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Abstract

Nutrition influences health throughout the life course. Good nutrition increases the probability of 

good pregnancy outcomes, proper childhood development, and healthy aging, and it lowers the 

probability of developing common diet-related chronic diseases, including obesity, cardiovascular 

disease, cancer, and type 2 diabetes. Despite the importance of diet and health, studying these 

exposures is among the most challenging in population sciences research. US and global food 

supplies are complex; eating patterns have shifted such that half of meals are eaten away from 

home, and there are thousands of food ingredients with myriad combinations. These complexities 

make dietary assessment and links to health challenging both for population sciences research 

and for public health policy and practice. Furthermore, most studies evaluating nutrition and 

health usually rely on self-report instruments prone to random and systematic measurement error. 

Scientific advances involve developing nutritional biomarkers and then applying these biomarkers 

as stand-alone nutritional exposures or for calibrating self-reports using specialized statistics.
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INTRODUCTION

Adoption and maintenance of a healthy diet are among the most important and modifiable 

factors for ensuring healthy pregnancies (83), promoting proper growth and development in 

children and adolescents (38, 46), and, later in life, preventing diet-related chronic diseases 
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such as cancer, obesity, cardiovascular disease (CVD), and type 2 diabetes (15, 58, 64, 

100, 101, 103, 104). Understanding diet–health relationships is a critical public health issue, 

given the high morbidity and mortality from diseases related to poor diet (58, 72) and their 

associated health care costs (9, 34, 53, 84).

Much of the recent progress in understanding etiologic relationships between diet and health 

has been led by nutritional epidemiology research (48, 64, 90). Some of this research has 

resulted in important public policy changes, including policies that guide implementation of 

child and adult care food programs; food labeling laws; fortification and enrichment of fluid 

milk, refined grains, and salt with specific nutrients; municipal taxes on sugar-sweetened 

beverages as a consumption deterrent; and general population guidance for dietary intake (1, 

14, 16, 23, 26, 27, 45, 55, 58). These nutrition-related policies have been intended to reduce 

both acute and chronic disease risk and to improve overall population health across the life 

span (47, 50, 58, 95, 103, 105). Likewise, nutrition advice given to individual patients by 

health care providers for both health promotion and disease prevention is also driven by 

scientific evidence generated by nutrition scientists, including nutritional epidemiologists. 

Clinical recommendations often follow systematic evidence reviews by the World Health 

Organization (35, 36), the American Heart Association and the American College of 

Cardiology (47, 90, 103), the American Cancer Society (88, 89), the American Diabetes 

Association (25), the Academy of Nutrition and Dietetics (21, 39), the World Cancer 

Research Fund and the American Institute for Cancer Research (104), and other professional 

groups and societies. In addition, these and other evidence reviews have been used by the 

US Preventive Services Task Force in their published nutrition-related recommendations 

on healthy weight and weight gain during pregnancy (22), vitamin D deficiency screening 

in adults (42), healthy diet and physical activity for CVD prevention in adults (41), and 

weight loss to prevent obesity-related morbidity and mortality in adults (19). These evidence 

reviews and their resulting recommendation statements are influential for individual patient 

recommendations, broad population guidance, and health care payors.

The strength of the evidence to improve both population and individual health is only as 

good as the strength of the underlying science. Herein lies an important problem. Most 

of the recent nutrition-related population and clinical recommendations noted above are 

based on self-reported diet, primarily from observational studies, and accumulating evidence 

supports that self-reported dietary data that do not correct for measurement error are 

distorted by systematic and random measurement error (67, 75, 80). The measurement 

error in dietary self-report leads to inconsistent evidence, which may play a role in 

preventing broad nutrition-focused population interventions and public policy initiatives 

from moving forward in a consistent manner, leaving the public confused and skeptical. 

Furthermore, the complexities of exposure assessment for diet may be particularly important 

for understanding the role of nutrition in the etiology of risk for chronic diseases, which 

are the leading causes of morbidity and mortality in the United States. In contrast with 

deficiency diseases where one nutrient is linked to one disease (e.g., vitamin C and scurvy, 

iron and iron-deficiency anemia), diet-related chronic diseases may result from either 

deficiencies or excesses of several nutrients (alone or in combination); new approaches 

to estimating nutritional needs for chronic disease prevention are warranted, as noted in a 
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2017 consensus study report from the National Academies of Sciences, Engineering, and 

Medicine (61).

The goal of this article is to describe the challenges of dietary assessment in population 

sciences research, including addressing the important problem of systematic bias and 

demonstrating the potential that nutritional biomarkers offer to improve the validity of 

dietary assessment and its application to studies of diet and chronic disease risk. We 

explain first the challenges of self-report dietary assessment, the strengths and limitations 

of standard dietary assessment methods that have been in use for decades, and the potential 

for nutritional biomarkers combined with novel statistical modeling to advance the field of 

nutritional epidemiology.

BACKGROUND

The Challenges of Dietary Assessment

The United States is at a critical juncture in the health of the nation, where the heavy 

burden of morbidity, mortality, and health care expenditures imposed by diet-related poor 

health must be reduced (64). The foundation for evidence-based dietary recommendations 

rests on obtaining accurate dietary exposure data. Assessment of diet is undoubtedly among 

the most complex exposure assessment problems in epidemiology. The American diet is 

admittedly complex and is not a single exposure. Thousands of potential food ingredients 

are combined either in commercial preparation or in home cooking into myriad dishes with 

varying additions of oils, salt, and other seasonings. Diet has recently been characterized 

as multidimensional (86), where one might consider exposures as nutrients (macro- and 

micronutrients), non-nutrient phytochemicals (e.g., flavonoids, glucosinolates, carotenoids), 

food groups (e.g., fruit, vegetables, grains, animal protein, dairy), individual foods (e.g., 

blueberries, green tea, broccoli, red meat, eggs), multi-ingredient composite foods as 

consumed (e.g., soups, stews, salads, tacos, pizza, hamburgers, stir fry), or other attributes 

related to food growing (e.g., pesticides, toxins) or preparation (e.g., heterocyclic amines, 

polycyclic aromatic hydrocarbons). To add to this complexity, even at a single point in 

time, multiple nutrients overlap within multiple food groups, with related dependencies 

that may be quite strong and must be considered in statistical modeling. In addition, 

substantial measurement error is common in self-reported nutrients and foods, with complex 

measurement error dependency patterns. Altogether, the challenge may seem overwhelming.

Much of the methodology in nutritional epidemiology attempts to validate specific self-

report dietary assessment approaches, which seems to mean that the assessed diet is thought 

to be good enough for certain practical purposes, especially for disease association analyses. 

These validation studies have typically used some form of replicate self-report dietary 

assessments, or assessments using two or more different self-report assessment approaches 

(107). However, owing to the absence of objective intake measures in these studies, related 

measurement error adjustments cause investigators to inevitably make strong assumptions 

about at least one of the assessments, most often that one self-report assessment (e.g., 

multiple days of food records or 24-h dietary recalls) estimates the targeted intake aside 

from random measurement error that is independent of the targeted intake and independent 

of other pertinent participant characteristics. However, this correction strategy does not 
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address the potential systematic measurement errors in self-reported diet that arise when 

individuals with certain characteristics [e.g., body mass index (BMI) >30.0 kg/m2 or 

older age] have features that differ from other persons in the study population; these 

characteristics influence dietary reporting, a phenomenon known as systematic bias (67, 

76). Systematic bias is a serious form of measurement error because it distorts associations 

and is not alleviated by increasing study sample size or making simple analytic adjustments. 

Some form of objective measures, or at least measures that plausibly adhere to simple 

measurement error modeling assumptions, is needed to identify and allow for systematic 

bias adjustments. While considerable literature describes the use of biomarkers to examine 

or support the properties of specific self-report assessments (24, 56), the criteria needed 

to yield biomarkers that can correct complex dietary self-report measurement error for 

nutritional epidemiology purposes have so far received little research attention. Related 

developments may be able to advance the field substantially, particularly if biomarkers can 

be used to replace self-reported dietary intake in association studies of diet and disease 

outcomes.

