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Abstract
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by various etiologies, with pulmonary 
vascular remodeling recognized as a main pathological change. Currently, it is widely accepted that vascular remodeling is 
closely associated with abnormal pulmonary vascular cell death and perivascular inflammation. The simultaneous activa-
tion of various pulmonary vascular cell death leads to immune cell adhesion and inflammatory mediator releases; And in 
turn, the inflammatory response may also trigger cell death and jointly promote the progression of vascular remodeling. 
Recently, PANoptosis has been identified as a phenomenon that describes the simultaneous activation and interaction of 
multiple forms of programmed cell death (PCD). Therefore, the relationship between PANoptosis and inflammation in PAH 
warrants further investigation. This review examines the mechanisms underlying apoptosis, necroptosis, pyroptosis, and 
inflammatory responses in PAH, with a focus on PANoptosis and its interactions with inflammation. And it aims to eluci-
date the significance of this emerging form of cell death and inflammation in the pathophysiology of PAH and to explore 
its potential as a therapeutic target.
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Introduction

Pulmonary arterial hypertension (PAH) is a complex and 
serious public health problem, with therapeutic effects and 
prognosis are less than ideal. A clinical study involving 
1193 subjects demonstrated that the average survival time 
for Group 1 PAH patients was 4.6 years, whereas for the 
other groups was 1.3–3.2 years [1, 2]. More concerning is 
the overall prevalence of PAH in China, which has reached 
3.8%, with approximately 4.3% classified as Group 2 [3]. 
Therefore, the investigation of PAH pathogenesis is particu-
larly urgent to achieve the goals of early diagnosis and pre-
cise treatment. The 2022 European Society of Cardiology/
European Respiratory Society (ESC/ERS) guidelines divide 
PAH into five groups in accordance with different pathogen-
eses [4], but vascular remodeling has always been consid-
ered a common marker and major pathophysiological change 
in various PAH [5]. It is primarily characterized by the dys-
function of pulmonary vascular cells and the infiltration of 
peripheral inflammatory cells [6], with the dysfunction of 
pulmonary vascular cells closely related to programmed cell 
death (PCD) [7]. And it has been reported that excessive 
expression of cell death (such as pyroptosis, necroptosis, 
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etc.) can trigger cytokine storms and inflammation [8, 9]. 
Therefore, it is believed that the two are not only parallel in 
PAH but also interact to aggravate PAH progression.

PCD is a cellular suicide mechanism to maintains home-
ostasis and triggers cell death by activating cascades of 
transcriptional and posttranslational protein modifications 
[10]. Apoptosis, necroptosis, and pyroptosis are the classic 
and well-defined death modes of PCD, and morphological 
characteristics are the main basis for distinguishing between 
these three modes of cell death. Apoptosis was first char-
acterized in 1972 and is an indispensable way of cell death 
to maintain homeostasis [11]. Its morphological features 
include cell volume reduction, chromatin condensation, 
nuclear pyknosis, apoptosome formation and cytoskeletal 
disintegration [12]. And then new forms of cell death were 
constantly identified for the ongoing attention in this area of 
research. In 2001, a novel pro-inflammatory form of PCD, 
distinct from both apoptosis and necrosis, was discovered 
and officially named pyroptosis [13]. Pyroptosis is a soluble 
and inflammatory death mediated by the gasderm (GSDM) 
protein family [14], characterized by rapid rupture of plasma 
membrane and release of pro-inflammatory substances 
[15]. Necroptosis was first discovered and formally named 
by Degterev and Alexei in 2005 [16], which is a form of 
inflammatory cell death independent of caspases [17]. Its 
morphologies include the loss of plasma membrane integ-
rity, swelling and deformation of organelles and release of 
cellular contents that promote inflammation [18]. Although 
differences exist in the morphological alterations among the 
three types of cell death, clear crosstalk is exhibited at the 
molecular level [19]. Additionally, Malireddi [20] discov-
ered a highly interconnected cell death and named "PANo-
ptosis" in 2019. The emergence of this new concept further 
confirms the crosstalk among different cell death. PANop-
tosis has been found to play a crucial role in many diseases 
since 2019, including infectious diseases, tumors, neurode-
generative diseases, and cardiovascular diseases [21]. PAH, 
a fatal cardiovascular disease with low survival rates and 
poor prognosis, is associated with cell death in pulmonary 
vascular cells, including apoptosis, necroptosis, pyroptosis, 
and autophagy [7, 15]. In summary, PANoptosis may be a 
important mechanism in PAH pathogenesis.

Infiltration of perivascular inflammation also aggra-
vates pulmonary vascular resistance in PAH by affecting 
pulmonary hemodynamics and vascular remodeling [22]. 
As shown in Table 1, the expression levels of inflammatory 
factors vary among different subgroups of PAH, and some 
inflammatory factors are closely related to the prognosis of 
PAH. It has been reported that inflammatory factors and 
chemokines can induce PCD and aggravate the formation of 
vascular remodeling by activating upstream factors of mul-
tiple death pathways [22–24]. Existing evidence shows that 
some PCD (such as ferroptosis, apoptosis resistance, and 

pyroptosis)-mediated inflammatory responses can aggra-
vate PAH [25–27]. Although there are few studies on the 
mechanisms of necroptosis [28, 29] and autophagy [30, 31] 
in PAH, they have been shown to trigger peripheral inflam-
mation in other diseases. Thus, it is evident that some PCD 
have a causal relationship with inflammation in PAH. Fur-
thermore, the fundamental characteristics of PANoptosis, 
which encompasses apoptosis, necroptosis, and pyroptosis, 
indicate that it may also interact with perivascular inflam-
mation in PAH, further promoting vascular remodeling and 
hemodynamic changes (Fig. 1).

