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Abstract
Linear augmentation has recently been shown to be effective in targeting desired stationary

solutions, suppressing bistablity, in regulating the dynamics of drive response systems and

in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main

highlight of this scheme but questions related to its general applicability still need to be

addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates

instances where the scheme fails to stabilize the required solutions and leads to other com-

plicated dynamical scenarios. Examples from conservative as well as dissipative systems

are presented in this regard and important applications in dissipative predator—prey sys-

tems are discussed, which include preventative measures to avoid potentially catastrophic

dynamical transitions in these systems.

Introduction
Studies on coupled nonlinear systems have explored a wide variety of emergent dynamical
phenomena, namely synchronization [1], oscillator suppression [2], multistability [3], hys-
teresis [4], extreme—events [5, 6] etc. which can be exploited in applications: to model natu-
ral phenomena or in regulating the system behavior for instance. Controlling dynamical
systems towards a desired behavior is an important research topic in nonlinear sciences [7].
Starting with chaos control [8–11], research in this domain now also extends towards control
of multistability [12], patterns and spatio—temporal chaos [13, 14], noisy systems [15, 16],
methods of stabilizing unstable stationary solutions [17, 18] etc. A better understanding of
these different regulatory aspects has greatly contributed towards development of related
novel and highly efficient procedures. Considering noninvasive (without changing the
intrinsic system parameters) mechanisms leading to stabilization of stationary solutions,
oscillator suppression via coupling nonlinear systems has been discussed extensively in liter-
ature (see Refs. [17, 18] for detailed reviews). This suppression is majorly observed as a con-
sequence of parameter heterogeneity between coupled units [19–21], presence of time—
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delayed [22, 23]/conjugate variables [24] in the coupling function or through dynamic cou-
pling [25], etc.

Recently, linear augmentation has been suggested as another practical alternative leading to
oscillator suppression, which is achieved by coupling systems to a linear feedback which simply
consists of an exponentially decaying function [26] in the uncoupled state. Interestingly, the
coupling structure of linear augmentation is quite reminiscent of indirect or environmental
coupling procedures [27–29] which are motivated by observations of collective behaviors in
several real world systems, namely, behavior of chemical relaxation oscillators globally coupled
through the concentration of chemicals in a common solution [30], dynamics of multi—cell
systems where the cells interact through common complex proteins [31], and collective behav-
ior of cold atoms in the presence of a coherent electromagnetic field and atomic recoil [32, 33]
for instance. These instances therefore also serve as good examples of systems where linear aug-
mentation can exist naturally. Lately, studies have also effectively used linear augmentation in
controlling bistability [34], in controlling the dynamics of drive response systems [35] and in
controlling hidden attractors [36].

With respect to stabilizing stationary solutions, Ref. [26] discusses results for an aug-
mented Lorenz oscillator where either the stationary solutions of the Lorenz system (desired)
or those of the augmented system could be stabilized by picking an appropriate feedback
function. The paper also presents some parameter space plots highlighting the regimes where
linear augmentation works in stabilizing the solutions of the original system and where it
does not. These results although instructive, are also extremely system specific. At this point
one must question the ability of linear augmentation towards stabilizing the desired station-
ary solutions in a more general sense, namely, for which systems, parameter values and cou-
pling configurations will the scheme work? Since the stability of stationary solutions is
determined by the eigenvalues of the augmented system’s Jacobian in the linear approxima-
tion, if the eigenvalues are independent of augmentation, or if they remain positive for all val-
ues of the augmentation strength, then the procedure will never stabilize these stationary
solutions. Furthermore, linear augmentation introduces new stationary solutions in the
dynamics which might get stabilized instead of the intended solutions based on similar argu-
ments. In this paper, we will look at some simple examples of linearly augmented systems to
highlight that we need to be quite careful before choosing linear augmentation in such appli-
cations. These examples illustrate that there could be situations where even picking an appro-
priate feedback function does not guarantee that the required stationary solutions will be
necessarily stabilized; since the mechanism is highly dependent on the intrinsic properties of
the oscillators in consideration, the stationary solutions to stabilize, and also on how these
systems are coupled to the feedback/ augmented. More importantly, we will also discuss
instances where the failures of this procedure can be exploited in meaningful applications,
especially in predator—prey systems where we can potentially avoid catastrophic transitions
using linear augmentation.

The manuscript is arranged as follows: Sec. Methods briefly introduces the linear augmen-
tation scheme. In Sec. Results, we will look at augmented Harmonic oscillator, and Duffing
oscillator as examples of augmented conservative systems followed by augmented Dissipative
predator—prey models where the scheme fails to stabilize the desired stationary solutions,
and also discuss possible applications for these observations in the latter. Details regarding
certain dynamical aspects of harmonic oscillator and Duffing system are provided in Sec.
Additional details for completeness. The results and outlook of this work are summarized in
Conclusions.

Limitations of Linear Augmentation
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Methods

Linear augmentation
General representation of a linearly augmented dynamical system is,

_x ¼ fðxÞ þ εu

_u ¼ �ku� ε � ðx� bÞ:

)
ð1Þ

where the column vector x ¼ ½x1; x2; . . . ; xN �T 2 R
N ([. . .]T corresponds to the transpose) con-

tains the systems variables, and u is the augmentation variable. ε ¼ ½ε1; ε2; . . . ; εN �T 2 R
N is

the column vector with information regarding the coupling strength of the interaction between
the dynamical variables and u; augmentation/coupling term corresponding to the ith compo-

nent xi is εi u 8 i = 1, 2, . . ., N, and εi = 0 if xi is not coupled to u. b 2 R
N is an arbitrary vector

and k is the decay constant [37] which apparently can be used to control the transient time

leading to stationary solutions [26]. Vector b ¼ x� ¼ ½x1�; x2�; . . . ; xN ��T 2 R
N where x

�
satis-

fies _xjx¼x� ¼ fðx�Þ ¼ 0 if we want to stabilize a stationary solution x
�
of the original system.