Current Dietary Assessment Methods: Commonly Used but Fraught with Limitations

The three most commonly used dietary assessment tools in nutrition research are the 

food frequency questionnaire (FFQ), food diary or record (FR), and 24-h dietary recall 

(24HR). The roots of these tools stem from Burke’s (12) seminal publication in 1947, 

“The Diet History as a Research Tool.” Born from her vision of public health nutrition 

research, Burke pioneered the expansion of dietary assessment from costly balance studies 

and controlled environment eating, which could monitor the few, to assess longer-term 

habitual intakes through assessing diet histories of the many with greater cost efficiency. 

Though her approach was more cost-efficient, Burke recognized that even with careful 

interviews by trained nutritionists and a review of food lists and records kept by participants, 

diet histories may be missing foods or could be generally incomplete. Such inaccuracies 

have continued to plague self-reported dietary assessment, leading to potentially erroneous 

research conclusions about associations between intake and health risks and to challenges in 

addressing patient needs in clinical care. Yet, self-reported dietary assessment remains the 

stanchion of public health nutrition research and clinical care.

Food Frequency Questionnaires

FFQs are food lists with options for respondents to mark foods and food combinations, 

frequency of consumption, and approximate portion size typically consumed over a period 

of time, which may range from “in the past month” to “in the past year.” Being self-

administered on a mark sense print format or online, FFQs are a cost-effective and 

low-burden method for capturing a respondent’s usual or average dietary intake over the 

specified time period. FFQs are popular for reporting dietary intake in large population 

sciences research studies.

Designing FFQs requires careful attention to the characteristics of the population under 

study (43), including age, literacy, language, cognitive abilities, and representative foods 

and preparation methods in order to capture both intraindividual and interindividual intake 

variation. Block et al. (8) in 1986 describe in detail a data-based approach for designing 
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what was then referred to as food histories and are often now known as FFQs. In 1986, 

Block et al. published the nutrient sources from foods consumed commonly in the United 

States (8). These publications aided the design of FFQs, including the FFQ used in the 

Women’s Health Initiative (WHI) (106).

The WHI, conducted nationally in 40 clinical centers across the United States (106), offers 

a useful case study for designing an FFQ (69). After selecting commonly consumed foods, 

frequency, and portion options for inclusion in the WHI FFQ, the design team attended 

to cultural and regional foods. A feature of the WHI FFQ was that it captured dietary fat 

intake change to be responsive to the WHI Dietary Modification Trial, which compared a 

usual diet group to a low-fat dietary pattern intervention group (87). To accomplish this 

task without becoming overly lengthy, the WHI FFQ began with a series of adjustment 

questions that asked about types of dairy, e.g., nonfat, low-fat, and regular dairy, cooking 

methods, and at-the-table additions of various types of fat, including no fat, oils, butter, 

etc. The adjustment questions were linked to the line-item analysis to add precision to the 

line-item estimates (69). In studies where FFQs are designed for specific populations or 

research questions, the FFQs might not be transferrable among studies or research questions. 

Although less burdensome to respondents than completing multiple-day FRs or 24HRs, 

FFQs are not necessarily considered by all to be easy to complete (13).

Food Diary or Food Record

The terms food diary and food record are functionally synonymous, so here we use the term 

food record (FR). FRs are designed to capture short-term intake of foods and portion sizes 

actually consumed. The number of days reported for FRs depends on whether individual 

or group intakes are being assessed, the nutrients of interest, and the frequency and types 

of foods (5), although three to seven days are most commonly completed. FRs typically 

cover one week’s intake with days fewer than seven alternating to capture varied days of 

the week (e.g., weekdays, weekends) and variable times of day to cover variable schedules 

and to lessen the correlation of consecutive day intake. The burden of completing an FR 

is greater than that of completing an FFQ. To complete an FR, the respondent keeps track 

of and records their food and beverage intake for a specified number of days. Respondents 

receive training, measuring utensils, and often an instructional booklet with portion photos, 

and review by study staff is common.

24-Hour Recalls

24HRs capture an individual’s intake over a 24-h period. Similar to FRs, 24HRs capture 

short-term dietary intake of foods and portion sizes actually consumed. The number of 

days recalled depends on whether variation within individual intake is in question, in which 

case multiple days are needed to calculate intraclass correlations, or group means are in 

question, in which case a single 24HR from the group or select subset group is needed (4). 

Furthermore, the number of days may depend on particular foods or nutrient exposures of 

interest. For example, when foods or nutrients of interest may be less commonly consumed, 

such as fish or omega-3 fatty acids, more recalled days may be needed. As with FRs, three 

or four days covering varying days of the week are common.
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Standard 24HRs are administered by trained interviewers, often registered dietitians using 

the US Department of Agriculture (USDA)’s five-step multiple-pass system (85) to define, 

refine, and quantify intakes. The five steps include a quick list of foods consumed the 

previous day, a review to collect possibly forgotten foods, time and location cues, details 

about intake, and a final review (17, 18). 24HRs may be conducted by automated systems on 

mobile devices (93) or online (98).

Paperless Forms of Dietary Self-Report: Automated, Mobile, Online

Dietary self-report, like many other research data collection activities, are going or have 

gone paperless. Examples include online Automated Self-Administered 24-Hour Dietary 

Recall (ASA-24) (98) and several mobile device applications as summarized by Schembre 

and colleagues (93). The premise behind digital collection of dietary data is the same as 

traditional dietary assessment but may be streamlined for both study participants and staff. 

There is little evidence that digital collection of dietary data reduces or eliminates the 

well-known systematic error that can profoundly affect dietary self-report (40).

Nutrient Analysis

All dietary assessment instruments must be analyzed with high-quality food and nutrient 

databases. The processing of the raw food consumption data is linked with food 

composition databases to yield an output of the average daily intake of more than 

150 nutrients (macronutrients, micronutrients, energy), food components (e.g., added 

sugars), plant compounds (e.g., carotenoids, isoflavones), and food group serving 

counts (fruits, vegetables, whole grains, refined grains, animal protein, plant protein). 

Comprehensive research-grade food and nutrient databases must be used, as most foods 

have been subjected to chemical analysis to derive nutrient composition. In the United 

States, these include (a) the USDA National Nutrient Database for Standard Reference, 

Legacy Release (https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-

reference-legacy-release), which has data on 150 output variables from nearly 7,800 foods 

commonly consumed in the United States; and (b) the NDSR® Food and Nutrient Database 

(http://www.ncc.umn.edu/ndsr-database-page/), which includes 178 output variables from 

19,500 foods. Food composition databases should include fresh raw ingredients, ready-to-eat 

foods, and restaurant foods.

Limitations of Dietary Self-Reports

Despite their common use, self-report dietary assessment tools are fraught with 

measurement error and our work has shown that the measurement error is common across 

all three tools (FFQ, FR, and 24HR) (76). Random measurement error or bias may be 

alleviated somewhat by a larger sample size; however, the more troublesome source of 

error is systematic bias, which may be influenced by respondents not being familiar with 

portion sizes, not knowing food ingredients when not in control of their own cooking, 

social desirability, or personal characteristics (67). In 2003, Subar et al. (97) reported, 

from the Observing Protein and Energy Nutrition (OPEN) study of nearly 500 men and 

women, that men on average underreported energy intake by up to 14% on 24HR and 

36% on FFQs; greater underreporting was noted with higher BMIs, compared with a 

well-established biomarker for total energy intake, i.e., doubly labeled water assessment. 
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Protein was also found to be underreported, though to lesser degrees, when compared with 

the well-established 24-h urinary nitrogen (UN) biomarker (7). A few years later, Neuhouser 

et al. (67) reported similar results from a subsample of 540 participants from the WHI, 

adding findings of systematic underreporting of energy and protein as body mass increased 

as well as systematic bias by age and race/ethnicity (67). Prentice et al. (76) reported 

similar findings among a sample of 450 participants from the WHI observational study for 

FFQs, FRs, and 24HRs. Pooling data from five cohorts (including those from OPEN and 

WHI) in the United States representing 2,265 men and women showed similar results (28). 

Systematic bias has also been reported for nutrients, including sodium and potassium, which 

can be reliably measured with recovery biomarkers in 24-h urine collection samples (29, 74).