Pathophysiological mechanisms of PAH: 
PANoptosis and peripheral inflammation

Overview of PANoptosis in PAH

Crosstalk between apoptosis, necroptosis, and pyroptosis: 
the basis of PANoptosis

Apoptosis, necroptosis, and pyroptosis have been proven to 
play vital roles in PAH. Moreover, increasing evidence indi-
cates that these three death modes are closely connected at 
the molecular mechanism level.

caspase-8 (casp-8) was the first to be considered as the 
primary evidence of crosstalk among these three types of 
cell death [82]. To date, casp-8 is regarded as a protease that 
possesses both pro-death and pro-survival dual functions 
[83]. It was initially recognized as the initiator of extrin-
sic apoptosis in response to the activation of death recep-
tors, such as Fas and Tumor Necrosis Factor (TNF) [84]. 
Subsequently, studies have found that casp-8 is also closely 
related to necroptosis. Newton found that casp-8 can lead to 
necrosome split by cleaving the Asp325 residue of Recep-
tor Interacting Serine/Threonine Kinase (RIPK) 1, which in 
turn prevents the induction of necroptosis [85]. More evi-
dence confirms that once casp-8 is inactivated or inhibited, 
it causes RIPK3 and Mixed Lineage Kinase Domain-Like 
(MLKL) dependent embryonic lethality in mice [83]. Sub-
sequent studies have confirmed that casp-8/Fas-associating 
protein with a novel death domain (FADD) can inhibit the 
spontaneous activity of the RIPK3-MLKL pathway by 
influencing cyclic GMP-AMP synthase/stimulator of Inter-
feron Genes/TANK binding kinase 1 (cGAS/STING/TBK1) 
and the positive feedback loop of Z-DNA binding protein 
1 (ZBP1) [86]. Simultaneously, casp-8 dependent inflam-
matory responses are regulated by FADD and necroptosis 
[87]. It has been reported that casp-8 can also induce the 
transition from apoptosis to pyroptosis. Recent research 
shows that casp-8 cleavage of the D333 site in RIPK3 
restricts the NLR family pyrin domain-containing (NLRP3) 
inflammasome-mediated pyroptosis and IL-1β secretion, 
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while not inhibiting necroptosis [88]. Notably, Muendlein 
demonstrated that casp-8 can induce apoptosis-associated 
speck-like protein containing a CARD (ASC) oligomeriza-
tion of NLRP3 inflammasom in the absence of casp-1/3/7 
and BH3 interacting domain death agonist protein (BID), 
thereby activating casp-1-mediated pyroptosis and IL-1β 
release [89, 90]. These results indicate that casp-8 exhib-
its considerable plasticity in cell death pathways. Further-
more, recent studies have reported that when endothelial 
TGF-β-activated kinase 1 (TAK1) is inhibited or stimulated 
by lipopolysaccharides (LPS), casp-8 can directly cleave 
GSDMD and promote IL-1β expression through dimeri-
zation, self-processing, and activity upregulation [82, 89]. 
Casp-8 not only acts on the classical pyroptosis pathway but 
also affects the non-classical pathways mediated by GSDMC 
and GSDME. Upon various stimuli (such as metabolites and 
hypoxia), casp-8 specifically cleaves GSDMC and produces 

the GSDMC N-terminal domain, which causes membrane 
rupture and induces pyroptosis [91, 92]. Moreover, TNF-α/
casp-8/casp-3/GSDME signal transduction mediated cell 
pyroptosis was found to promote muscular atrophy in the 
skeletal muscle cells of aged mice [93].

RIPK1 is currently recognized as a main node in the 
interaction between the three types of cell death. Initially, 
the focus was primarily on the mechanisms of necroptosis. 
It is now generally accepted that upon stimulation by death 
receptors such as TNF-R1, DR4/5, and Toll Like Receptor 
(TLR) 3/4, RIPK1 can bind to RIPK3, leading to the phos-
phorylation and activation of MLKL, which ultimately forms 
necrotic bodies and induces necroptosis [94]. Recent studies 
have revealed that RIPK1 also participates in pyroptosis and 
apoptosis in different forms. Numerous studies have con-
firmed when the Ser166 site of RIPK1 is phosphorylated 
after stimulation by Smac-mimics, 5Z-7 (TAK1 inhibitor), 

Table 1  Inflammatory factors involved in PAH

Category Source Target PAH classification Expression Inflammatory 
pathways

Cell death

IL-1β myeloid cells ([32]) PASMCs ([22, 32]) I ([33, 34]),
II ([32]),
III ([35–37]),
IV ([38, 39])

↑ IL-1R1/
MyD88,IL-1β/
NF-κB/Snail

([40, 41])

pyroptosis ([42]), 
apoptosis ([43])

autophagy ([44])

IL-6 PAECs
PASMCs
fibroblastmac-

rophage
T cell
B cell
mast cell
dendritic cell
([45, 46])

PAECs ([47])
PASMCs ([48])
macrophage

I ([33]),
II ([49, 50]),
III ([51]),
IV ([39])

↑ JAK/STAT 
JAK/Ras/Raf
JAK/PI3K/AKT
IL-6/NF-κB
IL-6/MAPK/ERK
IL-6/BMP
IL-6/Notch
IL-6/Fe
([45])

Apoptosis ([26])
Autophagy ([52, 53])
pyroptosis ([42])

IL-18 dendritic cell
PASMCs
Macrophage ([54])

PASMCs ([55]) I ([56]),
III ([57])

↑ IL-18/IL-Bpa ([58]) Apoptosis ([59])
Pyroptosis ([42])
autophagy ([60])

MCP-1/CCL2 VECs
VSMCs
([61])

monocyte
macrophage
PASMCs
([61])

I ([62])
III ([63])
IV ([64])

↑ CCL2/CCR2 ([63]) apoptosis, autophagy
([65, 66])

CCL5/RANTES T cell
NK cell
PAECs
macrophage
([67, 68])

T cell
NK cell
PASMCs
PAECs
([68])

I ([68]) ↑ CCL5/BMP ([69])
CCL5/CCR5 ([68])

apoptosis ([69])

