hiFoxp31

and CD41CD251IL-101 regulatory T cells.

Conclusions: Our observations that laquinimod modulates myelin antigen–specific B cell immune
responses and suppresses both development of meningeal B cell aggregates and disability pro-
gression in spontaneous EAE should provide insight regarding the potential application of laqui-
nimod toMS treatment. Results of this investigation demonstrate how the 2D23 Th spontaneous
EAE model can be used successfully for preclinical evaluation of a candidate MS treatment.
Neurol Neuroimmunol Neuroinflamm 2016;3:e272; doi: 10.1212/NXI.0000000000000272

GLOSSARY
APC 5 antigen-presenting cell; BCL6 5 B cell lymphoma 6; DC 5 dendritic cell; EAE 5 experimental autoimmune enceph-
alomyelitis; FDC 5 follicular dendritic cell; GC 5 germinal center; Ig 5 immunoglobulin; IL 5 interleukin; MHC 5 major
histocompatibility complex; MOG 5 myelin oligodendrocyte glycoprotein; MS 5 multiple sclerosis; p 5 peptide; PD-1 5
programmed cell death protein 1; rMOG 5 recombinant myelin oligodendrocyte glycoprotein; Tfh 5 T follicular helper.

Laquinimod, a quinoline-3-carboxamide, is a novel oral agent with immunomodulatory prop-
erties that is being developed for the treatment of multiple sclerosis (MS).1 In 2 phase III
placebo-controlled relapsing-remitting MS trials, laquinimod demonstrated more pronounced
beneficial effects on disease progression and brain atrophy than on clinical or imaging markers of
CNS inflammation,2–4 suggesting that it may also be beneficial in progressive MS. However, the
mechanism(s) responsible for laquinimod’s effects in MS is not completely understood. In
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studies of experimental autoimmune enceph-
alomyelitis (EAE), laquinimod induced both
innate and adaptive immune modulation.5–10

In this regard, laquinimod treatment promotes
development of type II (M2) myeloid antigen-
presenting cells (APCs) that inhibit develop-
ment of proinflammatory Th1 and Th17
cells.5 Besides its established effects on mye-
loid cells and T cells, it is possible that laqui-
nimod exerts activity on B cells, which could
also contribute to its potential benefit in pa-
tients with MS.

Favorable responses to CD20-mediated B
cell depletion in both relapsing-remitting
MS and progressive MS have underscored
the importance of B cells in MS pathogene-
sis.11–13 B cells may participate in MS patho-
genesis by functioning as APCs, through
cytokine secretion, and by serving as a source
of antibody-secreting plasma cells.14,15 Ectopic
meningeal B cell follicles have been identified
in brain tissue from patients with secondary
progressive MS, suggesting that B cells could
also contribute to disease progression.16 Cur-
rently, information regarding the potential
influence of laquinimod on B cells is limited.
One investigation found that in vitro laqui-
nimod treatment of peripheral blood mono-
nuclear cells altered B cell expression of
markers associated with regulation, suggest-
ing that in vivo laquinimod treatment
may similarly affect B cells.17 Previously, we
demonstrated that in vivo laquinimod treat-
ment causes a disproportionate reduction
in the numbers of the CD11c1CD41CD8a2

(referred to as CD41) dendritic cells (DCs).5

The CD41 DC subpopulation is instrumen-
tal in promoting differentiation of T follicular
helper (Tfh) cells,18–20 the CD41 T cell subset
that directs B cell differentiation, germinal
center (GC) formation, and immunoglobu-
lin (Ig) class switching.21 Therefore, we
hypothesized that laquinimod could affect
several B cell activities that contribute to
CNS autoimmunity. In this study, we eval-
uated laquinimod treatment in acute inflam-
matory EAE and in a model of spontaneous
EAE that requires cooperation between T
cells and B cells and is associated with
the development of ectopic meningeal B cell
aggregates.

METHODS Mice. Female C57BL/6 mice, 7 to 8 weeks old,

were purchased from Jackson Laboratories (Bar Harbor, ME).