DIETARY BIOMARKERS

Understanding how foods ingested are linked to human physiology, metabolism, and health 

outcomes must move beyond error-prone self-report. Biomarkers of diet and their effects on 

host physiology and disease risk are an integral part of nutrition research, and their use in 

research may provide a more rigorous scientific approach compared with methods currently 

used. Diet-related biomarkers are often classified into three groups: (a) exposure biomarkers, 

(b) susceptibility markers, and (c) outcome biomarkers (56). Exposure biomarkers are those 

that directly reflect food intake. Examples of compounds that come from diet exclusively, 

since they are not endogenously made (or made at very low levels), include UN (protein 

intake), plasma carotenoids (fruit and vegetable intake), and plasma long-chain omega-3 

fatty acids (fish intake). Susceptibility biomarkers are those that are not direct makers of 

the intake of specific foods but are made endogenously in response to the metabolism of 

foods ingested, and they function as disease susceptibility biomarkers. Exposure biomarkers, 

providing objective measures of dietary intake of particular nutrients or food groups 

(92), have been a primary focus of research to improve dietary assessment in nutritional 

epidemiology. Examples of susceptibility biomarkers include serum cholesterol in response 

to saturated fat intake (90) and serum triglycerides in response to high carbohydrate intake 

(3, 68). Outcome biomarkers are those that might be monitored in a dietary intervention trial 

for adherence, those that are the primary outcome to assess dietary change, or those that 

offer etiologic insight regarding diet and metabolism in short-term trials, such as controlled 

feeding trials (62, 66, 91).

Established Biomarkers

Dietary biomarker development has generally followed the trajectory of the field of 

nutrition science. The early years of nutrition science were focused on the essentiality of 

nutrients to prevent classic nutrient deficiency diseases; biomarkers have been used for 

both population surveillance and individual status assessment with respect to essentiality, 

including hemoglobin or hematocrit to assess iron-deficiency anemia and serum retinol 

to assess vitamin A deficiency, which causes night blindness and immune dysfunction 

(51, 70, 99). These biomarkers have been useful tools to monitor status and prevent 

deficiencies. More recently, the field of nutrition science has recognized that the majority 

of nutrition-related diseases today may result from both over- and underconsumption, 

and thus new tools are needed to quantitatively assess intake more effectively (61). 
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Unfortunately, there are few established quantitative dietary intake biomarkers that can 

be used in this manner. Quantitative biomarkers include recovery biomarkers that reflect 

absolute intake over a defined period of time: Doubly labeled water (DLW) uses ingestion 

and excretion of two stable isotopes, deuterium and O18, to quantitatively measure total 

energy expenditure (94), and hence total energy intake among weight-stable persons, and 

UN from 24-h urine collections as a measure of total protein intake (7). In addition, 24-h 

urine recovery of sodium and potassium has been used as a biomarker of sodium and 

potassium intake (37), although considerable random error may attenuate these measures, 

especially for sodium, and certain systematic biases have also been postulated (37, 59, 74). 

Concentration biomarkers (i.e., blood concentrations of vitamins, phytochemicals, lipids, 

or their metabolites) are correlated with intake but cannot be readily used to calculate 

an absolute level of intake. These biomarkers make up the majority of potential analytes 

available for characterizing dietary exposure (44, 57).

The established recovery biomarkers have been compared with self-reported diet, as 

assessed using FFQs, FRs, or 24HRs in various nutritional biomarker studies, and 

with meta-analyses (2, 28, 30, 37, 67, 76, 107). In addition to the substantial random 

measurement error that is evident from replicate applications of the self-report tools 

to individual study participants, these studies and meta-analyses also reveal substantial 

systematic biases. Briefly, self-reported energy is very poorly estimated by any of the 

major dietary assessment methods, but the correspondence with DLW energy can be 

much improved through novel statistical methods by developing calibration equations that 

include such participant characteristics as age, self-reported race/ethnicity, and BMI. For 

example, overweight and obese individuals at the upper end of the BMI distribution tend 

to underreport total energy intake by about 30–40%, whereas there is little underreporting 

among normal-weight persons in the populations studied (67). Total protein intake is also 

underestimated by self-report, whereas protein density (i.e., total protein/total energy) is 

overestimated (67), and in general may be less affected by other sources of systematic 

bias. Sodium is poorly estimated using any of the self-report methods; sodium density 

estimation appears to have systematic bias related to BMI, while potassium is considerably 

better estimated by self-report (74). The relationship between sodium and sodium density 

self-reports that correspond to putative biomarker assessments can be somewhat improved 

by bringing participant characteristics into calibration equations, but the calibrated intake 

estimates still do not correlate strongly with actual intake, as shown in a controlled feeding 

study (44).

Nutrient biomarkers, while extensively studied, are limited in their capacity to capture the 

breadth and complexity of dietary intake at the level of foods, food groups, and dietary 

patterns. With the shift in nutrition research from the study of essential nutrients to the role 

of nonessential food constituents in the prevention of chronic disease, dietary biomarkers 

have also shifted to include compounds associated with particular foods or classes of foods. 

The classification of exposure biomarkers (which could be single compounds or a panel 

of compounds) has also expanded to include food-component biomarkers (nutritive and 

non-nutritive), biomarkers of food intake, and dietary pattern biomarkers, while recognizing 

that some markers may be used for characterizing a variety of diet exposures (31). For 
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example, plasma carotenoid concentrations are effective biomarkers of carotenoid intake 

(44), fruit and vegetable intake (44), and adherence to a healthy dietary pattern (49, 54).

Unresolved Issues

These studies of recovery-based nutritional biomarkers raise important questions: Is the 

paucity of established biomarkers that can be used quantitatively as recovery biomarkers 

a necessity, or can additional biomarkers be identified by also considering new measures 

in blood or other body fluids and by bringing in higher-dimensional data sources, such as 

serum and urine metabolomics profiles? Trying to answer these questions about nutritional 

biomarker discovery and their application to population sciences research has been the aim 

of considerable recent research (56). Furthermore, which properties should be required for a 

suitable dietary intake biomarker in the nutritional epidemiology area? This important topic 

has received very little discussion in the literature to date but very much needs rigor and 

reproducibility, including for newly identified metabolomics-based biomarkers (72).

The extent to which the properties of intake biomarkers depend on participant characteristics 

are transportable to other populations is also an important concern. At this stage of 

biomarker development, it seems advisable for cohort-based research groups to incorporate 

biomarker development studies for their populations, at least if the research includes a 

substantial focus on nutritional exposures and their associations with chronic disease risk. 

The reasoning is that the participant characteristics associated with systematic bias in dietary 

self-report will vary in each study population. In addition, it will typically not be practical 

to measure established or novel dietary biomarkers for all members of large epidemiologic 

cohorts owing to the extensive costs and logistics involved. Rather, such biomarkers may 

be measured in nutritional biomarker substudies in large cohorts and used to develop 

calibration equations for use in calculating biomarker-calibrated intakes for participants in 

the entire cohort for use in disease association analyses. This raises the question of which 

properties should be required for calibrated intakes, a topic of ongoing research (44, 72).

PROMISING ADVANCES IN BIOMARKER DEVELOPMENT

Metabolomics, the high-throughput study of substrates and products of metabolism in a 

biological system, is a promising application for nutritional biomarker development (10, 

92). It involves the measurement of hundreds to thousands of small molecules in biofluids 

or tissues by mass spectrometry (MS) and/or nuclear magnetic resonance spectroscopy 

(NMR), coupled with various dimensionality-reduction methods for multivariate analysis 

and application of classification, regression, and/or prediction methods for analysis (60, 63, 

81). Overall, metabolomic analysis of biospecimens can provide a comprehensive reflection 

of exposures, such as diet, as well as of the host and gut microbial metabolic responses 

to these exposures and the impact of host and gut microbial metabolic phenotype on 

biomarker metabolism (10). This complexity is both a challenge and an opportunity. On 

the one hand, it means that, in most cases, metabolomic biomarkers of intake of a food or 

food pattern are unlikely to be coming solely from the food itself. On the other hand, it 

means that metabolomics data are providing a richer snapshot, including the biochemical 

and physiologic effects of dietary exposures on biological pathways related to health and 
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disease outcomes. The development of robust metabolomics platforms has led to several 

initiatives to discover and validate new metabolomics biomarkers of diet (10, 56). While 

many metabolomics biomarker studies have relied on cross-sectional study designs and 

self-reported dietary intake, with its inherent limitations, more robust dietary intervention 

approaches have also been used for dietary biomarker discovery and validation. Examples 

are given below.