CX3CL1/Frac-
talkine

PASMCs
PAECs
epithelial cell ([70, 

71])

monocyte
lympho-

cytePASMCs
([71])

I ([72])
III ([70])

↑ CX3CL1/CX3CR1 
([63])

–

CCL7 PAECs
VSMCs
THP-1
([73])

lymphocyte ([72]) I ([74])
III ([75])

↑ CCL7/CCR7 –

CXCL9 Macrophage ([76]) PAECs ([77]) I ([78])
III ([79])

↑ TAT1/CXCL9/
CXCR3 ([80])

apoptosis ([77])

CXCL10 Macrophage ([76]) PAECs ([77]) IV ([81]) ↑ – apoptosis ([77])
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complex I (composed of TRADD, RIPK1 and E3 ubiquitin 
ligase) is degraded to mediate RIPK1-dependent apoptosis 
through complex IIb (also called ripoptosome, composed of 
RIPK1, TNF Receptor-Associated Death Domain (FADD) 
and casp-8) [95–97]. Studies have shown that the Asp325 
site of RIPK1 is particularly important for the formation 
of TNF-responsive ripoptosomes and their concomitant 
manner of death [98]. Subsequent studies have verified that 
the C-terminally truncated version of ZBP1 (ZBP1ca) can 
induce RIPK3-dependent necroptosis and activate RIPK1-
dependent apoptosis to a limited extent [99]. It has been 
reported that when infected with Yersinia, TLR/TNFR is 
activated and forms a FADD/RIPK1 complex to activate 
casp-8, thereby triggering pyroptosis mediated by GSDMD 
in macrophages and GSDME in neutrophils respectively 
[100, 101]. Meanwhile, glucose deprivation or activation of 
activated protein kinases K (AMPK), induced by reduced 
glucose levels within macrophages, can phosphorylate the 
S321 site of RIPK1 and promote the AMPK-RIPK1 cas-
cade to inhibit pyroptosis [102]. Subsequent researches 
have found that RIPK1-dependent pyroptosis in these two 
immune cells is differentially regulated by immune signal 

transduction. Compared with neutrophils, which requires 
TNFR1 signal transduction to drive pyroptosis, macrophages 
rely on both TNFR1 and TLR4-TIR domain-containing 
adapter inducing IFN-β (TRIF) signaling pathways to trig-
ger pyroptosis [103]. According to reports, non-classical 
autophosphorylation of RIPK1 at threonine 169 (T169) is 
essential for casp-8-mediated pyroptosis [104].

The aforementioned evidence confirms the interactive 
relationship between apoptosis, necroptosis, and pyroptosis. 
When the regulatory effect of a specific factor is inhibited 
or interfered with, other pathways can play compensatory 
roles. Importantly, these three modes of cell death can coex-
ist under pathological conditions. Based on repeatedly vali-
dated evidence, it can be speculated that PANoptosis exists 
in PAH (Fig. 2).

Molecular mechanism of PANoptosis

Since PANoptosis exhibits the fundamental characteristics 
of the three aforementioned modes of cell death in terms of 
molecular mechanisms and morphological features, it has 
been formally designated as "PANoptosis", where "P, A, N" 

Fig. 1  Pathophysiological mechanisms of PAH. Vascular remodeling 
is the critical pathophysiological mechanism in PAH, and is primar-
ily composed of abnormal proliferation, death of pulmonary vascular 
cells, and peripheral vascular inflammation. The peripheral vascula-
ture is primarily formed by various immune cells that release inflam-
matory mediators and chemokines via partially regulated factors. The 

abnormal death of pulmonary vascular cells mainly involves apopto-
sis resistance, pyroptosis, and necroptosis. Apoptosis was proposed in 
1972, pyroptosis was officially named in 2001, and necroptosis was 
discovered in 2005. As of 2019, a total of five types of PANoptosis 
have been identified. This diagram was drawn by Figdraw (www. figdr 
aw. com)

http://www.figdraw.com
http://www.figdraw.com
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represent pyroptosis, apoptosis, and necroptosis, respec-
tively [20, 105]. It is an inflammatory lytic cell death path-
way driven by caspases and RIPKs, and is regulated by the 
PANoptosome [106]. The PANoptosome is essential for ini-
tiating cell death and sensing stimuli such as pathogen-asso-
ciated molecular patterns (PAMPs) and damage-associated 
molecular patterns (DAMPs) [105]. It includes five types: 
ZBP1-, Absent in melanoma 2 (AIM2)-, RIPK1-, NLRP12- 
and NLRC5-PANoptosome [107]. Similar to most protein 
complexes, the PANoptosome primarily consists of three 
components: the sensing domain, the assembly domain, and 
the catalytic domain [105]. The catalytic domain is com-
posed of various catalytic effectors, such as casp-1/8, RIPK3 
and RIPK1 [105]. The assembly domain includes adap-
tor proteins with caspase recruitment domains, including 
FADD, ASC, and NLRP3 [21]. The sensing domain mainly 
encompasses ZBP1- [108], AIM2- [109], RIPK1- [101], 
NLRP12- [110] or NLRC5- [111] adapters. It can activate 
different types of PANoptosomes in response to different 
pathogenic microorganisms or other stress conditions. These 
domains play a important role in forming the PANopto-
some through homotypic(RIP homotypic interaction motifs 

(RHIM-RHIM), DD-DD, DED-DED, CARD-CARD) and 
heterotypic (DED-PYRIN) interactions between proteins 
[112].