Substituting a value of b 6¼ x
�
can stabilize stationary solutions of augmented system for which

_X ¼ ½ _x1 ; _x2 ; . . . ; _xN ; _u�T 2 R
Nþ1 ¼ 0. The term ε�(x − b) gives the dot product of the corre-

sponding column vectors.
In the following, we will look at examples of augmented conservative and dissipative

dynamical systems which highlight the limitations of this procedure. The terms augmentation/
augmented and coupling/coupled are used synonymously in the following text.

Results
Here we will discuss some instances of systems controlled via linear augmentation. We will
first look at two examples of conservative systems, namely the harmonic oscillator and conser-
vative Duffing oscillator where linear augmentation is employed to stabilize their stationary
solutions.

Harmonic oscillator
Equations describing a partially linearly augmented harmonic oscillator are:

_x ¼ y þ εu;

_y ¼ �o2x;

_u ¼ �ku� εx;

ð2Þ

where ω is the frequency of the oscillator, k is an augmentation parameter, and ε is the coupling
strength. The first two equations governing the evolution of x and y correspond to the original
harmonic oscillator dynamics of position and momentum respectively. In the absence of aug-
mentation, harmonic oscillator conserves total energy, which stays constant on the ellipses
shown in Fig 1b. Each of these ellipses correspond to the systems’ evolution following different
initial values of position and momentum, and hence, different conserved total energies. Har-
monic oscillator has x� = 0, y� = 0 as the only stationary solution and note that the augmenta-
tion term only appears in the rate equation of the position variable x at this point. In case of a
successful stabilization, the required stationary solution of the full system should be (x�, y�, u�)
= (0, 0, 0) (origin) where the system effectively decouples from the controller.

Limitations of Linear Augmentation
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Fig 1. Harmonic oscillator behavior with increasing augmentation strength. a) Bifurcation diagram (black dots), largest eigenvalues (red symbols) and
the time series of the x variable before and after the stabilization of origin (inset), which occurs for arbitrarily small values of ε. Bmarks the stable origin regime
which extends to ε!1. Phase space plots for five different initial conditions, b) for ε = 0 (conservative dynamics), and c) for ε = 0.5 (dissipative dynamics). d)
Shows the variation in the eigenvalues for higher values of augmentation strength ε. The other parameter values are fixed atω = 2 and k = 2.

doi:10.1371/journal.pone.0142238.g001
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The characteristic eigenvalue equation at the origin for this system is,

ðlþ kÞðl2 þ o2Þ þ ε2l ¼ 0: ð3Þ

For ε = 0, the eigenvalues for the full system are λ1,2 = ±iω corresponding to the non-hyper-
bolic stationary solution at the origin, and λ3 = −k corresponds to the decay of the control vari-
able u: u(t)/ exp(−kt) in this case. The other parameter values for the following calculations
are fixed at ω = 2, and k = 2. For the evolution of the augmented system (ε> 0), the bifurcation
diagram of the system with increasing ε values is shown in Fig 1a (black dots). For this calcula-
tion, the system is evolved for 10 different initial conditions for each value of ε sufficiently for
the transients to be discarded. System is then further evolved to capture the possible dynamical
regimes by recording all the extrema during the evolution. It is seen that with an increasing ε,
the system which was conservative for ε = 0 becomes dissipative and gets into a stable origin
regime even for arbitrarily small values of ε. Rewriting Eq 3 as,

l3 þ kl2 þ ðo2 þ ε2Þlþ ko2 ¼ 0; ð4Þ

and applying the Routh—Hurwitz criteria (RHC) [38], we can deduce that the roots of this
equation are all either negative or have negative real parts (in case of complex roots) 8 ε> 0.
Largest eigenvalues of the Jacobian (red symbols) are also plotted along with the bifurcation
diagram in Fig 1a which demonstrate the transition from oscillatory to stationary state for any
ε> 0. Considering the behavior of this system for large ε, we can see that the largest eigenvalue
λ = λ1 ! 0 from Eq 4 in this limit. Since the discriminant (for a general cubic equation f(x) =
ax3 + bx2 + cx + d, the discriminant Δ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2) of the cubic
characteristic Eq 4 is negative 8 ε� 0, this implies that the system has one real eigenvalue and
a pair of complex conjugate eigenvalues in this range. The negative real part of these complex
eigenvalues for large ε can therefore be estimated by equating the sum of all eigenvalues to the
trace of the Jacobian tr(J), giving Re(λ2,3) = −k/2. This further implies that as ε!1, conver-
gence to the origin gets slower although origin is stable in the entire ε> 0 range and any
change in stability will only occur as ε!1 when λ1 = 0.

Now let us consider a more general case of an augmented harmonic oscillator given by,

_x ¼ y þ ε1u;

_y ¼ �o2x þ ε2u;

_u ¼ �ku� ε1x � ε2y;

ð5Þ

where the augmentation now appears in the rate equations of both position x and momentum
y with coupling strengths ε1, ε2 respectively. The eigenvalue equation in this case is,

ðlþ kÞðl2 þ o2Þ þ lðε12 þ ε2
2Þ þ ε1ε2ð1� o2Þ ¼ 0: ð6Þ

Substituting ε2 = 0 and ε1 = ε in Eq 5 yields the dynamics of Eq 2. Similarly, for ε1 = 0 and
ε2 = ε, we obtain a case where the system is only coupled in the y variable for which the charac-
teristic Eq 6 is exactly identical to Eq 4, and therefore the stability characteristics of the origin
are identical and independent of whether the system is augmented in x or y. In the previous
example, we saw a situation where linear augmentation successfully stabilized the origin for the
entire range of ε> 0. Now considering ε1 = ε2 = ε (the system is similarly augmented in both
variables), in which case Eq 6 gives,

l3 þ kl2 þ ðo2 þ 2ε2Þlþ ko2 þ ε2ð1� o2Þ ¼ 0: ð7Þ

Limitations of Linear Augmentation
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Using the RHC, it can be checked that this equation will have all negative eigenvalues iff kω2