The Nutrition and Physical Activity Assessment Study

In these WHI ancillary studies, efforts to identify and apply objective dietary biomarkers 

to strengthen the evidence of diet–disease associations using biomarker-calibrated intake 

have expanded from using established nutrient recovery biomarkers (6, 67, 74, 78) to 

using metabolomics-based biomarkers (109, 110). One component of the Nutrition and 

Physical Activity Assessment Study (NPAAS) was a controlled feeding study (NPAAS-FS) 

designed specifically for dietary biomarker development, which was conducted in a subset 

of 153 WHI participants who were fed their habitual diets as part of a controlled feeding 

study protocol (44). In this unique feeding study design, the approach aimed to preserve 

the normal variation in nutrient and food consumption for each participant and minimize 

short-term perturbation of the biomarkers of intake. Blood and urine collected at the end 

of a two-week period were analyzed using targeted liquid chromatography (LC)-MS/MS 

(serum), lipidizer/differential mobility spectrometry (serum), gas chromatography (GC)-MS 

(urine), and NMR (urine) metabolomics platforms. To date, these data have been applied 

to develop metabolite signatures for macronutrient intakes (e.g., protein and animal protein, 

carbohydrate, and dietary fiber) (77, 79), as well as intakes of groups of foods (e.g., meat) 

(110), and plans are underway for dietary patterns.

Several strategies have been used for biomarker variable selection using the NPAAS-FS 

multiplatform metabolomics data. For an agnostic approach, linear regression models, with 

least absolute shrinkage and selection operator (LASSO) methods for variable selection 

(96), were run for the regression of each (log-transformed) macronutrient intake variable 

(derived from the consumed menus) on all the metabolites; fivefold cross-validation was 

used to select a penalty parameter to limit the number of variables to fewer than 15. 

The prediction model was built with a second round of linear regression after variable 

selection (109). For a more targeted approach, literature reports of metabolite correlates of 

meat consumption were used to select metabolites of meat-intake biomarkers for testing 

in linear regression models (110). The established recovery biomarkers, log-transformed 

DLW energy and UN-based protein, provided a benchmark for acceptable biomarkers, and 

a regression equation with cross-validated R2 (CV-R2) of ≥36% was selected as a criterion 

for acceptable intake biomarkers in the NPAAS-FS. The rationale is that new biomarkers 

should have a rigorous correlational criterion that approximates the criterion observed 

for gold standard DLW and UN biomarkers. Investigators have developed a pipeline to 

apply the biomarkers to calibration of self-reported intake within the WHI cohort. As 

part of this pipeline, log-transformed metabolite signatures meeting the cross-validation R2 

were advanced to the next step of regressing linearly on corresponding log-transformed 

FFQ intake values and personal characteristics to produce calibration equations for these 
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variables. These equations were then used to calculate calibrated intake values in the WHI 

cohorts and associate these with disease risk in the WHI cohorts (77, 79, 110).

The Food Biomarker Alliance Program

Larger initiatives have also contributed substantially to dietary biomarker discovery using 

metabolomics. From 2014 to 2018, the Joint Programming Initiative A Healthy Diet for 

a Healthy Life Food Biomarker Alliance (FoodBAll) a consortium of 24 partners from 

13 countries, carried out a systematic exploration and assessment of metabolomics-based 

biomarkers of food intake (11). With the goal of providing a better assessment of the food 

intake in different European regions, well-defined, standardized, short-term intervention 

studies were conducted in several centers to identify potential food intake biomarkers of a 

variety of foods, including sugar-sweetened beverages, apple, tomato, banana, milk, cheese, 

bread, meat/meat products, red meat and white meat, potato, carrot, peas, lentils, beans, and 

chickpeas. These studies have identified potential urinary and blood biomarkers of exposure 

to specific foods, generated information about the time-response effect of these putative 

biomarkers, and contributed to the development of biomarker calibration equations for some 

foods (32). For example, the dose–response relationship of 24-h urine proline betaine with 

orange juice intake was established in a controlled feeding study (33) and subsequently 

used to derive the optimal biomarker calibration equation in a cross-sectional study, 

testing different functional specifications and biomarker transformations (20). While this 

application used an established, reliable single-metabolite biomarker, ideally this approach 

could also be applied to more complex scenarios where foods require multi-metabolite 

signatures.

As part of the FoodBAll program, researchers established guidelines for conducting 

literature searches on food biomarkers so as to identify existing candidate biomarkers for a 

specific food or food group and to provide available evidence for the subsequent systematic 

evaluation of the quality of such compounds as biomarkers (71). A recent review of 244 

studies identified 69 metabolites that were classed as potentially useful biomarkers of food 

intake, covering fruits, vegetables, meat, seafood, legumes, coffee, and high-fiber foods 

(82). This procedure is expected to help prioritize further future work on validating putative 

biomarkers. Nonetheless, it also reinforced that specific biomarkers will not necessarily be 

found for every type of food and that complex modeling approaches may be needed for 

appropriate selection of combinations of multiple metabolite biomarkers (i.e., metabolite 

signatures), while accounting for possible confounders (102). FoodBAll investigators also 

established criteria for validating identified biomarkers; these criteria include assessment of 

biologic plausibility, time and dose response, robustness, reliability, stability, and analytical 

performance of the method used to measure them (24).

The Dietary Biomarker Development Consortium

In 2021, the National Institutes of Health (NIH) and the USDA’s National Institute 

of Food and Agriculture established the Dietary Biomarker Development Consortium 

(DBDC; https://dietarybiomarkerconsortium.org/), comprising three clinical centers and a 

data coordinating center, to expand the available metabolite signatures for foods within the 

USDA MyPlate food groups (https://www.choosemyplate.gov/). MyPlate operationalizes the 
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US Dietary Guidelines for Americans to help consumers choose fruits, vegetables, grains, 

protein foods, and dairy as part of their overall dietary pattern. Multidisciplinary teams 

within the DBDC provide the necessary expertise and experience in dietary intervention and 

dietary assessment, metabolomics, and bioinformatics for exploring metabolomics-based 

dietary biomarkers and biostatistical analysis of dietary biomarker data. The clinical centers 

are generating initial sets of metabolite signatures for selected foods in the context of 

controlled feeding in small groups of study participants. Properties of the identified 

metabolites, such as pharmacokinetic profiles and half-lives, as well as initial performance 

of the signatures will be evaluated in this phase. In follow-up studies, biomarker signatures 

will be evaluated further for predicting recent and habitual consumption of more complex 

mixed meal diets and dietary patterns fed as part of controlled feeding studies. The 

performance of the biomarkers will also be compared with the current benchmark predictive 

markers (e.g., 24-h UN, DLW, urinary sodium). Robust validated markers will ultimately be 

tested for their ability to predict both recent and habitual consumption of dietary components 

in independent cohorts along with 24HRs and FRs and other benchmark biomarkers.

Progress to date suggests that metabolomics data may not only generate novel biomarker 

signatures of diet but also help to expand and improve on methodologic approaches, yielding 

novel, robust protocols for dietary biomarker discovery and validation. Much of the focus 

has been on the discovery of metabolomic biomarkers for specific nutrients or foods; 

biomarkers of dietary patterns and the next steps for biomarker validation and calibration 

of self-reported dietary assessment tools in diverse populations remain less well studied. 

For full realization of the application of metabolomics to dietary biomarker development, 

rigorous biomarker validation, as well as the methodological and technological challenges 

inherent in the metabolomics field, still needs to be addressed (10, 56).