ZBP1‑PANoptosome

ZBP1 PANoptosis was first discovered during influenza A 
virus (IAV) infection [113]. It is mainly composed of ZBP1, 
NLRP3, casp-8/6/3, RIPK1 and RIPK3 [107] (Fig.  3). 
ZBP1 is a cytoplasmic Z-nucleic acid sensor that contains 
two Z-nucleic acid binding domains (Zα domains) at the 
N-terminus: Zα-1 and Zα-2 [108]. These two domains pos-
sess RHIM1 and RHIM2 in the protein sequence [108], with 
RHIM1 capable of binding to RIPK3 to induce necropto-
sis [114]. Interestingly, Zα-2 has been found to be closely 
related to death. It regulates death in conjunction with 
RHIM1 [115, 116] and senses nucleic acids [117], acting 
as a main innate immune sensor for Z-RNAs. However, the 
specific functions of Zα-1 and RHIM1 require further inves-
tigation. It has been reported that ZBP1 recruits casp-8 to 
form the ZBP1/RIPK3/casp-8 signaling scaffold after bind-
ing to RIPK3 [20], and then successively activates the three 

Fig. 2  Crosstalk between apoptosis, necroptosis, and pyroptosis at the 
molecular level. Pyroptosis is primarily mediated by inflammasomes, 
which ultimately lead to the cleavage of GSDMD and the release of 
IL-1β and IL-8. Apoptosis is activated by casp-3/7, and its activation 
can be induced by the apoptosome formed through Bax/BAK/Cyt or 
stimulated by FADD/casp-8. It can also mediate cleavage of GSDME, 

triggering pyroptosis. Necroptosis is mainly mediated by necrosomes 
that are composed of RIPK3 and MLKL. Additionally, FADD/casp-8 
can form complex II by binding to RIPK1.When casp-8 is inhibited, 
complex II binds to RIPK3 to form necrosomes, thereby inducing 
necroptosis. This diagram was drawn by Figdraw (www. figdr aw. com)

http://www.figdraw.com
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death modes and PANoptosis. The NLRP3 inflammasome 
triggers the production of IL-1β and IL-18 during PANop-
tosis, which is unrelated to cell death [118]. This indicates 
that NLRP3 is not essential in this complex. When the ZBP1 
PANoptosome lacks the NLRP3 inflammasome, the matu-
ration of IL-1β and IL-18 is reduced or inhibited, but cell 
death occurs due to compensatory functions of molecules 
such as casp-3/6 [118].

RIPK1‑PANoptosome

The RIPK1 PANoptosome is composed of ASC, RIPK3, 
RIPK1, casp-1/8, and NLRP3 [107] (Fig. 3). RIPK1, as the 
inaugural member of the receptor-interacting serine/threo-
nine kinase family, is a vital regulatory factor in mediating 
cellular inflammation [119]. Initially, ZBP1-independent 
PANoptosis was discovered by Malireddi during Yersinia 
infection in 2020 [120]. This study found that RIPK1 expres-
sion deficiency resulted in apoptosis and pyroptosis reduc-
tion, but necroptosis increased in gene knockout mouse 
models, whereas other proteins did not exhibit this [120]. 

This indicates that RIPK1 is a critical factor driving PANo-
ptosis. It has been reported that TAK1 is essential for PANo-
ptosome regulation [119, 121]. A previous study has shown 
that Yersinia infection can inhibit TAK1 to phosphorylate 
RIPK1 and activate RIPK1-PANoptosis [120].

AIM2‑PANoptosome

AIM2 PANoptosis was identified during HSV 1 and 
F.novicida infections in 2021 [122]. It is composed of 
AIM2, Pyrin, ZBP1, ASC, casp-1, casp-8, RIPK3, RIPK1 
and FADD [122] (Fig. 3). AIM2 is a DNA sensor consist-
ing of an N-terminal pyrin domain and C-terminal HIN 
domain [107]. It interacts with Pyrin and ZBP1 through 
ASC to form a multiprotein complex [122]. Furthermore, 
it has been reported that the knockout of AIM2 reduces the 
expression levels of Pyrin and ZBP1, indicating that AIM2 
acts as an upstream regulatory factor of Pyrin and ZBP1 to 
regulate the assembly and activation of the PANoptosome 
[122]. Subsequently, the interaction of ASC with AIM2, 

Fig. 3  Composition of the PANoptosome. When the ZBP1 PANop-
tosome is activated by IAV stimulation, it induces the occurrence of 
PANoptosis. It can be divided into two categories: one is composed 
of ZBP1, RIPK1, RIPK3, casp-8/6/3, and NLRP3, where NLRP3 
mediates the release of IL-1β/18; the other category lacks NLRP3 
and is unable to produce inflammatory factors. The RIPK1 PANop-

tosome consists of ASC, RIPK3, RIPK1, casp-1/8, and NLRP3, and 
is activated by Yersinia. The AIM2 PANoptosome is composed of 
AIM2, Pyrin, ZBP1, ASC, casp-1/8, RIPK3, RIPK1, and FADD, and 
is activated by HSV-1 and F.novicida. This diagram was drawn by 
Figdraw (www. figdr aw. com)

http://www.figdraw.com
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Pyrin, ZBP1, casp-1/8, RIPK3, RIPK1, and FADD was 
observed by immunoprecipitation [122].

NLRP12‑PANoptosome

NLRP-12 PANoptosis was first discovered by Sundaram in 
2023 as a new protein complex that responds to heme and 
PAMPs [110]. It consists of NLRP12, ASC, casp-8 and 
RIPK3 [123] (Fig. 4). NLRP12, as a member of the NLR 
family, is involved in the regulation of inflammatory sign-
aling in response to infection and cell stress and can form 
inflammasomes composed of various oligomeric proteins 
[124]. A recent study has revealed that organs activate 
TLR-2/4-MyD88 to specifically induce the generation of 
the NLRP12 PANoptosome and induce the maturation of 
IL-1β and IL-18 after stimulation with heme and PAMPs 
or two different PAMPs [110]. However, whether there are 
other synergistic effects or other signaling pathways that 
cause activate PANoptosome remains to be resolved and 
requires further research and exploration.