Myelin oligodendrocyte glycoprotein (MOG) peptide (p)35-

55–specific T cell receptor transgenic 2D2 mice were provided

by V.K. Kuchroo (Harvard Medical School, Boston, MA).22

C57BL/6J MOG-BCR knock-in (IgHMOG-ki, also referred to as

Th) mice were provided by H. Wekerle (Max Planck Institute of

Neurobiology, Martinsried, Germany).23 The University of

California San Francisco Institutional Animal Care and Use

Committee approved the experimental protocol (approval

AN081032), in accordance with guidelines for animal use in

research established by the NIH.

Antigens. Mouse MOG p35-55 (MEVGWYRSPFSRVVH-

LYRNGK) was synthesized by Auspep (Melbourne, Australia).

Recombinant (r) mouse rMOG protein was synthesized, purified,

and refolded as previously reported.24

EAE induction and clinical assessment. Female, 7- to 10-

week-old C57BL/6 mice were injected subcutaneously with 100

mg rMOG in complete Freund’s adjuvant (Difco Laboratories,

Detroit, MI). Mice received intraperitoneal injections of 200 ng

pertussis toxin on the day of immunization and 2 days later.

Animals were examined daily, and clinical scores were assessed as

follows: 0, no signs; 1, decreased tail tone; 2, mild monoparesis or

paraparesis; 3, severe paraparesis; 4, paraplegia and/or quadriparesis;

and 5, moribund or death. In all EAE experiments, mice were

scored daily by an examiner who was blinded to the treatment

assignment.

Laquinimod treatment. Laquinimod (Teva Pharmaceutical

Industries, Ltd., Petah Tikva, Israel) was dissolved in purified

water. Mice received a daily dose of either laquinimod (25 mg/

kg) or vehicle (water) by oral gavage. The dosing regimen was

selected based on a previous report.25 Treatment started on the

day of EAE induction. For prevention of spontaneous EAE,

2D2 3 Th mice were treated with laquinimod (25 mg/kg) or

vehicle starting at 19 days of age. In reversal of spontaneous EAE,

mice were randomized to treatment with laquinimod or vehicle

(water) when they developed an EAE score of $1. For in vitro

APC-T cell assays, cells of interest were harvested following

a 10-day in vivo treatment period with laquinimod or vehicle.

Adoptive transfer of B cells. Splenic B cells were isolated from

Th mice treated with laquinimod or vehicle for 10 days. Enriched

B cell fractions obtained by magnetic cell sorting using B2201

magnetic beads (STEMCELL Technologies, Vancouver, Canada)

exhibited a purity of at least 95%. Recipient 2D2 3 JHT mice

received 103 106 laquinimod- or vehicle-treated B cells and were

immunized with rMOG the following day.

Generation of Tfh cells. Naive T cells (CD41CD62L1CD441)

were magnetically sorted from T cell receptor transgenic 2D2 mice

(purity greater than 96%) using magnetic beads (Miltenyi Biotec,

Auburn, CA) and stimulated with MOG p35-55 (20 mg/mL) in

the presence of APCs (CD902 cells) at a T cell/APC ratio of 1:5 as

previously described.5 Tfh differentiation was induced by addition

of interleukin (IL)-6, IL-21, anti–IL-4, anti–IL-12, anti–interferon

g, and anti–transforming growth factor b antibodies. Cells were

cultured for 3 to 4 days before intracellular evaluation of cytokine

production using a FACSCanto flow cytometer (BD Biosciences,

San Jose, CA).

Detection of anti-MOG antibodies. Total serum MOG-

specific IgG was quantified using a custom anti-rMOG IgG

quantitative ELISA. MaxiSorp plates (96-well; Corning Inc.,

Corning, NY) were precoated with rMOG protein (10 mg/mL
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in phosphate-buffered saline), blocked with blocking buffer,

and incubated overnight with sera at 1:100 dilution. After

washing, MOG-specific IgG was detected with horseradish

peroxidase–conjugated anti-mouse IgG. Results are expressed as

optical density. A SpectraMax spectrophotometer (450-nm

wavelength) and SoftMax software (Molecular Devices, Sunnyvale,

CA) were used for data analysis.