SPECIALIZED STATISTICAL MODELING FOR BIOMARKERS AND 

APPLICATIONS TO CHRONIC DISEASE RISK

Despite the promise for nutritional biomarkers to improve dietary assessment in population 

studies, it is neither practical nor financially feasible to assess biomarkers in cohorts with 

tens of thousands of participants. Related to these financial and logistical limitations is 

the complication that the DLW energy intake biomarker requires an expensive protocol 

and cannot be measured from biospecimens in biorepositories owing to the need to ingest 

the stable isotopes and collect timed urine samples over a course of several days to two 

weeks. For these reasons, cohort substudies may be the most practical way to implement 

nutritional biomarker assessments. In our work in the NPAAS, the biomarkers together with 

the participant characteristics are used to develop a calibration equation where participants 

without biomarker values are given a predicted energy intake value representing true energy 

intake, given a participant’s age, BMI, race/ethnicity, and other characteristics (67). In this 

way, the objective biomarkers are efficiently used to create predicted intake values for the 

entire cohort (Figure 1). Thus, the biomarker values can be used as response variables 

in a second set of regression equations that aim to reexpress the biomarkers in terms of 

self-report dietary data and individual participant characteristics, measures that are available 

for the members of the larger epidemiologic cohorts. The resulting calibration equations 
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will be developed by regressing biomarkers for the set of log-transformed biomarker 

intakes on corresponding log-transformed dietary self-report assessments and participant 

characteristics, and a second R2 criterion will be needed to aid in the evaluation of the 

calibration equation. For example, a 36% adjusted R2 has been applied as a criterion in WHI 

calibrations to date, with adjustment that reduces the influence of biomarker noise on the 

regression R2 value (65, 77, 109). Fortunately, the biomarker and calibration correlational 

(R2) criteria can be applied essentially independently relative to statistical properties of the 

resulting biomarker-calibrated intakes. Under pertinent modeling assumptions, the set of 

calibrated dietary intakes, along with potential confounding factors, can be inserted into 

standard outcome analyses, such as Cox regression, for time to clinical outcomes in cohort 

settings, with some refinement needed for variance estimators to acknowledge random 

variation in calibration equation coefficient estimates (72, 73). Finally, while the biomarker 

and calibration R2 criteria ensure a certain closeness between estimated and actual intakes, it 

is also important to consider possible influential sources of reduced sensitivity or specificity 

for both biomarkers and calibrated intakes, even if evaluation of sensitivity and specificity 

can be done only informally in specific applications.

These analytic approaches using statistical calibration have revealed an important role for 

total energy intake in CVD, cancer, and diabetes incidence and mortality analyses (108) 

because, for the first time, energy can be used in a mostly unbiased manner as opposed to 

self-report. However, these analyses are limited by a strong dependence of DLW-calibrated 

total energy intake on BMI. In fact, these disease associations tend to decrease or may 

even disappear following separate control for BMI in outcome modeling. The question of 

whether BMI, or other measures of body fat accumulation, should be regarded as a mediator, 

confounder, or both in health-related analyses remains outstanding and represents one of the 

most important issues to be resolved in nutritional epidemiology going forward. Resolution 

of these issues is especially important because the vast majority of nutritional epidemiology 

reports express dietary intakes as ratios to total energy intake, while total energy intake, 

which is poorly assessed using any of the self-report dietary assessment measures, remains 

largely unstudied. To address this limitation, one may consider a cohort study design 

with biomarkers, including for total energy, and self-report data available longitudinally 

over major stretches of the life course. Alternatively, concerted efforts to develop a total 

energy biomarker that can be derived from stored specimens could be considered, as such a 

biomarker could open up more efficient study designs to address this important total energy 

and health topic using a biomarker instead of self-report.

ACKNOWLEDGMENTS

This work was supported by R01 CA 119171, USDA award number 2021-67017-35782, P30 CA015704, and P30 
DK035816 and several WHI contracts from the National Heart, Lung, and Blood Institute, National Institutes of 
Health, US Department of Health and Human Services (75N92021D00001, 75N92021D00002, 75N92021D00003, 
75N92021D00004, and 75N92021D00005).

Glossary

CVD cardiovascular disease

FFQ food frequency questionnaire
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FR food record

24HR twenty-four hour recall

WHI Women’s Health Initiative

UN urinary nitrogen

DLW doubly labeled water

NPAAS Nutrition and Physical Activity Assessment Study

LITERATURE CITED

1. Acton RB, Kirkpatrick SI, Hammond D.2022. Comparing the effects of four front-of-package 
nutrition labels on consumer purchases of five common beverages and snack foods: results from a 
randomized trial. J. Acad. Nutr. Diet. 122:38–48.e9 [PubMed: 34493393] 

2. Al-Shaar L, Yuan C, Rosner B, Dean SB, Ivey KL, et al. 2021. Reproducibility and validity of 
a semiquantitative food frequency questionnaire in men assessed by multiple methods. Am. J. 
Epidemiol. 190:1122–32 [PubMed: 33350436] 

3. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, et al. 2005. Effects of protein, 
monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the 
OmniHeart randomized trial. JAMA 294:2455–64 [PubMed: 16287956] 

4. Bailey RL. 2021. Overview of dietary assessment methods for measuring intakes of foods, 
beverages, and dietary supplements in research studies. Curr. Opin. Biotechnol. 70:91–96 [PubMed: 
33714006] 

5. Basiotis PP, Welsh SO, Cronin FJ, Kelsay JL, Mertz W. 1987. Number of days of 
food intake records required to estimate individual and group nutrient intakes with defined 
confidence.J.Nutr.117:1638–41 [PubMed: 3655942] 

6. Beasley JM, LaCroix AZ, Larson JC, Huang Y, Neuhouser ML, et al. 2014. Biomarker-calibrated 
protein intake and bone health in the Women’s Health Initiative clinical trials and observational 
study. Am. J. Clin. Nutr. 99:934–40 [PubMed: 24552750] 

7. Bingham SA. 2003. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. 
Nutr. 133(Suppl. 3):921s–24s [PubMed: 12612177] 

8. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L. 1986. A data-based 
approach to diet questionnaire design and testing. Am. J. Epidemiol. 124:453–69 [PubMed: 
3740045] 

9. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, et al. 2018. Global economic 
burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41:963–70 [PubMed: 
29475843] 

10. Brennan L, Hu FB, Sun Q. 2021. Metabolomics meets nutritional epidemiology: harnessing the 
potential in metabolomics data. Metabolites 11:709 [PubMed: 34677424] 

11. Brouwer-Brolsma EM, Brennan L, Drevon CA, van Kranen H, Manach C, et al. 2017. Combining 
traditional dietary assessment methods with novel metabolomics techniques: present efforts by the 
Food Biomarker Alliance. Proc. Nutr. Soc. 76:619–27 [PubMed: 29137687] 

12. Burke B 1947. The diet history as a research tool. J. Am. Diet. Assoc. 23:1041–46

13. Carpenter CL, Bernstein L. 2006. Obesity and cancer risk. In Nutritional Oncology, ed. Heber D, 
Blackburn GL, Go VLW, Milner J, pp. 185–97. Burlington, MA: Academic. 2nd ed.

14. CDC (Cent. Dis. Control Prev.). 1992. Recommendations for the use of folic acid to reduce the 
number of cases of spina bifida and other neural tube defects. MMWR Recomm. Rep. 41:1–7

15. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, et al. 2012. Alternative dietary indices 
both strongly predict risk of chronic disease. J. Nutr. 142:1009–18 [PubMed: 22513989] 

Neuhouser et al. Page 14

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Cleghorn C, Blakely T, Mhurchu CN, Wilson N, Neal B, Eyles H. 2019. Estimating the health 
benefits and cost-savings of a cap on the size of single serve sugar-sweetened beverages. Prev. 
Med. 120:150–56 [PubMed: 30660706] 

17. Conway JM, Ingwersen LA, Moshfegh AJ. 2004. Accuracy of dietary recall using the USDA 
five-step multiple-pass method in men: an observational validation study. J. Am. Diet. Assoc. 
104:595–603 [PubMed: 15054345] 

18. Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. 2003. Effectiveness of the US Department 
of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese 
women. Am. J. Clin. Nutr. 77:1171–78 [PubMed: 12716668] 

19. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, et al. 2018. Behavioral weight loss 
interventions to prevent obesity-related morbidity and mortality in adults: US Preventive Services 
Task Force recommendation statement. JAMA 320:1163–71 [PubMed: 30326502] 

20. D’Angelo S, Gormley IC, McNulty BA, Nugent AP, Walton J, et al. 2019. Combining biomarker 
and food intake data: calibration equations for citrus intake. Am. J. Clin. Nutr. 110:977–83 
[PubMed: 31432078] 