NLRC5‑PANoptosome

The NLRC5 PANoptosome is a novel assembly discovered 
in 2024 that consists of NLRC5, NLRP12, NLRP3, casp-8, 
ASC and RIPK3 [111] (Fig. 4). As an innate immune sen-
sor, NLRC5 responds to ligand-driven cell death [111]. To 
determine the relationship between NLRC5 and NLRP12, 
Sundaram utilized double-knockout mice and found that the 
absence of NLRC5 significantly increased death in response 
to heme and PAMPs stimulation [111]. This indicated that 
NLRC5 acts as a sensor when exposed to a specific ligand. 
Furthermore, immunoprecipitation revealed that TLR-2/4 
and NAM are significant factors driving the NLRC5 PANo-
ptosome [111].

PANoptosis in PAH

Current research shows that apoptosis, pyroptosis, and 
necroptosis can promote the formation of vascular remod-
eling by mediating the phenotypic and activity transforma-
tion of pulmonary vascular cells [125]. And it is evident that 
there is crosstalk among these three modes of cell death. 

Fig. 4  Composition of the PANoptosome. The NLRP12 PANopto-
some is induced by TLR2/4 and is composed of NLRP12, ASC, casp-
8, and RIPK3. The NLRC5 PANoptosome is induced after stimula-

tion by TLR2/4 or mitochondrial damage, and consists of NLRC5, 
NLRP12, NLRP3, casp-8, ASC, and RIPK3. This diagram was drawn 
by Figdraw (www. figdr aw. com)

http://www.figdraw.com
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Therefore, it can be inferred that PANoptosis is involved in 
the formation of vascular remodeling.

Apoptosis in PAH

Apoptosis resistance represents a fundamental phenotypic 
transformation of pulmonary vascular cells. Pulmonary arte-
rial endothelial cells (PAECs) have been reported to show a 
pro-apoptotic states in the early stage of PAH, and transform 
into an apoptosis-resistant phenotype in the later stages of 
the disease [125, 126]. This not only indicates that the patho-
logical mechanisms of PAH are complex, but also reveals the 
temporal heterogeneity of the abnormal pathological state 
of PAECs. It is generally believed that apoptosis of PAECs 
in the early stage is related to the lack of bone morpho-
genetic protein receptor type 2 (BMPR-2) signal transduc-
tion or the activation of casp-3 by the pro-apoptotic factor 
programmed cell death-4 (PDCD4) induced by epigenetic 
modifications [127]. With disease deterioration, the pro-
liferation and anti-apoptotic phenotype of PAECs mainly 
depends on the activation of signal transduction and acti-
vator of transcription 3 (STAT3) [128]. Interestingly, both 
the proliferative and apoptotic phenotypes of PAECs can 
promote vascular remodeling [15], but the specific reasons 
remain unclear. However, pulmonary arterial smooth mus-
cle cells (PASMCs) display an apoptosis-resistant pheno-
type following the onset of the disease [129]. Studies have 
shown that heterogeneous nuclear ribonucleoprotein A2B1 
(HNRNPA2B1) serves as the main coordinating protein 
for the proliferative/anti-apoptotic phenotype of PASMCs 
[130]. Interestingly, GATA6-deficient PAECs have been 
found to increase GATA6-dependent proliferation and the 
anti-apoptotic phenotype of PASMCs [131]. Subsequently, 
Zhang discovered that the activation of autophagy under 
hypoxic conditions induces the proliferation of PAECs and 
apoptosis of microvascular ECs (MVECs) and leads to the 
replacement of MVECs by PAECs, finally providing a vas-
cular microenvironment that promotes the proliferation and 
migration of PASMCs, ultimately driving the development 
of PAH [132]. Thus, PAECs can establish communication 
with PASMCs and induce apoptosis resistance.

Pyroptosis in PAH

Pyroptosis plays a significant role in pathophysiologi-
cal changes in PAH and has a substantial impact on right 
ventricular hypertrophy [27, 133]. Current studies have 
demonstrated that post-translational modifications [134], 
non-coding RNAs (ncRNAs) [135, 136] and gut microbiota 
metabolites [137] can mediate pulmonary vascular cells to 
undergo pyroptosis to participate in vascular remodeling. 
Pyroptosis includes two pathways: the classical pathway 
mediated by casp-1 and the non-classical pathway mediated 

by casp-4/11 [8]. Casp-1 mediated pyroptosis is involved, to 
some extent, in vascular remodeling, such as BMPR2 signal-
ing upregulator1 (BUR1) and GPR146 [134, 138]. Recent 
findings have found that casp-4/11/GSDME and BMPR2/
casp-3/GSDME-mediated pyroptosis pathways also play 
important roles in the pathogenesis of PAH [139, 140]. 
Pulmonary vascular cells can mediate pyroptosis through 
signaling pathways such as prolyl hydroxylase domain-2 
(PHD2)/hypoxia inducible factor-1α (HIF-1α) [135] and 
AMPK/NF-kappaB(NF-κB)/NLRP3 [137], thereby forming 
a positive feedback loop that exacerbates vascular remod-
eling. Interestingly, programmed death-ligand 1 (PD-L1) 
regulated by STAT1 can mediate casp-1 mediated pyropto-
sis in PASMCs to modulate pulmonary vascular fibrosis and 
accelerate the progression of PAH [134]. However, Wang 
found that PD-1/PD-L1 was downregulated by ubiquitina-
tion in hypoxic pulmonary hypertension (HPH), and this 
pathway could inhibit T helper 17 cell response and improve 
endothelial dysfunction [136]. Since pyroptosis is a form of 
cell death, further exploration is needed to understand how 
its activation ultimately leads to pathological changes, such 
as the proliferation of pulmonary vascular cells and cardio-
myocytes, as well as hemodynamic alterations.