T cell proliferation. Purified B cells from laquinimod- or

vehicle-treated Th mice were cocultured with CFSE-labeled

naive CD41 cells isolated from laquinimod- or vehicle-treated

2D2 mice in the presence of rMOG. Cells were cultured for

48 hours, and CFSE dilution was evaluated by flow cytometry.

Histology and immunohistochemistry. The brains, spinal

cords, and optic nerves were removed from mice and fixed

in 10% neutral-buffered formalin, paraffin-embedded, and

sectioned as described previously.5,15 Representative sections

were stained with Luxol fast blue–hematoxylin & eosin and

reticulin preparation (for connective tissue). Stained tissue

specimens were examined by light microscopy. A blinded

observer (R.A. Sobel) counted both meningeal and parenchymal

inflammatory foci (.10 clustered inflammatory cells). Avidin-

biotin immunohistochemical staining was performed on the

sections with rabbit anti-mouse CD3 (Abcam, Cambridge, UK)

and rat anti-mouse CD45R (B220; BD Biosciences) using

reagents from Vector Laboratories (Burlingame, CA). As

described previously,5,15 normal mouse spleen tissue served as

positive staining controls. Negative controls included omission

of the primary antibody and analysis of mouse CNS tissues

from unimmunized mice.

Flow cytometry. Single-cell suspensions were incubated with

anti-CD16/CD32 (1:100) to prevent nonspecific antibody

binding, then stained with anti-CD4, -CD44, -PD-1, -CXCR5,

Figure 1 Laquinimod treatment reduces the frequency of Tfh cells and IL-21–producing T cells in rMOG-induced EAE

(A–F) EAE was induced in C57BL/6 mice by immunization with rMOG. Mice were treated daily with laquinimod or vehicle from day of immunization. Lymph
nodes and spleens were isolated 10 days later. (A) Laquinimod prevented the development of EAE. (B) The frequency of CD41 dendritic cells was examined in
the spleen and lymph nodes from laquinimod- and vehicle-treated mice. (C) Tfh cells were defined as PD-11CXCR51 cells among CD41CD44hi T cells.
Representative flow cytometry analysis and Tfh cell frequency are shown. (D) The expression of BCL6, a transcriptional repressor that directs Tfh cell
differentiation, was examined within Tfh cells. The production of IL-21, a Tfh cell cytokine that contributes to the formation and function of germinal centers,
was examined among activated T cells (E) and Tfh cells (F). *p , 0.05, **p , 0.001, Student t test. BCL6 5 B cell lymphoma 6; EAE 5 experimental
autoimmune encephalomyelitis; IL5 interleukin; LAQ5 laquinimod; LN5 lymph nodes; PD-15 programmed cell death protein 1; rMOG5 recombinant myelin
oligodendrocyte glycoprotein; Tfh 5 T follicular helper; Veh 5 vehicle.
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CD11b, -CD11c, -B220, -IgD, -GL7, -Fas, -MHCII, -CD40,

-CD80, and -CD86 (all 1:100) (eBioscience, San Diego, CA)

as described previously.5,15 Intracellular cytokine production

by CD41 T cells was analyzed by monitoring the expression

of interferon g, IL-17, IL-10 (eBioscience), and IL-21 (R&D

Systems, Minneapolis, MN) as described previously.5,15,26 B cell

lymphoma 6 (BCL6) and Foxp3 staining were performed

according to the manufacturer’s protocol (eBioscience).

Intracellular cytokine staining was performed on T cells after

stimulation with phorbol 12-myristate 13-acetate (50 ng/mL)

and ionomycin (500 ng/mL) in the presence of monensin (BD

Biosciences GolgiStop, 3 mM).5,15,26 Cells were analyzed by flow

cytometry on a FACSCanto (BD Biosciences) as described

previously.5,15,26

Statistical analysis. Data are shown as mean 6 SEM or SD.