21. Dahl WJ, Stewart ML. 2015. Position of the Academy of Nutrition and Dietetics: health 
implications of dietary fiber. J Acad. Nutr. Diet. 115:1861–70 [PubMed: 26514720] 

22. Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, et al. 2021. Behavioral 
counseling interventions for healthy weight and weight gain in pregnancy: US Preventive Services 
Task Force recommendation statement. JAMA 325:2087–93 [PubMed: 34032823] 

23. Downs SM, Bloem MZ, Zheng M, Catterall E, Thomas B, et al. 2017. The impact of 
policies to reduce trans fat consumption: a systematic review of the evidence. Curr. Dev. Nutr. 
1:cdn.117.000778 [PubMed: 29955689] 

24. Dragsted LO, Gao Q, Scalbert A, Vergères G, Kolehmainen M, et al. 2018. Validation of 
biomarkers of food intake—critical assessment of candidate biomarkers. Genes Nutr. 13:14 
[PubMed: 29861790] 

25. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, et al. 2019. Nutrition therapy 
for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42:731–54 [PubMed: 
31000505] 

26. Falbe J, Thompson HR, Becker CM, Rojas N, McCulloch CE, Madsen KA. 2016. Impact of the 
Berkeley excise tax on sugar-sweetened beverage consumption. Am. J. Public Health 106:1865–71 
[PubMed: 27552267] 

27. FDA (US Food Drug Adm.). 2000. Food labeling: health claims and labeling statements; dietary 
fiber and cancer; antioxidant vitamins and cancer; omega-3 fatty acids and coronary heart disease; 
folate and neural tube defects; revocation. Fed. Regist. 65:58917–18 [PubMed: 11503652] 

28. Freedman LS, Commins JM, Moler JE, Arab L, Baer DJ, et al. 2014. Pooled results from 5 
validation studies of dietary self-report instruments using recovery biomarkers for energy and 
protein intake. Am. J. Epidemiol. 180:172–88 [PubMed: 24918187] 

29. Freedman LS, Commins JM, Moler JE, Willett W, Tinker LF, et al. 2015. Pooled results from 5 
validation studies of dietary self-report instruments using recovery biomarkers for potassium and 
sodium intake. Am. J. Epidemiol. 181:473–87 [PubMed: 25787264] 

30. Freedman LS, Midthune D, Carroll RJ, Commins JM, Arab L, et al. 2015. Application of a 
new statistical model for measurement error to the evaluation of dietary self-report instruments. 
Epidemiology 26:925–33 [PubMed: 26360372] 

31. Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, et al. 2017. A scheme for a flexible 
classification of dietary and health biomarkers. Genes Nutr. 12:34 [PubMed: 29255495] 

32. Gibbons H, Carr E, McNulty BA, Nugent AP, Walton J, et al. 2017. Metabolomic-based 
identification of clusters that reflect dietary patterns. Mol. Nutr. Food Res. 61:1601050

33. Gibbons H, Michielsen CJR, Rundle M, Frost G, McNulty BA, et al. 2017. Demonstration of the 
utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food 
Res. 61:1700037

34. Greenberg H, Pi-Sunyer FX. 2019. Preventing preventable chronic disease: an essential goal. Prog. 
Cardiovasc. Dis. 62:303–5 [PubMed: 31421079] 

Neuhouser et al. Page 15

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Hooper L, Esio-Bassey C, Brainard J, Fynn J, Jennings A, et al. 2022. Evidence to underpin 
vitamin A requirements and upper limits in children aged 0 to 48 months: a scoping review. 
Nutrients 14:407 [PubMed: 35276767] 

36. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. 2020. Reduction in saturated fat 
intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020(5):CD011737

37. Huang Y, Van Horn L, Tinker LF, Neuhouser ML, Carbone L, et al. 2014. Measurement error 
corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension 
63:238–44 [PubMed: 24277763] 

38. Hurley KM, Yousafzai AK, Lopez-Boo F. 2016. Early child development and nutrition: a review 
of the benefits and challenges of implementing integrated interventions. Adv. Nutr. 7:357–63 
[PubMed: 26980819] 

39. Kirk S, Ogata B, Wichert E, Handu D, Rozga M. 2022. Treatment of pediatric overweight and 
obesity: position of the Academy of Nutrition and Dietetics based on an umbrella review of 
systematic reviews. J. Acad. Nutr. Diet. 122:848–61 [PubMed: 35063666] 

40. Kirkpatrick SI, Troiano RP, Barrett B, Cunningham C, Subar AF, et al. 2022. Measurement error 
affecting web- and paper-based dietary assessment instruments: insights from the Multi-Cohort 
Eating and Activity Study for Understanding Reporting Error. Am. J. Epidemiol. 191:1125–39 
[PubMed: 35136928] 

41. Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, et al. 2020. Behavioral counseling 
interventions to promote a healthy diet and physical activity for cardiovascular disease prevention 
in adults with cardiovascular risk factors: US Preventive Services Task Force recommendation 
statement. JAMA 324:2069–75 [PubMed: 33231670] 

42. Krist AH, Davidson KW, Mangione CM, Cabana M, Caughey AB, et al. 2021. Screening for 
vitamin D deficiency in adults: US Preventive Services Task Force recommendation statement. 
JAMA 325:1436–42 [PubMed: 33847711] 

43. Kristal A, Feng Z, Coates RJ, Oberman A, George V.1997.Associations of race/ethnicity, 
education, and dietary intervention with the validity and reliability of a food frequency 
questionnaire. Am. J. Epidemiol. 146:856–69 [PubMed: 9384206] 

44. Lampe JW, Huang Y, Neuhouser ML, Tinker LF, Song X, et al. 2017. Dietary biomarker evaluation 
in a controlled feeding study in women from the Women’s Health Initiative cohort. Am. J. Clin. 
Nutr. 105:466–75 [PubMed: 28031191] 

45. Lee MM, Falbe J, Schillinger D, Basu S, McCulloch CE, Madsen KA. 2019. Sugar-sweetened 
beverage consumption 3 years after the Berkeley, California, sugar-sweetened beverage tax. Am. J. 
Public Health 109:637–39 [PubMed: 30789776] 

46. Leroy JL, Frongillo EA, Dewan P, Black MM, Waterland RA. 2020. Can children catch up 
from the consequences of undernourishment? Evidence from child linear growth, developmental 
epigenetics, and brain and neurocognitive development. Adv. Nutr. 11:1032–41 [PubMed: 
32584399] 

47. Lichtenstein AH, Appel LJ, Vadiveloo M, Hu FB, Kris-Etherton PM, et al. 2021. 2021 dietary 
guidance to improve cardiovascular health: a scientific statement from the American Heart 
Association. Circulation 144:e472–87 [PubMed: 34724806] 

48. Liese AD, Krebs-Smith SM, Subar AF, George SM, Harmon BE, et al. 2015. The Dietary Patterns 
Methods Project: synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 
145:393–402 [PubMed: 25733454] 

49. Lipsky LM, Cheon K, Nansel TR, Albert PS. 2012. Candidate measures of whole plant food 
intake are related to biomarkers of nutrition and health in the US population (National Health and 
Nutrition Examination Survey 1999–2002). Nutr. Res. 32:251–59

50. LoConte NK, Brewster AM, Kaur JS, Merrill JK, Alberg AJ. 2018. Alcohol and cancer: a 
statement of the American Society of Clinical Oncology. J. Clin. Oncol. 36:83–93 [PubMed: 
29112463] 

51. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, et al. 2018. Biomarkers of 
Nutrition for Development (BOND)-Iron review. J. Nutr. 148:1001s–67s [PubMed: 29878148] 

Neuhouser et al. Page 16

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Mahabir S, Willett WC, Friedenreich CM, Lai GY, Boushey CJ, et al. 2018. Research strategies 
for nutritional and physical activity epidemiology and cancer prevention. Cancer Epidemiol. 
Biomarkers Prev. 27:233–44 [PubMed: 29254934] 

53. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML. 2011. Projections of the cost of cancer 
care in the United States: 2010–2020. J. Natl. Cancer Inst. 103:117–28 [PubMed: 21228314] 

54. Markussen MS, Veierød MB, Sakhi AK, Ellingjord-Dale M, Blomhoff R, et al. 2015. Evaluation 
of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as 
biomarkers. Br. J. Nutr. 113:672–82 [PubMed: 25622727] 