+ ε2(1 − ω2)> 0 which gives a stability regime of 0< ε< ε� 8 ω> 1 where ε� ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

o2 � 1

r
,

and for higher values of ε, RHC suggests appearance of positive eigenvalue/eigenvalues. For

large ε, we can get an estimate of largest eigenvalue l1 !
ðo2 � 1Þ

2
> 0 8 ω> 1. Since the dis-

criminant is negative 8 ε> 0, the remaining complex conjugate eigenvalue pair have a negative

real part given by Reðl2;3Þ ¼ ðtrðJÞ � l1Þ=2 ¼ � k
2
þ ðo2 � 1Þ

4

� �
. Therefore, unlike in the

previous example, we can see that origin here is unstable for large ε. The expression for ε� also
shows that a higher value of k can extend the coupling range for a stable origin. This result is
the first instance of unexpected behavior as we would normally expect a higher coupling value
to keep the origin stable. Furthermore, in the ε> ε� regime it is numerically observed that the
trajectories escape to infinity which is also quite unexpected.

One of the primary reasons behind considering augmented harmonic oscillator in this
study is the fact that it is highly solvable and therefore can provide necessary insights into the
physical mechanisms behind the desirable as well as undesirable behaviors. It turns out that in
case of a successful stabilization, this system represents a forced harmonic oscillator where the
steady state solution (which is completely determined by the forcing) decays to the origin
along with an exponentially decaying force. Similarly, the case where the trajectories escape to
infinity corresponds again to a forced system but this time being driven by an exponentially
diverging force which is analogous to a situation where energy is being pumped into the sys-
tem. Therefore the steady state solution in this case diverges along with the diverging force
explaining the unexpected behavior of escaping trajectories observed for the fully augmented
system. Details of the calculations leading to these deductions are available in Sec. Harmonic
oscillator: diverging trajectories.

Duffing oscillator
General equations for a linearly augmented Duffing oscillator with no damping or forcing can
be written as:

_x ¼ y þ ε1u;

_y ¼ x � x3 þ ε2u;

_u ¼ �ku� ε1ðx � x�Þ � ε2ðy � y�Þ:
ð8Þ

Uncoupled Duffing system has an invariant of motion (also the Hamiltonian) given byH(x,
y) = y2/2 − x2/2 + x4/4 and stationary solutions: (x�, y�) = (±1, 0), (0, 0). The trajectories of this
system evolve on the double well potential surface ofH(x, y) on starting with different initial
conditions for ε1 = ε2 = 0. Similar to the previous example, for a successful stabilization, the
required stationary solutions of the full system should be (x�, y�, u�) = (0, 0, 0) or (±1, 0, 0)
where the system effectively decouples from the augmentation. These solutions will be referred
to as (x�, y�) = (0, 0) (origin) or (±1, 0) in the following.

For the system in Eq 8, the characteristic eigenvalue equation can be expressed as,

ðlþ kÞðl2 þ 3x�2 � 1Þ þ lðε12 þ ε2
2Þ þ ε1ε2ð2� 3x�2Þ ¼ 0: ð9Þ

Now similar to the harmonic oscillator example, considering partial augmentation with ε1
(2) = ε, and ε2(1) = 0 first, Eq 9 suggests that the stability characteristics for the stationary solu-
tions are again independent of whether the system is being augmented in x or y. For this partial
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augmentation, Eq 9 gives,

ðlþ kÞðl2 þ 3x�2 � 1Þ þ lε2 ¼ 0: ð10Þ

Substituting x� = 0,±1, and rearranging the terms, we can obtain the characteristic eigen-
value equations for these stationary solutions as,

l3 þ kl2 þ ðε2 � 1Þl� k ¼ 0; ð11Þ

for (x�, y�) = (0, 0) (hyperbolic for ε = 0), and

l3 þ kl2 þ ðε2 þ 2Þlþ 2k ¼ 0; ð12Þ

for (x�, y�) = (±1, 0) (non hyperbolic for ε = 0) respectively. It is straightforward to check that
the largest eigenvalue λ1 ! 0 for larger ε values in both these cases which implies that a stable/
unstable stationary solution will stay the same until a stability change (zero crossing of the
eigenvalue/s) occurs in the ε!1 limit. Furthermore using the RHC, it is easily verifiable that
Eq 11 will always have positive root/roots, whereas Eq 12 will have all negative roots 8 ε> 0;
which implies that the x� = 0 is always unstable and x� = ±1 is always stable. Therefore, we see
that partial augmentation works for stabilizing (x�, y�) = (±1, 0) but fails completely to stabilize
the origin (x�, y�) = (0, 0). Fig 2 shows the largest eigenvalue calculations which verify these
deductions. This brings us to an important observation that there might exist situations where
it is not possible to target the desired stationary solution even on using an appropriate feedback
function with any combination of k and ε values.

Now considering identical augmentation with ε1 = ε2 = ε and we will see that this system
has some interesting properties. Fig 3 shows the bifurcation diagrams of the system as we try
targeting the different desired stationary solutions: For (x�, y�) = (1, 0), the bifurcation diagram
(black dots) is shown in Fig 3a. Appropriate transient trajectories in different coupling regimes
are also shown in related Fig 3(a.1), 3(a.2) and 3(a.3). It is observed that even for very small
coupling values, the system quickly gets into a stable stationary state regime, although, for
smaller values of ε, it exhibits bistability. The transient trajectories in this parameter regime are
shown in Fig 3(a.1). We observe that the augmentation is stabilizing our desired stationary
solution at (x�, y�) = (1, 0), but along with it, other stationary solutions which are ε dependent
are also getting stabilized on starting with different initial conditions. These other stationary

Fig 2. Behavior of the partially augmented Duffing oscillator. Largest eigenvalue estimates for stationary
solutions (x*, y*) = (0, 0) (black), (x*, y*) = (±1, 0) (red).