Statistical significance between groups was analyzed using

Student t test or Mann–Whitney U test. Repeated-

measurement mixed-effect models were used to compare

clinical scores between treatment groups. Survival analysis

was used to compare the occurrence of spontaneous EAE

between treatment groups; hazard ratio was determined

using Cox regression with the Breslow method for ties. A

value of p # 0.05 was considered significant.

RESULTS Laquinimod alters the frequency and

differentiation of Tfh cells. Previous studies have demon-
strated that laquinimod is effective in the treatment of
EAE induced by MOG p35-55,5,6,25 an encephalito-
genic peptide that does not efficiently activate B cells or
lead to production of MOG-specific antibodies.15,27

To evaluate the effect of laquinimod on Tfh cell
development and differentiation, we examined
rMOG-immunized C57BL/6 mice, an EAE model
that leads to activation of MOG-specific B cells and
production of MOG-specific antibodies.15,27 Daily oral
laquinimod treatment prevented rMOG-induced
EAE (figure 1A) and was associated with a reduced
frequency of CD41 DCs, which are known to
participate in the development of Tfh cells
(figure 1B).

Tfh cells are characterized by expression of various
cell surface and intracellular markers, including
CXCR5, inducible T cell costimulator, programmed
cell death protein 1 (PD-1), the transcriptional
repressor BCL6, which directs differentiation of
Tfh, and IL-21, which participates in GC forma-
tion.28 Daily laquinimod treatment was associated
with reduction of PD-11CXCR51 (figure 1C) and
PD-11CXCR51BCL61 Tfh (figure 1D) in lymph
nodes. IL-21 participates in GC formation.29 Of
note, laquinimod treatment reduced the frequency
of IL-21–producing activated CD41CD44hi T cells
(figure 1E) and Tfh cells (figure 1F) in lymph nodes
and spleen, suggesting that inhibition of T cell IL-21
secretion may be common to activated T cells.

Previously, we demonstrated that laquinimod ex-
erts its immunomodulatory activity on effector T cells
through alteration of APC function, but not on T
cells directly.5 Thus, we wished to determine whether

laquinimod similarly affects Tfh cells. APCs from
laquinimod- or vehicle-treated mice were cocultured
with vehicle-treated naive MOG p35-55–specific
(2D2) T cells. In a reciprocal manner, naive T cells
isolated from laquinimod- or vehicle-treated 2D2
mice were cultured with purified vehicle-treated APCs.
We observed that APCs from laquinimod-treated
mice, but not from untreated mice, suppressed differ-
entiation of Tfh cells, regardless of whether naive 2D2
T cells were obtained from laquinimod- or vehicle-
treated mice (figure 2). This observation is consistent
with our earlier demonstration that laquinimod
exerts its activity directly on APCs that are in
turn responsible for adaptive T cell immune
modulation.5

Laquinimod reduces the frequency of GC B cells and

formation of MOG-specific IgG. Tfh cells participate
in maturation and differentiation of GC B cells,
antibody class switch recombination, and produc-
tion of IgG antibodies.18,20,21 Because we observed
that laquinimod reduced the frequency of Tfh, we
questioned whether laquinimod treatment might
decrease the frequency of GC B cells and suppress
IgG formation. Oral laquinimod treatment reduced