55. Marshall TA, Curtis AM, Cavanaugh JE, Warren JJ, Levy SM. 2019. Child and adolescent 
sugar-sweetened beverage intakes are longitudinally associated with higher body mass index z 
scores in a birth cohort followed 17 years. J. Acad. Nutr. Diet. 119:425–34 [PubMed: 30638821] 

56. Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, et al. 2020. Perspective: dietary 
biomarkers of intake and exposure-exploration with omics approaches. Adv. Nutr. 11:200–15 
[PubMed: 31386148] 

57. Matthan NR, Ooi EM, Van Horn L, Neuhouser ML, Woodman R, Lichtenstein AH. 2014. Plasma 
phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict 
coronary heart disease risk: a nested case-control study within the Women’s Health Initiative 
observational study. J. Am. Heart Assoc. 13:e000764

58. Millen BE, Abrams S, Adams-Campbell L, Anderson CA, Brenna JT, et al. 2016. The 2015 
Dietary Guidelines Advisory Committee Scientific Report: development and major conclusions. 
Adv. Nutr. 7:438–44 [PubMed: 27184271] 

59. Mossavar-Rahmani Y, Sotres-Alvarez D, Wong WW, Loria CM, Gellman MD, et al. 2017. 
Applying recovery biomarkers to calibrate self-report measures of sodium and potassium in the 
Hispanic Community Health Study/Study of Latinos. J. Hum. Hypertens. 31:462–73 [PubMed: 
28205551] 

60. Nagana Gowda GA, Raftery D. 2019. Overview of NMR spectroscopy-based metabolomics: 
opportunities and challenges. Methods Mol. Biol. 2037:3–14 [PubMed: 31463836] 

61. Natl.Acad.Sci.Eng.Med.2017.Guiding Principles for Developing Dietary Reference Intake based 
on Chronic Disease, ed. Kumanyika S, Oria MP. Washington, DC: Natl. Acad. Press

62. Navarro SL, Tarkhan A, Shojaie A, Randolph TW, Gu H, et al. 2019. Plasma metabolomics 
profiles suggest beneficial effects of a low-glycemic load dietary pattern on inflammation and 
energy metabolism. Am. J. Clin. Nutr. 110:984–92 [PubMed: 31432072] 

63. Neto FC, Raftery D. 2021. Expanding urinary metabolite annotation through integrated mass 
spectral similarity networking. Anal. Chem. 93:12001–10 [PubMed: 34436864] 

64. Neuhouser ML. 2019. The importance of healthy dietary patterns in chronic disease prevention. 
Nutr. Res. 70:3–6 [PubMed: 30077352] 

65. Neuhouser ML, Pettinger M, Lampe JW, Tinker LF, George SM, et al. 2021. Novel application of 
nutritional biomarkers from a controlled feeding study and observational study to characterization 
of dietary patterns in postmenopausal women. Am. J. Epidemiol. 190:2461–73 [PubMed: 
34142699] 

66. Neuhouser ML, Schwarz Y, Wang C, Breymeyer K, Coronado G, et al. 2012. A low-glycemic load 
diet reduces serum C-reactive protein and modestly increases adiponectin in overweight and obese 
adults. J. Nutr. 142:369–74 [PubMed: 22190020] 

67. Neuhouser ML, Tinker L, Shaw PA, Schoeller D, Bingham SA, et al. 2008. Use of recovery 
biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. 
Epidemiol. 167:1247–59 [PubMed: 18344516] 

68. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr., et al. 2006. Effects of low-
carbohydrate versus low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of 
randomized controlled trials. Arch. Intern. Med. 166:285–93 [PubMed: 16476868] 

69. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. 1999. Measurement 
characteristics of the Women’s Health Initiative food frequency questionnaire. Ann. Epidemiol. 
9:178–87 [PubMed: 10192650] 

Neuhouser et al. Page 17

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



70. Pfeiffer CM, Lacher DA, Schleicher RL, Johnson CL, Yetley EA. 2017. Challenges and lessons 
learned in generating and interpreting NHANES nutritional biomarker data. Adv. Nutr. 8:290–307 
[PubMed: 28298273] 

71. Praticò G, Gao Q, Scalbert A, Vergères G, Kolehmainen M, et al. 2018. Guidelines for Biomarker 
of Food Intake Reviews (BFIRev): how to conduct an extensive literature search for biomarker of 
food intake discovery. Genes Nutr. 13:3 [PubMed: 29484030] 

72. Prentice RL.2018.Intake biomarkers and the chronic disease nutritional epidemiology research 
agenda. Am. J. Clin. Nutr. 108:433–34 [PubMed: 30535112] 

73. Prentice RL, Huang Y. 2018. Nutritional epidemiology methods and related statistical challenges 
and opportunities. Stat. Theory Relat. Fields 2:2–10 [PubMed: 30778402] 

74. Prentice RL, Huang Y, Neuhouser ML, Manson JE, Mossavar-Rahmani Y, et al. 2017. Associations 
of biomarker-calibrated sodium and potassium intakes with cardiovascular disease risk among 
postmenopausal women. Am. J. Epidemiol. 186:1035–43 [PubMed: 28633342] 

75. Prentice RL, Huang Y, Tinker LF, Beresford SA, Lampe JW, Neuhouser ML. 2009. Statistical 
aspects of the use of biomarkers in nutritional epidemiology research. Stat. Biosci. 1:112–23 
[PubMed: 19841649] 

76. Prentice RL, Mossavar-Rahmani Y, Huang Y, Van Horn L, Beresford SA, et al. 2011. Evaluation 
and comparison of food records, recalls, and frequencies for energy and protein assessment by 
using recovery biomarkers. Am. J. Epidemiol. 174:591–603 [PubMed: 21765003] 

77. Prentice RL, Pettinger M, Neuhouser ML, Raftery D, Zheng C, et al. 2021. Biomarker-calibrated 
macronutrient intake and chronic disease risk among postmenopausal women. J. Nutr. 151:2330–
41 [PubMed: 33880504] 

78. Prentice RL, Pettinger M, Neuhouser ML, Tinker LF, Huang Y, et al. 2019. Application of 
blood concentration biomarkers in nutritional epidemiology: example of carotenoid and tocopherol 
intake in relation to chronic disease risk. Am. J. Clin. Nutr. 109:1189–96 [PubMed: 30915444] 

79. Prentice RL, Pettinger M, Zheng C, Neuhouser ML, Raftery D, et al. .2022.Biomarkers for 
components of dietary protein and carbohydrate with application to chronic disease risk in 
postmenopausal women. J. Nutr. 152:1107–17

80. Prentice RL, Tinker LF, Huang Y, Neuhouser ML. 2013. Calibration of self-reported dietary 
measures using biomarkers: an approach to enhancing nutritional epidemiology reliability. Curr. 
Atheroscler. Rep. 15:353 [PubMed: 23881548] 

81. Pujos-Guillot E, Hubert J, Martin J-F, Lyan B, Quintana M, et al. 2013. Mass spectrometry-based 
metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case 
study. J. Proteome Res. 12:1645–59 [PubMed: 23425595] 

82. Rafiq T, Azab SM, Teo KK, Thabane L, Anand SS, et al. 2021. Nutritional metabolomics and the 
classification of dietary biomarker candidates: a critical review. Adv. Nutr. 12:2333–57 [PubMed: 
34015815] 

83. Raghavan R, Dreibelbis C, Kingshipp BL, Wong YP, Abrams B, et al. 2019. Dietary patterns 
before and during pregnancy and maternal outcomes: a systematic review. Am. J. Clin. Nutr. 
109:705s–28s [PubMed: 30982868] 

84. Ramsey SD, Ganz PA, Shankaran V, Peppercorn J, Emanuel E. 2013. Addressing the American 
health-care cost crisis: role of the oncology community. J. Natl. Cancer Inst. 105:1777–81 
[PubMed: 24226096] 

85. Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. 2004. An overview of USDA’s Dietary 
Intake Data System. J. Food Compos. Anal. 17:545–55

86. Reedy J, Subar AF, George SM, Krebs-Smith SM. 2018. Extending methods in dietary patterns 
research. Nutrients 10:571 [PubMed: 29735885] 