Necroptosis in PAH

Despite limited research on the mechanisms of necroptosis in 
PAH, it is widely believed that it exists in PAH and promotes 
vascular remodeling [7, 15]. Recently, Xiao et al. found that 
RIPK3-mediated necroptosis activates the TLR and NLR 
pathways to participate in PAH by activating DAMPs [141]. 
Subsequently, Jarabicová found that the mRNA expression 
levels of RIPK3 and MLKL increased in an MCT-induced 
PAH rat model [142]. It has been reported that high mobility 
group box 1 (HMGB1) is an important mediator of inflam-
mation and vascular repair in PAH [143]. Later, Zemskova 
noted that the release of HMGB1 may be related to necropto-
sis [144]. These findings suggest that necroptosis is a poten-
tial mechanism mediating vascular remodeling and inflam-
mation and the upregulation of  pThr231/Ser232−RIP3 causes 
RV necroptosis in PAH. The expression level of RIPK3 in 
plasma was positively correlated with the Fulton index, and 
this increase was more significant in the late stages [142]. 
This indicates that RIPK3-mediated necroptosis is corre-
lated with the prognosis of PAH. Although necroptosis has 
been shown to be involved in the development of PAH, its 
specific mechanism of action requires further research and 
exploration.

The potential molecular mechanism of PANoptosis in PAH

It has been reported that STING, as a radical target of 
PAH, can induce PANoptosis [145, 146]. And Meng found 



1105Apoptosis (2025) 30:1097–1116 

that the DNA damage/cGAS/STING pathway can exacer-
bate PAH by promoting cell proliferation and phenotypic 
transformation [147]. It has been found that this pathway 
is activated by mitochondrial DNA (mtDNA) cytoplasmic 
escape and induces PANoptosis in response to intermittent 
hypoxia [148]. Moreover, certain mechanistic targets in PAH 
can induce or inhibit PANoptosis to some extent. Studies 
have shown that FUNDC1 not only regulates mitochondrial 
dynamics and energy metabolism to improve PAH [149], but 
also inhibit the activation of PANoptosis through interaction 
with mitochondrial Tu translation elongation factor (TUFM) 
[150]. Furthermore, factors such as dynamin-related pro-
tein 1 (DRP1), TAK1, and HMGB1 are involved in vascular 
remodeling [151–153], and PANoptosis is also related to 
DRP1-mediated mitochondrial fission and passive release 
of HGMB1 [154–156]. Interestingly, current research shows 
that TAK1 deficiency causes RIPK1-mediated PANoptosis 
by regulating mitochondrial redox balance [157], suggest-
ing that the mechanism of TAK1 involvement in vascular 
remodeling and PANoptosis may not be consistent. Thus, 
it can be inferred that PANoptosis may occur in PAH, and 
impaired mitochondrial quality could be one of the driving 
factors for the occurrence of PANoptosis. Additionally, Luo 
confirmed that miR-29a-3p, regulated by HIF-1α and SMAD 
family member 3 (Smad3), could significantly improve HPH 
and right ventricular hypertrophy [158]. Recent studies have 
found that it can target TNFR1 to inhibit the occurrence of 

PANoptosis [159]. This suggests that miRNAs may also be 
one of the factors driving the occurrence of PANoptosis in 
PAH (Fig. 5).

Overview of perivascular inflammation in PAH

Cytokines

Interleukin‑1 (IL‑1) Cytokines related to the IL-1 family 
play vital roles in inflammatory responses and have become 
central mediators in numerous diseases [160, 161]. It has 
been reported that the increased biological activity of IL-1 
is associated with MCT-induced inflammation and PAH 
progression [162, 163]. Subsequent research revealed that 
the use of IL-1 antagonists can prevent the increase in pul-
monary vascular resistance and pulmonary vascular remod-
eling in certain forms of PAH [35]. The IL-1 family contains 
11 members, including IL-1α, IL-1β, and IL-1Ra [163], of 
which IL-1β is generally considered a radical inflamma-
tory mediator involved in pathological pulmonary vascular 
remodeling [32, 163]. It has been reported that the uptake 
and translation of mRNA in activated HPAECs are higher 
following stimulation by TGF-β1 and IL-1β in PAH [164]. 
Subsequent studies found that IL-1β can participate in vas-
cular remodeling and inflammatory responses by activat-
ing corresponding pathways, such as IL-1R1/MyD88 [40]. 
More importantly, IL-1β has been confirmed to be involved 

Fig. 5  Relationship between PANoptosis and PAH. The activation 
of abnormal cell death in pulmonary vascular cells (ECs, SMCs, 
and fibroblasts) is one of the causes of vascular remodeling. Typical 
deaths include apoptosis resistance/apoptosis, pyroptosis, and necrop-
tosis, whereas PANoptosis exhibits morphological changes charac-
teristic of the above three. Furthermore, vascular remodeling can be 

associated with PANoptosis through the regulation of certain factors, 
including mitochondria-related components such as cGAS/STING, 
TAK1, Drp1, and FUNDC1, as well as immune-related factors such 
as HMGB1, Interferon regulatory factor-1 (IRF1), and miR-29a-3p. 
This diagram was drawn by Figdraw (www. figdr aw. com)

http://www.figdraw.com
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in various types of PAH (as detailed in Table 1). Interest-
ingly, Agrawal discovered that macrophage-mediated IL-1β 
partially regulates cardiac remodeling in an animal model of 
heart failure with preserved ejection fraction (HFpEF)-PH 
[32].This indicates that IL-1β from myeloid cells may be 
associated with the prognosis of PAH.