Figure 2 APCs from laquinimod-treated mice
inhibit differentiation of Tfh cells

Splenic CD90.22 cells from mice treated in vivo with laqui-
nimod or vehicle were used as APCs in a reciprocal manner
to stimulate naive (CD41CD442CD62L1) T cells from MOG
p35-55 T cell receptor transgenic mice (2D2) treated with
laquinimod or vehicle. APCs and T cells were cultured with
MOG p35-55 in Tfh-polarizing conditions (IL-6, IL-21, anti-
IL-4, -IL-12, -IFN-g and -TGF-b antibodies) from the start of
culture. Flow cytometry analysis for expression of Tfh cell
markers was performed after 3 days of culture. APC5 anti-
gen-presenting cell; IFN-g 5 interferon g; IL 5 interleukin;
LAQ 5 laquinimod; MOG 5 myelin oligodendrocyte glyco-
protein; PD-1 5 programmed cell death protein 1; Tfh 5 T
follicular helper; TGF-b 5 transforming growth factor b;
Veh 5 vehicle.
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the frequency of GC B cells within the draining
lymph nodes (figure 3A) and was associated
with a marked decrease in anti-MOG IgG
antibody titers (figure 3B). While CD41 DCs
(CD41CD8a2 follicular DCs [FDCs]) have a key
role in Tfh cell development, B cells also contribute
to Tfh cell homeostasis.30 We therefore examined
whether the influence of in vivo laquinimod
treatment on B cells could also contribute to

reduction of Tfh. B cells were isolated from
MOG-specific BCR transgenic (Th) mice after 10
days of treatment with laquinimod or vehicle
and then transferred into B cell–deficient (JHT)
2D2 recipient mice. Recipient mice were then
immunized with rMOG. Examination of draining
lymph nodes revealed a reduced frequency of Tfh
cells in laquinimod-treated recipient mice (figure
3C). These findings indicate that laquinimod can

Figure 3 Laquinimod treatment reduces the frequency of GC B cells and IgG antibody production in rMOG-
immunized mice

Lymph node cells were isolated 10 days after immunization with rMOG. (A) GC B cells were defined as Fas1GL71 cells
among B2201IgDlow B cells. Representative flow cytometry analysis (left panel) and GC B cell frequency from all mice (right
panel) are shown. (B) Serum anti-rMOG IgG levels were determined by ELISA 10 days after immunization. (C) B cells isolated
from mice treated or not treated with laquinimod were transferred to JHT (B cell–deficient) mice. Lymph node cells were
isolated 10 days after immunization with rMOG. The frequency of Tfh cells is shown. (D) CD41 T cells from 2D2 mice were
cocultured with B cells treated or not treated with laquinimod in the presence of rMOG. Proliferation of CD41 T cells was
evaluated after 72 hours. (E) Lymph node and spleen cells were isolated 10 days later after immunization with rMOG. B cell
CD40 expression was examined by flow cytometry. *p, 0.05, ***p, 0.001, Student t test. CDI5 cell division index; GC5

germinal center; Ig 5 immunoglobulin; LAQ 5 laquinimod; LN 5 lymph nodes; MOG 5 myelin oligodendrocyte glycoprotein;
OD 5 optical density; PD-15 programmed cell death protein 1; rMOG5 recombinant myelin oligodendrocyte glycoprotein;
Tfh 5 T follicular helper; Veh 5 vehicle.
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act directly on B cells, which may also contribute
to the observed reduction of Tfh cells during
laquinimod treatment.

We also examined whether in vivo laquinimod
treatment influences B cell APC function. B cells
from laquinimod-treated mice stimulated prolifera-
tion of 2D2 T cells as well as B cells from vehicle-
treated mice, suggesting that B cell APC function,
unlike APC function of myeloid cells,5 was not
affected by laquinimod treatment (figure 3D). Of
note, laquinimod treatment did not alter B cell
expression of major histocompatibility complex
(MHC) II, CD80, or CD86 costimulatory molecules
(figure e-1 at Neurology.org/nn), although it reduced
cell surface expression of CD40 (figure 3E), the cos-
timulatory molecule that is required for the mainte-
nance of Tfh cells.30

Laquinimod inhibits disease development and meningeal

follicle-like structure formation in spontaneous EAE.