87. Ritenbaugh C, Patterson RE, Chlebowski RT, Caan B, Fels-Tinker L, et al. 2003. The Women’s 
Health Initiative Dietary Modification trial: overview and baseline characteristics of participants. 
Ann. Epidemiol. 13:S87–97 [PubMed: 14575941] 

88. Rock CL, Thomson C, Gansler T, Gapstur SM, McCullough ML, et al. 2020. American Cancer 
Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 70:245–
71 [PubMed: 32515498] 

Neuhouser et al. Page 18

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



89. Rock CL, Thomson CA, Sullivan KR, Howe CL, Kushi LH, et al. 2022. American Cancer Society 
nutrition and physical activity guideline for cancer survivors. CA Cancer J. Clin. 72:230–62 
[PubMed: 35294043] 

90. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, et al. 2017. Dietary fats and 
cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 
136:e1–23 [PubMed: 28620111] 

91. Santiago-Torres M, Kratz M, Lampe JW, De Dieu Tapsoba J, Breymeyer KL, et al. 2016. 
Metabolic responses to a traditional Mexican diet compared with a commonly consumed US diet 
in women of Mexican descent: a randomized crossover feeding trial. Am. J. Clin. Nutr. 103:366–
74 [PubMed: 26718418] 

92. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, et al. 2014. The food 
metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99:1286–308 [PubMed: 
24760973] 

93. Schembre SM, Liao Y, O’Connor SG, Hingle MD, Shen S-E, et al. 2018.Mobile ecological 
momentary diet assessment methods for behavioral research: systematic review. JMIR mHealth 
uHealth 6:e11170 [PubMed: 30459148] 

94. Schoeller DA. 1999. Recent advances from application of doubly labeled water to measurement of 
human expenditure. J. Nutr. 129:1765–68 [PubMed: 10498745] 

95. Shangguan S, Mozaffarian D, Sy S, Lee Y, Liu J, et al. 2021. Health impact and cost-effectiveness 
of achieving the National Salt and Sugar Reduction Initiative Voluntary Sugar Reduction Targets in 
the United States: a microsimulation study. Circulation 144:1362–76 [PubMed: 34445886] 

96. Sørensen Ø, Frigessi A, Thoresen M. 2015. Measurement error in LASSO: impact and likelihood 
bias correction. Stat. Sinica 25:809–29

97. Subar AF, Kipnis V, Troiano RP, Midthune D, Schoeller DA, et al. 2003. Using intake biomarkers 
to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN Study. Am. J. 
Epidemiol. 158:1–13 [PubMed: 12835280] 

98. Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, et al. 2012. The Automated 
Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians and 
educators from the National Cancer Institute. J. Acad. Nutr. Diet. 112:1134–37 [PubMed: 
22704899] 

99. Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, et al. 2016. Biomarkers 
of Nutrition for Development (BOND)–Vitamin A review. J. Nutr. 146:1816s–48s [PubMed: 
27511929] 

100. Thomson CA, Crane TE, Wertheim BC, Neuhouser ML, Li W, et al. 2014. Diet quality and 
survival after ovarian cancer: results from the Women’s Health Initiative. J. Natl. Cancer Inst. 
106:dju314 [PubMed: 25335480] 

101. Thomson CA, McCullough ML, Wertheim BC, Chlebowski RT, Martinez ME, et al. 2014. 
Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the 
Women’s Health Initiative. Cancer Prev. Res. 7:42–53

102. Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, et al. 2020. 
Food intake biomarkers for berries and grapes. Genes Nutr. 15:17 [PubMed: 32967625] 

103. Van Horn L, Carson JA, Appel LJ, Burke LE, Economos C, et al. 2016. Recommended dietary 
pattern to achieve adherence to the American Heart Association/American College of Cardiology 
(AHA/ACC) Guidelines: a scientific statement from the American Heart Association. Circulation 
134:e505–29 [PubMed: 27789558] 

104. WCRF (World Cancer Res. Fund). 2018. Diet, nutrition, physical activity and cancer: a global 
perspective. Third Expert Rep., WCRF, London. https://www.wcrf.org/diet-activity-and-cancer/
global-cancer-update-programme/resources-and-toolkits/

105. Weldon I, Parkhurst J. 2022. Governing evidence use in the nutrition policy process: evidence and 
lessons from the 2020 Canada food guide. Nutr. Rev. 80:467–78 [PubMed: 35043195] 

106. WHI (Women’s Health Initiative) Study Group. 1998. Design of the Women’s Health Initiative 
clinical trial and observational study. The Women’s Health Initiative Study Group. Control Clin. 
Trials 19:61–109 [PubMed: 9492970] 

Neuhouser et al. Page 19

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.wcrf.org/diet-activity-and-cancer/global-cancer-update-programme/resources-and-toolkits/
https://www.wcrf.org/diet-activity-and-cancer/global-cancer-update-programme/resources-and-toolkits/


107. Willett WC, Sampson L, Stampfer MJ, Rosber B, Bain C, et al. 1985. Reproducibility and validity 
of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 122:51–65 [PubMed: 
4014201] 

108. Zheng C, Beresford SA, Van Horn L, Tinker LF, Thomson CA, et al. 2014. Simultaneous 
association of total energy consumption and activity-related energy expenditure with risks of 
cardiovascular disease, cancer, and diabetes among postmenopausal women. Am. J. Epidemiol. 
180:526–35 [PubMed: 25016533] 

109. Zheng C, Gowda GAN, Raftery D, Neuhouser ML, Tinker LF, et al. 2021. Evaluation of potential 
metabolomic-based biomarkers of protein, carbohydrate and fat intakes using a controlled 
feeding study. Eur. J. Nutr. 60:4207–18 [PubMed: 33991228] 

110. Zheng C, Pettinger M, Gowda GAN, Lampe JW, Raftery D, et al. 2022. Biomarker-calibrated 
red and combined red and processed meat intakes with chronic disease risk in a cohort of 
postmenopausal women. J. Nutr. 152:1711–20 [PubMed: 35289908] 

Neuhouser et al. Page 20

Annu Rev Public Health. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SUMMARY POINTS

1. Dietary intake over the life course is strongly associated with one’s 

probability of healthy aging on the one hand and risk of costly, diet-related 

chronic diseases, such as obesity, cancer, type 2 diabetes, and CVD, on the 

other hand. Some of these diseases, obesity and type 2 diabetes in particular, 

emerge in childhood and adolescence, bringing much needed urgency 

to finding population-based solutions. Because dietary recommendations 

provided to both clinicians and the public are evidence based, the research 

community must provide stronger, more rigorous nutrition research to fully 

understand and model very complex and multidimensional food intake.

2. Much of the past research, including that used for national policies and 

guidelines, has relied on self-report of diet, which is subject to substantial 

random and systematic measurement error. Error-prone results are neither 

rigorous nor reproducible—one of the standards used to evaluate science.

3. Biomarkers of diet, when evaluated with high standards for rigor and 

reproducibility, may be used to calibrate or adjust the measurement error–

prone self-report. In some cases, the biomarkers may be used as direct 

exposures, avoiding reliance on self-reported diet.
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FUTURE ISSUES

1. We recommend that (a) a broad array of foods and their combinations in 

dietary patterns are represented in biomarker research (56), (b) standardized 

approaches are established to support biomarker discovery and validation, 

and (c) statistical and computational approaches are developed to best model 

diet complexity (52, 56). The FoodBAll program in Europe and the Dietary 

Biomarkers Development Consortium in the United States, which are both 

discovering and validating metabolomics biomarkers of foods, are a step in 

the right direction, as are the recently initiated efforts of the NIH’s Precision 

Nutrition for Health.

2. The research community and federal funders should further strive to provide 

the resources necessary to support this important endeavor. The health of 

the nation and prevention of diet-related diseases deserve the most definitive 

science possible. Much of the needed research will necessarily involve 

observational designs, but there also needs to be a substantial provision 

for randomized, controlled dietary intervention trials when the related 

hypotheses and interventions are sufficiently well developed and public health 

implications are sufficiently strong.
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Figure 1. 
Nutrient biomarker calibration approach where biomarkers are collected in a representative 

subset of the entire cohort and applied to the entire cohort using regression calibration.
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