doi:10.1371/journal.pone.0142238.g002
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Fig 3. Different dynamical regimes in fully augmented Duffing oscillator. Figs a), b) and c) show the bifurcation diagrams (black dots) and the largest
eigenvalues (red symbols) for (x*, y*) = (1, 0), (0, 0), and (−1, 0) respectively. Different dynamical regimes are marked as: A shows the regimes of bistability
between different stationary solutions, B shows the regime where the desired stationary solution is the only dynamical attractor, andCmarks the regime
where other stationary solutions are stable. Circles mark the solution branchs (x*+, y*+, z*+) and (x*

−

, y*
−

, z*
−

) from Eq 13 in a) and c) respectively. Related
Figs a.1: for ε = 0.4, the system is bistable and the two related transient behaviors (in blue and green and likewise for other cases), a.2: for ε = 1, the trajectory
approaching the stable stationary solution (1, 0), and a.3 shows an arbitrary time series for ε = 2.5. Similarly in b.1: bistability, and in b.2: the system
approaching the stable stationary solution (0, 0) is shown. Identically, c.1, c.2, and c.3 show bistability (ε = 0.4), stabilization of (−1, 0) (ε = 1) and an arbitrary
time series at ε = 2.5 respectively.

doi:10.1371/journal.pone.0142238.g003
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solutions for the augmented system here are given by,

x�� ¼ 1

2
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ε2

k� ε2

r !
;

y�� ¼ x�� � x��
3;

u�
� ¼ � y��

ε
;

ð13Þ

and solutions (x�−, y�−, z�−) are observed to coexist along with (x�, y�) = (1, 0). For higher
coupling values, bistability terminates via a saddle node bifurcation when the stable branch of
stationary solutions (x�−, y�−, u�−) collides with the unstable branch of (x�+, y�+, u�+)(circles)

as shown in Fig 3a at εSN ¼
ffiffiffi
k
5

r
. The system also exhibits hysteresis in this bistable regime and

a brief discussion regarding this observation is available in Sec. Duffing system: hysteresis.
Beyond this regime for a range of values in ε> εSN, (x�, y�) = (1, 0) remains as the only stable
attractor as shown in Fig 3(a) and 3(a.2).

In absence of augmentation, the eigenvalues for (x�, y�) = (1, 0) are complex: l1;2 ¼ �i
ffiffiffi
2

p
.

For the augmented system, the characteristic equation can therefore be written as:

l3 þ kl2 þ 2lð1þ ε2Þ þ ð2k� ε2Þ ¼ 0: ð14Þ

The RHC shows that this equation will have all negative roots for (2k − ε2)>0 and positive

root/roots appear for ε >
ffiffiffiffiffi
2k

p
. This gives us the transition threshold for the destabilization of

the stationary solution as ε� ¼ ffiffiffiffiffi
2k

p
, at which the eigenvalue/s cross the zero axis. Since the dis-

criminant is negative, the characteristic equation has one real and two complex conjugate
roots. Considering large ε behavior, it is seen that the largest eigenvalue λ1! 1/2 which implies
that (x�, y�) = (1, 0) is unstable in this range. The real part of the remaining complex conjugate
eigenvalue pair is Re(λ2,3) = −(2k + 1)/4. At ε�, Eq 14 can be rewritten as,

lðl2 þ klþ 2ð1þ 2kÞÞ ¼ 0; ð15Þ

which consequently gives the eigenvalues as λ1 = 0 and l2;3 ¼ ð�k� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 8ð1þ 2kÞp Þ=2. We

can see that λ2,3 will be a complex conjugate pair for k 2 ð8� 6
ffiffiffi
2

p
; 8þ 6

ffiffiffi
2

p Þ. For our calcula-
tions, we have considered k = 2 which gives that at ε� ¼ ffiffiffiffiffi

2k
p ¼ 2, λ1 crosses the zero line as

can be seen in Fig 3a (red symbols). For higher values of ε >
ffiffiffiffiffi
2k

p
, stationary states (x�+, y�+,

u�
+) (circles) in Fig 3(a) for ε> ε�(= εTC) get stabilized via a transcritical bifurcation where (x�,

y�) = (1, 0) and (x�+, y�+, u�
+) exchange their stability. This again is quite unexpected since the

controller is designed to stabilize (x�, y�) = (1, 0) for higher ε values. A brief discussion regard-
ing the behavior of this system in the (ε, k) plane is available in Sec. Duffing system: (ε, k)
plane behavior.

For the origin at (x�, y�) = (0, 0), the bifurcation diagram (black dots) is shown in Fig 3b.
Appropriate transient trajectories corresponding to different augmentation regimes are also
shown in related Fig 3(b.1) and 3(b.2). We observe bistability for a range of lower ε values
before the origin gets stabilized. The stationary solutions obtained in the bistable regime are
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given by

xo� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

k� ε2

r
;

yo� ¼ xo� � xo�
3;

uo
� ¼ � yo�

ε
:

ð16Þ

Transient trajectories in this regime demonstrating the two observed stationary solutions
are shown in Fig 3(b.1). These solutions approach and collapse at the origin in a pitchfork

bifurcation for εPF ¼
ffiffiffi
k
2

r
(= 1 for k = 2 in this case) beyond which the solutions (xo±, y

o
±, u

o
±)

become imaginary and the origin is the only stable real stationary solution. A transient trajec-
tory in this parameter regime is shown in Fig 3(b.2).

The characteristic equation for the origin is,

l3 þ kl2 þ lð2ε2 � 1Þ þ 2ε2 � k ¼ 0; ð17Þ

which has all negative eigenvalues for 2ε2−k> 0 giving us a stability regime of ε >
ffiffiffiffiffiffiffiffi
k=2

p
and

a transition value of εPF ¼ ε� ¼ ffiffiffiffiffiffiffiffi
k=2

p ¼ 1 (since k = 2) when the eigenvalue/s cross the zero
axis. From Eq 17, we get λ1 = −1 in the large ε limit. It is numerically observed here that the dis-
criminant Δ< 0 in this range and therefore Re(λ2,3) = (1−k)/2 = −0.5 and consequently, the
origin is stable in the large ε limit. The largest eigenvalue for the origin is plotted as red symbols
in Fig 3(b) which shows the changes in the stability of the origin from unstable in ε 2 (0, 1) to
stable 8 ε> 1. For a discussion regarding the system behavior in the (ε, k) plane, please again
see Sec. Duffing system: (ε, k) plane behavior for details.