Laquinimod treatment was tested in the B cell–
dependent model of spontaneous EAE that devel-
ops when MOG-specific T cell receptor transgenic
(2D2) mice are crossed with MOG-specific B cell
receptor transgenic (Th) mice.15,31,32 Laquinimod
administration before the development of first
clinical signs resulted in delayed onset and
reduced disease incidence when compared to
vehicle-treated mice (figure 4A). Among mice
that developed clinical signs of EAE, those that
received laquinimod had a significantly lower
maximal clinical score (figure 4B). Meningeal B
cell aggregates, which are sometimes detected in

secondary progressive MS,16 are associated with
clinical disease in 2D2 3 Th mice.15,31,32 B cell
aggregates were located in the leptomeninges and
subpial parenchyma (figure 5A). There was a reduction
in size and markedly significant decrease in number of
the B cell aggregates in laquinimod-treated mice
(figure 5B).

Laquinimod prevents clinical progression of spontaneous

EAE. Laquinimod was tested in mice after onset of
spontaneous EAE for its ability to prevent disability
progression. Mice were randomized to laquinimod
or vehicle after onset of clinical EAE (mean score
2.25). There was a statistical trend for overall lower
mean clinical scores with laquinimod (p 5 0.077,
repeated-measures mixed-effect linear regression).
There was a clear interaction of laquinimod
treatment with time (p 5 0.0002) with the
difference between groups becoming significant
after 36 days (figure 6A). Laquinimod treatment of
2D2 3 Th mice was associated with a significant
reduction in the frequency of splenic Tfh cells as
well as IL-21–secreting Tfh cells (figure 6, B and
C). In contrast to laquinimod treatment in acute
rMOG-induced EAE (figure 1C), we did not detect
a similar decrease of Tfh in lymph nodes. For
comparison to treatment of 2D2 3 Th mice, we
treated naive (unimmunized) C57BL/6 mice with
laquinimod and similarly observed a reduction of
splenic, but not lymph node, Tfh cells (figure 6D).
In contrast to laquinimod treatment of acute EAE, we
did not observe a reduction of Fas1GL71 GC B cells
(figure 6E), a finding that may not be surprising, as

Figure 4 Laquinimod treatment suppresses development of spontaneous EAE

(A) 2D2 3 Th mice were treated with laquinimod (25 mg/kg) or vehicle (water) daily by oral gavage starting 19 days after birth (see arrow). Mice were
examined once a day for onset of clinical EAE. The first quartile of mice that developed EAE is indicated since only 29% of laquinimod-treated mice
developed disease throughout the observation period. Hazard ratio was determined using Cox regression with the Breslow method for ties. (B) Daily oral
laquinimod treatment decreases the severity of spontaneous EAE in 2D23 Th mice. Data represent the mean maximal scores of those mice that developed
EAE. *p , 0.05, Mann-Whitney U test. EAE 5 experimental autoimmune encephalomyelitis; LAQ 5 laquinimod; Veh 5 vehicle.
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immunization of wild-type mice with protein (e.g.,
rMOG) promotes activation of GC B cells,27 and
2D2 3 Th mice were not given an immunization.

Previously, we observed that laquinimod treatment
of wild-type mice was associated with an increase in
regulatory T cells.5 Thus, we examined the frequency
of regulatory T cells in laquinimod-treated and vehicle-
treated 2D2 3 Th mice. Reduction in disease pro-
gression by treatment with laquinimod was associated
with increased frequencies of CD41CD25hiFoxp31

(figure 6F) and CD41CD251IL-101 regulatory T
cells (figure 6G).

DISCUSSION In this report, we evaluated oral laqui-
nimod in 2 EAE models that require B-T cell coop-
eration. Laquinimod treatment of rMOG-induced
EAE interfered with development of Tfh, B cell
activation, secretion of MOG-specific antibodies,
and EAE. Similarly, laquinimod treatment of
spontaneous EAE reduced expansion of Tfh cells
but also prevented accumulation of meningeal B
cell aggregates, lymphoid structures that have been
observed in tissues of patients with progressive MS,
and impeded disability progression when treatment
was initiated after mice developed paralysis.
Collectively, these findings may be relevant to the
potential application of laquinimod to treatment of

patients with progressive MS. Furthermore, our
observation that laquinimod inhibits MOG-
induced antibodies suggests that laquinimod could
interfere with formation of pathogenic antigen-
specific antibodies in humoral autoimmune diseases,
including neuromyelitis optica.33