Interleukin‑6 (IL‑6) IL-6 is a widely distributed pluripotent 
cytokines and serves as an independent risk factor in the 
pathogenesis of PAH. To date, numerous studies have con-
firmed that IL-6 can activate various signaling pathways 
that drive the progression of PAH, such as CD4 + T cell/
IL-6/glycoprotein 130 (gp130) [165], IRF-4/IL-6/ C-X3-
C-Motif Receptor 1 (CX3CR1) [166], and IL-6/Forkhead 
box protein O1 (FoxO1) [167]. In addition, IL-6 can medi-
ate the mobilization of neutrophils from the bone marrow 
in PAH, and this mobilization depends on the expression of 
CX3CR1 in neutrophils [166]. Interestingly, however, pro-
gesterone can reverse the adverse effects of IL-6 in PAH 
and block pSmad1-Id1/2 axis in IL-6-incubated PASMCs 
to improve vascular remodeling [168]. Recently, Simpson 
analyzed data, which was from the PAH biorepository of 
the National Institutes of Health and the National Heart, 
Lung, and Blood Institute, and found that IL-6 is upregu-
lated to varying degrees in different PAH subtypes, with the 
highest levels observed in connective tissue disease-related 
PAH (CTD-PAH) and portopulmonary hypertension [169]. 
Reports indicate that IL-6 levels are independently associ-
ated with right ventricular (RV) function and RV-pulmonary 
artery coupling in PAH. That is, with equal PAH levels, 
patients with higher IL-6 expression have relatively worse 
right heart function [170]. This indicates that IL-6 can be 
used as a biomarker to assess the severity and prognosis 
of PAH [45, 171]. It is worth noting that Woolf used Men-
delian randomization analysis and found that there was no 
causal relationship between IL-6 and PAH risk [172]. How-
ever, Takeyasu proposed that an IL-6 ≥ 2.73  pg/mL could 
serve as a detection standard for identifying PAH with an 
“inflammatory response phenotype” [173].

Interleukin‑18 (IL‑18) IL-18 is a member of the IL-1 family 
of cytokines and can display pleiotropic effects depending 
on the cytokine environment [174]. Vascular remodeling is 
closely related to increased IL-18 expression and the per-
sistent inflammatory environment [56]. Subsequent research 
has indicated a strong correlation between IL-18 and PAH, 
and its maturation depends on casp-1 [54]. Hillestad later 
discovered that IL-18 is associated with left ventricular 
diastolic dysfunction during alveolar hypoxia [175]. How-
ever, Bruns found that knockout of the IL-18 gene alone did 
not protect mice from right ventricular hypertrophy induced 
by HPH, suggesting that there may be parallel activated 
inflammatory pathways that play a compensatory role [176].

Chemokines

During the inflammatory response in PAH, signal transduc-
tion between chemokines and their corresponding receptors 
plays a crucial role in promoting the infiltration of immune 
cells into the lungs [177]. Studies have shown that mono-
cyte chemoattractant protein-1 (MCP-1, also known as 
CCL2) is involved in the progression of various types of 
PAH (Table 1). The expression of MCP-1 was negatively 
correlated with disease duration [62]. Florentin et al. found 
that although MCP-1 is involved in lung inflammation and 
pulmonary vascular remodeling, it has no significant effect 
on hemodynamic changes [178]. Furthermore, the CCL2/
CCR2 axis is one of the important signaling mechanisms 
involved in the pathological stages of PAH [46]. Studies 
have shown crosstalk between MCP-1 and CCL5, and this 
interaction is essential for the collaboration between mac-
rophages and PASMCs [179]. CCL5 deficiency can reverse 
obstructive changes in the pulmonary arteries by restoring 
BMPR2 signaling [69]. Moreover, elevated CCL5 expres-
sion are associated with deterioration of cardiac function and 
poor prognosis [74]. CX3CL1 exists as a cell adhesion mol-
ecule or chemokine on ECs [180], which not only responds 
to the inflammatory response but also responds to the cross-
talk between ECs and SMCs during hypoxia through the 
CX3CL1/CX3CR1 axis [70]. Specifically, CX3CL1 secreted 
by ECs triggers phenotypic changes in PASMCs. Studies 
have found that CCL7 can exert effects on PAH by mediating 
the lymphocyte secretion of CX3CL1 [72].

Current research confirms that numerous chemokines and 
cytokines are involved in the occurrence and development of 
PAH, and crosstalk among them, which is closely related to 
the severity and prognosis of the disease. More importantly, 
some factors were closely associated with various modes of 
death, as detailed in Table 1.

Interplay between PANoptosis 
and perivascular inflammation in PAH

It is generally believed that PANoptosis is a unique inflam-
matory death mode independent of the above three death 
modes. It can be activated by stimuli such as viral or bacte-
rial infections and cytokine storms [123]. Therefore, it is 
speculated that PANoptosis is closely related to inflamma-
tion and may be involved in pathophysiological changes 
associated with PAH.

Pyroptosis and Perivascular Inflammation in PAH.
Pyroptosis is now commonly recognized as a form of sec-

ondary necrosis and a well-recognized inflammatory death 
that serves to defend against pathogens [181]. It causes 
the release of inflammatory factors such as IL-1β, IL-18, 
and IL-6, and recruits neutrophils and macrophages to 
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exacerbate the inflammatory response and vascular remod-
eling [55]. NLRP3/casp-1/IL-1β-mediated pyroptosis is one 
of the driving factors of local inflammation in PAH [133, 
182]. It is generally noted that IL-21 produced by follicular 
helper T cells  (TFH) promotes the proliferation and pyrop-
tosis of PASMCs in HPH, while conversely, the selective 
CX3CR1 antagonist AZD8797 inhibits PASMCs pyroptosis 
[183]. Thus, the initiation of pyroptosis and inflammation is 
significantly associated with disease mechanisms.