For (x�, y�) = (−1, 0), the bifurcation diagram (black dots) is shown in Fig 3c. Appropriate
transient trajectories corresponding to different augmentation regimes are also shown in
related Fig 3(c.1), 3(c.2) and (c.3). Since this solution is a symmetric counterpart of (x�, y�) =
(1, 0), the corresponding analysis similarly carries over in this case.

These simple examples demonstrate the fact that targeting the required stationary solutions
using linear augmentation is not quite straightforward and the procedure is quite sensitive to
how the systems are augmented, the stationary solutions being targeted and to the properties
of systems. In the following, results for a specific class of dissipative dynamical systems are pre-
sented to further highlight these limitations.

Dissipative predator—prey models
Considering predator—prey population models, general evolution equations for these systems
with logistic prey growth can be written as,

_x ¼ rxð1� x=KÞ � f ðxÞy;
_y ¼ ðrf ðxÞ � gÞy; ð18Þ

where x and y correspond to prey and predator populations respectively and the parameters r,
K, ρ, and γ are positive. Considering the evolution equation for preys, the first term rx(1 − x/K)
represents the logistic growth rate of the prey species with the maximum growth rate of r and
carrying capacity K which is the maximum population size that the environment can sustain
indefinitely. The second term f(x)y corresponds to the prey mortality via predation. f(x) is the
functional response governing the rate of per capita prey consumption by the predators [39–
41]. The parameter ρ governs the biomass conversion efficiency for the predators in the sense
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of how many predators are added to the population via predation, and γ is the intrinsic preda-
tor mortality parameter. One of the stationary solutions of this system corresponds to vanish-
ing predator-prey populations, i.e. (x�, y�) = (0, 0). The other stationary solutions are
dependent on the type of functional response considered. Most commonly employed f(x)
forms in such models are the Holling type with the following general expressions:

1. f(x) = ax for Holling type I response which is identical to the predation in the Lotka—Vol-
terra case [42, 43],

2. f ðxÞ ¼ ax

ðbþ xÞ for Holling type II (Michaelis—Menten kinetics), using which, Eq 18 gives

the Rosenzweig—MacArthur model [44],

3. f ðxÞ ¼ ax2

ðb2 þ x2Þ for Holling type III (Hill equation type), using which, Eq 18 gives the

Truscott—Brindley model [45] which is used in modeling phytoplankton and zooplankton
interactions leading to harmful algal blooms,

and consequently, corresponding stationary solutions can be obtained. The parameter a in
expressions above corresponds to the maximum per capita predation rate, and b is the half sat-
uration constant governing how quickly the predators attain their maximum consumption
rate. In the following, we will have a closer look at the stability properties of the trivial station-
ary solution (x�, y�) = (0, 0): origin. Considering a general augmented population model,

_x ¼ rxð1� x=KÞ � f ðxÞy þ ε1u;

_y ¼ ðrf ðxÞ � gÞy þ ε2u;

_u ¼ �ku� ε1ðx � x�Þ � ε2ðy � y�Þ;
ð19Þ

it turns out that the Jacobian for this system is identical for all three functional responses at the
origin. The identical characteristic equation therefore is,

ðr � lÞðgþ lÞðkþ lÞ þ ε2
2ðr � lÞ � ε1

2ðgþ lÞ ¼ 0: ð20Þ

For ε1 = ε2 = 0, we obtain the eigenvalues as λ1 = r, λ2 = −γ, and λ3 = −k where λ1 and λ2 are
the eigenvalues for the original system in Eq 18 implying that the origin is unstable, and λ3 cor-
responds to the exponentially decaying control variable u. Since the Holling type I case with
insatiable predators is quite unrealistic, we will focus here on systems with Holling type II (H
II) and III (H III) behaviors. In the following analysis, the parameter values are fixed at: r = 0.5,
K = 0.5, a = 1/3, b = 1/15, ρ = 0.5, γ = 0.1 for the H II [46] system, and r = 0.43, K = 1, a = 1,
b = 0.053, ρ = 0.05, γ = 0.028 for H III [45, 47]. Let us now look at different augmentation
situations.

For ε1 = ε and ε2 = 0, i.e. only prey populations are augmented, substituting these values in
Eq 20 gives,

ðgþ lÞ½ðr � lÞðkþ lÞ � ε2� ¼ 0: ð21Þ

Since one of the roots λ = −γ is independent of ε therefore the remaining roots of this equa-

tion determine the stability of the origin. The remaining two roots are l� ¼ �ðk� rÞ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ rÞ2 � 4ε2

q
=2 out of which, λ−< 0, 8 ε. It is easily verifiable that the eigenvalue λ+

(which also is the largest) is positive 8 ε <
ffiffiffiffiffi
kr

p
and crosses the zero axis at ε� ¼ ffiffiffiffiffi

kr
p

leading
to all negative eigenvalues and hence a stable origin. This is quite similar to the harmonic
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oscillator case where increasing/decreasing the value of the decay parameter k could increase/
decrease the threshold value of stable! unstable transition (unstable! stable in this case).
Furthermore, in the large ε limit, we obtain the largest eigenvalue λ1 = −γ and therefore the ori-
gin is stable in this regime. Fig 4: top row shows the bifurcation diagram and the largest eigen-
value behavior for H II (left) and III (right). The unstable! stable transition in both these
systems with increasing coupling values can be seen in the figure. Although for the H III system

in the regime ε >
ffiffiffiffiffi
rk

p ð¼ 0:927; for r = 0.43, k = 2), certain initial conditions lead to the trajec-
tories escaping to infinity (not shown) which accounts for the missing dots in the bifurcation
figure. Since x and y are population variables by definition, population models are constrained
to work for non-negative values of x and y respectively. What we observe here is that the aug-
mentation forces the prey populations into negative values which leads to a breakdown in the
model constraints and the logistic function in the rate equation of x leads to diverging solutions
as time increases. For H II system this appears not to be the case and all considered initial con-