CD41 DCs have a key role in the development of
Tfh cells and humoral immune responses.18–20 Thus,
our observation that laquinimod treatment reduces
CD41 DCs in rMOG-induced EAE, which confirms
similar observations in MOG p35-55–induced
EAE,5,6 suggests that the disproportionate decrease
of this DC subset may contribute to the reduction
of Tfh and anti-MOG antibodies. FDCs, which
express CD21, CD32, and CD35, have an important
role in the development of GCs and are also a hall-
mark cell type of meningeal B cell aggregates in sec-
ondary progressive MS. Thus, in further studies, one
may wish to evaluate how laquinimod treatment in-
fluences FDCs. It is also of interest that while laqui-
nimod treatment in spontaneous EAE was associated
with a marked decrease in meningeal B cell aggre-
gates, we did not observe a statistically significant
reduction of typical meningeal and parenchymal lym-
phocytic infiltrates (figure 5A). It is possible that by
examining a larger number of mice, the apparent
decrease in lymphocytic infiltrates would have been

Figure 5 Laquinimod treatment prevents development of meningeal follicles in spontaneous EAE

(A) Laquinimod influences CNS inflammation and demyelination in spontaneous EAE (LH&E). The apparent reduction in typical EAE CNS inflammatory foci
was not statistically significant. (B) In vehicle-treated mice, extensivemononuclear cell infiltrates in leptomeninges and parenchymawith organized lymphoid
follicle-like aggregates containing T cells and B cells are observed (a–d). Laquinimod treatment is associated with reduced size and number of meningeal
follicle-like structures in the leptomeninges and subpial parenchyma (e–h). Boxes in a and e correspond to fields in b–d and f–h, respectively. (a, b, e, and f)
LH&E. (c and g) anti-CD3. (d and h) anti-CD45R (B220). Scale bars: e, 200 mm (applies to a and e); f, 50 mm, applies to b–d, f–h. *p , 0.01, Mann–Whitney U
test. EAE 5 experimental autoimmune encephalomyelitis; LAQ 5 laquinimod; LH&E 5 Luxol fast blue–hematoxylin & eosin; Veh 5 vehicle.
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Figure 6 Laquinimod treatment of spontaneous EAE prevents progression and reduces the frequency of Tfh
cells

(A) 2D23 Thmice that had developed clinical signs of EAE (score$1) were randomly assigned to treatment with laquinimod
(25mg/kg) (n511) or vehicle (n511). Treatments were administered by oral gavage daily for 48 days. The frequency of Tfh
cells (B), IL-21–producing Tfh cells (C), and germinal center B cells (E) were examined after 48 days of treatment. (D)

Continued

8 Neurology: Neuroimmunology & Neuroinflammation

ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



statistically significant. Alternatively, and consistent
with the observations that laquinimod treatment
selectively reduces CD41 DCs, laquinimod may have
a more pronounced effect on B cell differentiation
and development of meningeal B cell aggregates in
spontaneous EAE. It is also recognized that laquini-
mod may enter the CNS, especially during inflam-
mation.34 Thus, reduction of ectopic meningeal B cell
aggregates may not be attributable solely to laquini-
mod’s influence on peripheral B cell differentiation,
but could conceivably also reflect direct inhibitory
effects in situ.

Previous investigations indicate that laquinimod
may promote neuroprotection.35–37 Laquinimod pro-
tects against cuprizone-induced demyelination,35,37

a model that leads to activation of glial cells, but is
unaccompanied by significant CNS lymphocytic
infiltration.38 Such findings suggest that, in addition
to its known anti-inflammatory properties, laquini-
mod can also exert neuroprotective effects directly
within the CNS. Prevention of disability progression
and brain atrophy are clinical and imaging measures
that are associated with neuroprotection.39,40 Of note,
we observed that the reduction in disability was sta-
tistically significant, but only after 1 month of laqui-
nimod treatment. One may therefore ask whether
laquinimod treatment in this model was associated
with neuroprotection, a possibility that we did not
formally address. Because CNS damage in spontane-
ous EAE in 2D23 Th mice occurs as a consequence
of inflammation, the influence of laquinimod treat-
ment on disability progression reported here could be
a reflection of secondary, but not direct, CNS
neuroprotection.