Apoptosis and inflammation in PAH

Research has found that IL-1β mediated by pyroptosis can 
induce apoptosis [184–186]. Previous studies have shown 
that IL-6 can induce apoptosis resistance in PASMCs 
through different signal transduction pathways, thereby 
promoting vascular remodeling in PAH, such as IL-6/
STAT3/Kruppel-like factor 5 (KLF5) [187] and IL-6/bro-
modomain protein 4 (BRD4) [188]. M2b macrophages, as 
central effector cells in the local inflammation of PAH, can 
promote apoptosis and migration of PASMCs by regulating 
the expression of Bcl-2 family proteins through the inhibi-
tion of the PI3K/Akt/FoxO3a [189]. In addition, Pan found 
that sulforaphane (SFN) extracted from plants can reduce 
the expression levels of inflammatory factors such as TNF-
α, IL-6 and NF-κB, thereby promoting PASMCs apoptosis 
and inhibiting pulmonary microvascular ECs apoptosis, ulti-
mately improving vascular remodeling [190]. Interestingly, 
PAECs apoptosis promotes vascular remodeling in PAH 
[191]. Further research confirms that once hypoxic stimula-
tion increases, it activates the NF-κB signaling pathway and 
promotes the upregulation of chemokines (cytochrome P450 
family 1 subfamily A member 1 (CYP1A1) and cytochrome 
P450 family 1 subfamily B member 1 (CYP1B1)) and 
inflammatory factors, such as IL-1β and IL-6, eventually 
leading to PAECs apoptosis [43]. Studies have also shown 
that 15-hydroxyeicosatetraenoic acid (15-HETE) can acti-
vate T cell-dependent PAECs apoptosis mediated by oxi-
dized lipids to induce PAH [192]. In summary, disordered 
inflammation and apoptosis are closely related to the dis-
ease, and their interactions have different mechanistic effects 
on pulmonary vascular cells.

Necroptosis and inflammation in PAH

Necroptosis is now considered an inflammatory form of 
death, so scholars speculate that its abnormal activation may 
also be one of the mechanisms that trigger inflammation 
[193]. In addition, RIPK1 kinase can act as a transcriptional 
co-regulator in the nucleus and directly regulate and par-
ticipate in the transcription of specific genes that mediate 
inflammatory responses [194]. RIPK1 inhibitors (Nec-1) 
can inhibit necroptosis and downregulate the expression of 

IL-1β, IL-6, and TNF-α in certain inflammatory bowel dis-
eases [195, 196]. These results indicated that necroptosis is 
closely related to inflammation and is involved in the occur-
rence and development of various inflammatory diseases. 
Although there is currently limited research on the specific 
mechanisms of necroptosis in PAH, scholars have confirmed 
and summarized that necroptosis is an important death mode 
involved in vascular remodeling [15, 23, 141]. Subsequently, 
Xiao confirmed that RIPK3-mediated necroptosis partici-
pates in the production of DAMPs in MCT-induced PAH, 
and enriches TLR and NLR pathways, and increases inflam-
mation levels [141]. Given that inflammation also plays a 
major role in vascular remodeling in PAH, it is reasonable 
to speculate that necroptosis may exacerbate inflammation 
progression, further promoting vascular remodeling in PAH.

PANoptosis and inflammation in PAH

IRF1 is an immunoregulatory factor and an important mol-
ecule that mediates inflammation and cell death. Existing 
studies have noted that it is not only a core factor of PAH 
pathological changes [197] but can also activate ZBP1-, 
AIM2-, RIPK1-, and NLRP12-PANoptosis [198]. As an 
important mediator secreted by immune cells, HMGB1 
can cause an increase of IL-6 and CXCL8 in PASMCs and 
PAECs in PAH, so it is widely regarded as an inflammatory 
driver of PAH [153]. at the same time, it also mediates the 
occurrence of PANoptosis [155].

Conclusion and future perspective

PAH, a progressive malignant disease driven by various 
heterogeneous causes, imposes a significant burden on the 
world, particularly in low- and middle-income countries. 
Currently, available pharmacological treatments in clini-
cal practice mainly focus on three pathways: prostacyclin, 
endothelin, and nitric oxide (NO) pathways. Their primary 
function is to dilate blood vessels to reduce pulmonary 
artery pressure, which can alleviate or relieve the symp-
toms or signs of PAH, and the overall treatment outcomes 
do not meet the expected levels. Therefore, it is particu-
larly important to transform innovative scientific knowl-
edge into medical intervention measures. With an in-depth 
study and understanding of the pathophysiology of PAH, 
and PCD and inflammatory responses have been found to be 
the main pathogenesis of PAH. Apoptosis/apoptosis resist-
ance, necroptosis, and pyroptosis in PCD have emerged as 
closely intertwined with both the occurrence and progno-
sis of PAH. Existing studies have pointed out that PANo-
ptosis can induce the occurrence of the above three death 
modes by mediating the PANoptosome, independent of any 
single mode of demise. PANoptosis serves as the basis for 
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inflammation and immune responses; thus, PANoptosis and 
inflammation may play synergistic or cooperative roles in 
PAH.

The emergence of PANoptosis represents a compensatory 
or redundant effect within the pathological mechanisms of 
PAH; therefore, precise treatment can optimize its efficacy. 
Although the exploration of PANoptosis in PAH is currently 
limited, targeted therapy can be achieved by interfering with 
the components or upstream factors of the PANoptosome, 
such as NLRP3, the caspase family, and TAK1. Currently, 
some drugs (e.g. pirfenidone [199] and Nec-1 s [144]) have 
been shown to improve PAH, which also indicates that there 
may be changes in the treatment of PAH. Additionally, the 
presence of PANoptosis also suggests that there may be 
other uncharacterized death modes or regulatory factors in 
PAH. Therefore, this review provides strong evidence for the 
interplay between them, providing new ideas for subsequent 
exploration of the pathophysiological mechanisms and treat-
ment methods of PAH.

Limitations

Although certain drugs have been identified as improving 
PAH through the targeting of specific PANoptotic factors, 
several obstacles to their effectiveness and clinical applica-
tion remain. a) As a whole, the use of these targeted drugs 
may non-specifically regulate other proteins, potentially 
resulting in unintended biological effects or side effects on 
other organs or tissues. b) Given that PANoptosis is closely 
associated with specific inflammatory processes, certain 
drugs may impact immune function and potentially lead to 
immune disorders. c) PAH frequently coexists with underly-
ing diseases that may exhibit functional differences across 
various organs and conditions; thus, controlling the dosage 
and administration of drugs may be necessary. d) Significant 
differences may also exist in the dosage and administration 
of drugs across species, resulting in discrepancies in their 
application different species.
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