ditions lead to a stable origin 8 ε >
ffiffiffiffiffi
rk

p ð¼ 1; for r = 0.5, k = 2).
For ε1 = 0 and ε2 = ε, i.e. only the predator populations are augmented, substituting these

values in Eq 20 gives,

ðr � lÞ½ðgþ lÞðkþ lÞ þ ε2� ¼ 0; ð22Þ

and we see that an eigenvalue λ = r is always positive since r> 0, and therefore this setup will
never stabilize the origin. The remaining eigenvalues are

l� ¼ �ðgþ kÞ=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� gÞ þ 4ε2
p

=2. In Fig 4: second row, for low ε values, the systems
exhibit periodic behavior similar to the one shown for the augmented prey case. For higher val-
ues of ε, both H II and H III settle on a stationary solution of the original system (x�, y�) = (K,
0) which we did not intent to stabilize. For this solution, the preys exist at their carrying capac-
ity and the predators vanish. For H II and H III, the carrying capacities considered for simula-
tions are K = 0.5 and K = 1 respectively, and hence the observations in Fig 4 (middle row).

For ε1 = ε2 = ε, i.e. both prey and predator populations are augmented, substituting these
values in Eq 20 and rearranging terms gives,

l3 þ ðgþ k� rÞl2 þ ð2ε2 þ ðg� rÞk� rgÞlþ ε2ðg� rÞ � rgk ¼ 0:

Using the RHC, one of the conditions for this equation to have all negative roots is ε >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgk

ðg� rÞ

s
which is impossible to achieve since r> γ. Therefore, this setup will not stabilize the

origin either. Fig 4: bottom row shows the behavior of H II and H III. For smaller ε values,
these systems exhibit periodic behavior similar to the augmented prey. On increasing ε further,
systems enter a regime where all considered initial conditions lead to escaping trajectories. The
reason behind this behavior here again is due to a breakdown in modeling constraints. Exami-
nation of transient trajectories reveals that augmentation in this case is forcing the predator
populations into y< 0 axis which leads to a breakdown in the model, thereby initiating a posi-
tive feedback loop in the prey populations leading to the diverging behaviors observed in simu-
lations. Beyond this regime for higher values of ε, H II system exhibits bistability between
different stationary solutions where in one case, preys exceed their carrying capacity (x� > K)
and the predator populations are negative (y� < 0), and in the other case, the prey populations
are negative (x� < 0) and predators assume a small positive value. It is important to note yet
again that these solutions are impractical because the populations cannot exist above their car-
rying capacities nor can they take negative values. For H III system, we only observe the
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Fig 4. Augmented predator—preymodel dynamics. Bifurcation diagram (black dots), largest eigenvalues (red circles) and time series (insets for specific ε
values) for predator—prey systems with H II (left column) and H III (right column) functional responses. Top row: For augmented prey, insets show the time
series of x, y and u for two different ε values before (with oscillatory u) and after the stabilization of (x*, y*) = (0, 0) (with u* = 0). The Hopf bifurcation is
marked as H, and the transcritical bifurcation points have been highlighted by T1, and T2 respectively. Middle row: For augmented predator, the systems
exhibit oscillatory behavior similar to augmented preys (not shown) for low ε before they settle on the stationary solution (x*, y*) = (K, 0) with u* = 0; where
the preys reach their carrying capacity in the absence of predators for higher ε values. Bottom row: For augmented predator and prey, for low ε, the systems
are oscillatory (not shown). With increasing ε, both the systems lose the oscillatory behavior and all trajectories escape to infinity in the regime marked by E.
For higher ε values, unrealistic stationary solutions where either the preys exceed their carrying capacity (x* > K) with negative predator populations (y* < 0)
(H II and H III), or where the prey populations are negative with small positive predator population (for H II) and u* 6¼ 0 get stabilized.

doi:10.1371/journal.pone.0142238.g004
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equilibrium solutions with x� > K and y� < 0 (see inset). In both the cases, we have a non van-
ishing u� > 0 and therefore these solutions exist due to augmentation and cannot be observed
otherwise. Following this analysis, we can conclude that augmenting the prey is the correct
strategy to stabilize of the origin and the other coupling schemes can lead to complicated
dynamics. Even though the analysis here is limited to the origin, we can expect these behaviors
to be quite general with respect to other stationary solutions as well.

Now considering applications, as already mentioned, origin corresponds to an equilibrium
for which the predators and the preys vanish. Persistence of populations for a proper ecosystem
function is very imperative and has been studied extensively from several perspectives, contrib-
uting towards a better understanding of the processes leading to species extinction [48–52].
Knowledge regarding these processes can help in devising procedures which can contribute
towards better species conservation efforts. For the simple models considered in the previous
analysis, it is clear that either by coupling the system appropriately or by using specific parame-
ter values for k and ε, we can avoid stabilizing the origin. For instance, considering the prey aug-
mented case, for low ε, the systems exhibit periodic oscillations. On increasing the coupling
strength, stationary solutions of the augmented system (x� > 0, y� > 0, u� < 0), satisfying

rx�ð1� x�=KÞ � f ðx�Þy� þ ε1u
� ¼ 0;

ðrf ðx�Þ � gÞy� ¼ 0;

�ku� � εx� ¼ 0;