While laquinimod treatment was effective in
both rMOG-induced EAE and in spontaneous
EAE, there were notable differences in its influence
on immune cell activation. For example, laquini-
mod treatment was associated with a marked reduc-
tion of activated GC B cells in rMOG-immunized
mice (figure 3A), but not in treatment of sponta-
neous EAE (figure 6E). However, this observation
is not necessarily surprising because protein immu-
nization in complete Freund’s adjuvant is a potent
stimulus that promotes activation of GC B cells.27

In addition, the influence of laquinimod treatment
on certain immune cells is more easily detected
when they have been activated. In myelin protein

or peptide-induced EAE, peripheral T cell activa-
tion is most commonly assessed in draining lymph
nodes or the spleen. It is important to recognize
that the kinetics for T cell activation in these sec-
ondary lymphoid organs are not identical, and the
identification of activated T cells in draining lymph
nodes of antigen-primed mice often precedes detec-
tion in the spleen.41 In this regard, we observed
a significant reduction of Tfh cells in lymph nodes,
but not in the spleen, 10 days after rMOG immu-
nization of laquinimod-treated mice (figure 1, C
and D). Conceivably, evaluation of mice at later
time points may have enabled us to detect activated
GC B cells in the spleen. Since it is not necessarily
feasible to evaluate the influence of a therapy on
immune cells at successive times, it can be advan-
tageous to evaluate those cells in multiple second-
ary lymphoid tissues simultaneously.

Recently, we reported that oral dimethyl fuma-
rate (Tecfidera; Biogen, Cambridge, MA) pre-
vented development of spontaneous EAE.42 In the
present study, we found that laquinimod treatment
not only prevented spontaneous EAE but also was
successful when treatment was initiated after mice
developed paralysis. In contrast, other investigators
did not detect a therapeutic benefit of glatiramer
acetate (Copolymer-1, Copaxone; Teva Pharma-
ceutical Industries) in 2D2 3 Th mice and ques-
tioned whether the 2D2 3 Th EAE model is
appropriate for evaluating therapeutic interven-
tion.43 However, it is important to recognize that
just as there is heterogeneity in MS, EAE models
also differ. Certain features of individual EAE mod-
els may recapitulate unique aspects of human CNS
autoimmune disease, and therefore each model may
not be optimal for evaluating all potential therapeu-
tic agents. Although artificial, as T cells and B
cells both target MOG,15,31,32 one strength of the
2D2 3 Th model is that it permits evaluation of
myelin-specific B cell activation and B-T cell coop-
eration in an EAE model that shares certain features
with progressive MS. Use of this model has permit-
ted us to evaluate and demonstrate how laquinimod
treatment may influence B-T cell interaction and B
cell participation in MS. Our results clearly dem-
onstrate that the 2D2 3 Th spontaneous EAE
model can be used successfully to study therapeutic
immune intervention.

Figure 6 legend, continued:
Frequency of Tfh cells observed in lymph node and spleen cells isolated from naive mice treated with laquinimod or vehicle
for 10 days. (F–G) Frequency of Treg cells (F) and IL-10–producing CD41CD251 T cells (G) detected in lymph node and
spleen cells isolated from 2D2 3 Th mice that had received laquinimod or vehicle treatment for 48 days. *p , 0.05, **p ,

0.01, ***p , 0.001, ****p , 0.0001, Student t test. EAE 5 experimental autoimmune encephalomyelitis; Ig 5 immuno-
globulin; IL 5 interleukin; LAQ 5 laquinimod; LN 5 lymph nodes; PD-1 5 programmed cell death protein 1; Tfh 5 T follicular
helper; Treg 5 T regulatory; Veh 5 vehicle.
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