ð23Þ

get stabilized through a reverse Hopf bifurcation (marked asH in Fig 4 (top row)). For these sta-
tionary solutions, the value of x� stays constant while y� and u� = −εx�/k show a variation for
a range of ε values (plateau betweenH and T1 in Fig 4 (top row)). It is also important to note
that some initial conditions in this regime can lead to trajectories escaping to infinity. This
branch of solutions undergoes a transcritical bifurcation (marked T1 in Fig 4 (top row)) where it

exchanges stability with another branch of solutions with u� ! 0 for increasing ε. At ε� ¼ ffiffiffiffi
rk

p
,

u� = 0 and the predator—prey system effectively decouples from augmentation which is accom-
panied by another transcritical bifurcation (T2 in Fig 4 (top row)) between the continuing
branch of stationary solutions (x� > 0, y� > 0, u� ! 0) and the origin. In ε> ε� regime, origin is
the only dynamical attractor. Fig 5 shows the parameter scans for H II and H III systems
highlighting these different dynamical regimes. In region A these systems exhibit periodic
behavior and the boundary between A and B is the locus of the Hopf bifurcation in the ε, k
plane, which leads to the stabilization of stationary solutions (x� > 0, y� > 0, u� < 0). B corre-
sponds to the regime where stable stationary solutions (x� > 0, y� > 0, u� < 0) and (x� > 0, y� >
0, u� ! 0) are observed and the boundary between B and C is the locus of the second transcriti-
cal bifurcation T2 which leads to the stabilization of the origin. Therefore by using appropriate
values of ε and k, we can keep the system in either a periodic state, or a stationary state with non
vanishing populations and can expect this control to work in experiments and be robust with
respect to demographic noise; Ref. [26] experimentally stabilized a stationary solution in an elec-
tronic Lorenz system at permitted noise level. Furthermore, in the other instances of augmented
predators, or augmented predators and preys we already observe a complete lack of origin stabi-
lization. Therefore, we can employ these schemes as well to avoid stabilizing the origin but one
needs to be careful since these cases can lead to other complications as discussed. Another useful
application for these observations could be in cases where maximization of prey yield is
required. Augmenting the predator populations is seen to stabilize the equilibrium where the
prey populations exist at their carrying capacity and the predators vanish. This can find applica-
tions in fisheries [53, 54], algae fuel generation [55, 56]; where maximal sustainable yields are
crucial, and also in biomedical research, for e.g. in HIV-1 infection models [57] where a portion
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of human immune system i.e. activated CD4+ T cells are the primary target of the HIV-1 infec-
tion [58, 59] which can be modeled via predator—prey dynamics.

Additional details
This section presents certain dynamical aspects related to augmented harmonic and Duffing
oscillators for completeness. These have been compiled in a separate section to preserve the
manuscript flow and for those who might be interested in these details.

Harmonic oscillator: diverging trajectories. Augmented harmonic oscillator dynamics
from Eq 5 can also be expressed in form of a second order ODE as,

Dx ¼ Uðε1; ε2; k; tÞ½¼ ðε2 þ ε2ε1
2 � ε1kÞuðtÞ�; ð24Þ

where the derivative operator D ¼ D2 þ ε1ε2Dþ ðε21 þ o2Þ with Di ¼ di

dti
, i = 1, 2 in this case.

This equation corresponds to a driven harmonic oscillator with frequency ðε21 þ o2Þ and a
damping coefficient ε1 ε2. The roots of the auxiliary equation for the operator D arem± = α ± β

where α = −ε1 ε2/2 and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε21ε

2
2 � 4ðε21 þ o2Þp

=2. For partially augmented cases α = 0 and

b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4ðε21 þ o2Þp
=2 or β = iω for ε2 = 0, ε1 6¼ 0 and ε1 = 0, ε2 6¼ 0 respectively.

For identical augmentation ε1 = ε2 = ε, we get D ¼ D2 þ ε2Dþ ðε2 þ o2Þ and Eq 24 reads
Dx ¼ Uðε; k; tÞ½¼ εð1þ ε2 � kÞuðtÞ�: ð25Þ

The roots of the auxilliary equation in this case arem± = α ± β with α = −ε2/2 and

b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε4 � 4ðε2 þ o2Þp

=2. For imaginary β, the transient solution for Eq 25 can be expressed
as,

xtðtÞ ¼ Ax1ðtÞ þ Bx2ðtÞ; ð26Þ

Fig 5. Different dynamical regimes for H II and H III systems. Regimes are marked as A, B and C in the ε, k plane. A is the regime of periodic dynamics, in
B stationary solutions of the coupled system are stable and C is the regime of stable origin. The boundaries between A!B and B!C are the loci of the
reverse Hopf bifurcationH and the second transcritical bifurcation T2 respectively (as in Fig 4: top row).

doi:10.1371/journal.pone.0142238.g005

Limitations of Linear Augmentation

PLOS ONE | DOI:10.1371/journal.pone.0142238 November 6, 2015 15 / 22



which is independent of the forcing term U(ε, k, t) with x1(t) = exp(αt)cosβt, and x2(t) = exp
(αt)sinβt. Consequently, the steady state solution can be obtained by using the Laplace and
inverse Laplace transformations giving,

xstðtÞ ¼
1

O

Z t

0

e�gðt�xÞ sin ðOðt � xÞÞUðε; k; xÞdx; ð27Þ

where O ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � g2
p

, o0
2 ¼ ε2 þ o2 and γ = ε2/2. Now at this point, we do not know the

exact expression for U(ε, k, t). Considering the transient behavior of trajectories in partially/
fully augmented system, we clearly observe that they possess an exponentially decaying/diverg-
ing envelop (see Fig 1 (inset) and Fig 6 bottom row). Based on these observations, assuming U
(ε, k, t) = a0 exp (kmt) where both a0, km are functions of ε and k, and solving Eq 27 gives the
particular solution

xpðtÞ ¼ exp ðkmtÞ
a0

ðkm þ aÞ2 � b2

 !
: ð28Þ

Fig 6. Transition between regimes of stable origin and escaping trajectories. Bifurcation diagram (black

dots) along with the largest eigenvalue (red symbols) as a function of ε in the top row. ε� ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

o2 � 1

r
ð� 1:63Þ

marks the coupling beyond which all initial conditions lead to escaping trajectories in region E. Transient
trajectories shown for ε(= 0.5) < ε* (left bottom) and ε(= 1.75) > ε* (right bottom).

doi:10.1371/journal.pone.0142238.g006
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From this expression we see that the trajectories will exponentially decay to the origin 8 km
< 0 and diverge 8 km > 0.

Fig 7 shows the numerical estimation of km along with the largest eigenvalue of the Jacobian
λ1 at the origin as a function of ε; for partially (Fig 7(a)) and fully augmented cases (Fig 7(b)).
km here was calculated as the average rate of convergence/divergence in the Euclidean distance
of the current systems’ state from its previous state, for every time step along the trajectory.
These results suggest that km = λ1 and this observation has some interesting consequences. For
km = λ1 < 0, we have a case of a harmonic oscillator being driven by an exponentially decaying
force and consequently the system settles on the origin as t!1. Similarly the other case of an
unstable origin (km = λ1 > 0) is equivalent to the oscillator under the influence of an exponen-
tially diverging force (energy being pumped into the system) which leads to diverging trajecto-
ries as time increases.

Duffing system: hysteresis. For the bistable, completely and identically augmented Duff-
ing system in Eq 8 with x� = 1, y� = 0, the largest Lyapunov exponent was calculated for
increasing and decreasing values of augmentation strength ε. Starting with initial conditions
leading to the solutions (x�−, y�−, z�−) at ε = 0.1, the initial conditions for the next calculation
at ε = 0.1 + δε were considered as the final values of x, y, u from the previous calculation for ε
= 0.1, with δε = 0.001 and so on for the entire range in the forward direction. Similarly for
backwards calculation, the process was repeated starting from ε = 0.7 where (1, 0) is the only
stable solution with δε = −0.001. The results of the calculation are shown in Fig 8 and as one
would expect, this system exhibits hysteresis in the interval of bistablity.

Duffing system: (ε, k) plane behavior. Different dynamical regimes for the Duffing sys-
tem in Eq 8 with (x�, y�) = (1, 0) and (0, 0) are shown in Fig 9. The grey areas marked as A cor-
respond to the regimes where the intended stationary solutions are successfully stabilized,
namely (1, 0) and (0, 0) in Fig 9(a) and 9(b) respectively.

For x� = 1, y� = 0 in Fig 9(a): blue dots for lower ε values highlight the regimes of bistability
where solutions (x�−, y�−, z�−) (from Eq 13) and (1, 0) coexist. Solutions (x�−, y�−, z�−) vanish
via a saddle node bifurcation after colliding with the unstable branch of solutions (x�+, y�+, z�+)

Fig 7. Largest eigenvalues and estimated values of km as functions of ε. (a) for the system augmented in x and (b) for the fully augmented system.

doi:10.1371/journal.pone.0142238.g007
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(again from Eq 13) and the boundary of the blue dot regime gives the locus of this saddle node
bifurcation; parabolic function FSN(ε, k)(= 5ε2−k) = 0, estimated from the expression for x�± as
the limiting value of k and ε to get real solutions, which is obtained by equating the discrimi-
nant in the expression of x�± to zero. The boundary between regimes A and B corresponds to
the locus of the transcritical bifurcation between (1, 0) and (x�+, y�+, z�+), and is given by the
zero crossing of the largest eigenvalue for (1, 0) which satisfies FTC(ε, k)(= 2ε2−k) = 0. In region
B either the now stable coupling dependent stationary solutions (x�+, y�+, z�+), or escaping tra-
jectories are observed.

Similarly for x� = 0, y� = 0 in Fig 9(b): B highlights the regime where the system settles on
the solutions (xo+, y

o
+, u

o
+) from Eq 16. The blue dots correspond to the initial conditions lead-

ing to stationary solutions (xo−, y
o
−, u

o
−) also from Eq 16. Since the system is bistable in this

regime, we should expect the entire region B to be filled with these blue dots but that is not the
case. The reason behind this behavior is a difference in the relative basin size of these two solu-
tions; number of initial conditions leading to (xo+, y

o
+, u

o
+) is more than the ones which lead to

(xo−, y
o
−, u

o
−). This difference is even more pronounced for higher values of k. Both these solu-

tions vanish via a pitchfork bifurcation and the locus of this bifurcation which separates
regimes B and A is defined by the function FPF(ε, k)(= 2ε2−k) = 0 which is obtained by equat-
ing the discriminant in the expression of xo± to zero.

Conclusions
In this work we studied the ability of linear augmentation towards stabilizing desired stationary
solutions of oscillatory systems in a more general sense. Through some very simple examples
discussed in this paper, it is clear that the effectiveness of this scheme is quite sensitive to the
augmentation parameters, the class of oscillatory systems considered, the stationary solutions
to stabilize and also on the way the systems are augmented. Therefore, although the simplicity
of linear augmentation makes it a very compelling choice for applications, a careful analysis is

Fig 8. Hysteresis in the bistable regime. Largest Lyapunov exponent for increasing and decreasing values
of ε for the fully augmented Duffing system with (x* = 1, y* = 0) demonstrating hysteresis. Calculations for
increasing and decreasing ε are marked by red and black arrows respectively.

doi:10.1371/journal.pone.0142238.g008
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required to test the system for potential pitfalls associated with the scheme. As highlighted by
the examples, apart from failing to target the appropriate stationary solutions, linear augmenta-
tion can also lead to other complicated dynamical situations which include escaping trajecto-
ries, stabilization of unintended stationary solutions or the stabilization of stationary solutions
which are not permitted under the modeling constraints; preys existing above their carrying
capacities and negative predator populations in Sec. Dissipative predator—prey models for
instance. Nevertheless, one can find ways to exploit the failures of the scheme in applications.
Although we can expect to see these results in experiments, an in-depth study of the control
procedure in presence of noise, and also for larger systems is required. Extending on the results
in the ecological context, one needs to check the control behavior in presence of multiple preys
and predators, for a food chain, and also for other functional responses [60]. Furthermore, lin-
ear augmentation has been proposed as a mechanism to control bistability [34] but how it fares
in controlling more general instances of multistability including extreme multistability [47, 61]
is still an open question and will be addressed in subsequent studies [60].
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