
October 2015 | Volume 6 | Article 5401

Mini Review
published: 21 October 2015

doi: 10.3389/fimmu.2015.00540

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Can Kesmir,  

Utrecht University, Netherlands

Reviewed by: 
Carsten Watzl,  

Leibniz Research Centre for Working 
Environment and Human 

Factors – IfADo, Germany  
Natasja G. De Groot,  

Biomedical Primate Research Centre, 
Netherlands

*Correspondence:
Lutz Walter  

walter@dpz.eu

Specialty section: 
This article was submitted to 

Microbial Immunology,  
a section of the  

journal Frontiers in Immunology

Received: 28 August 2015
Accepted: 08 October 2015
Published: 21 October 2015

Citation: 
Walter L and Ansari AA (2015) MHC 

and KIR polymorphisms in rhesus 
macaque SIV infection.  
Front. Immunol. 6:540.  

doi: 10.3389/fimmu.2015.00540

MHC and KiR polymorphisms in 
rhesus macaque Siv infection
Lutz Walter1* and Aftab A. Ansari 2

1 Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany, 
2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

Natural killer lymphocytes are essentially involved as the first line of defense against 
agents such as viruses and malignant cells. The activity of these cells is regulated via 
interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with 
the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability 
of both KIR and MHC-I ligands has been shown to be associated with resistance to 
many diseases, including infection with the immunodeficiency virus. Disease course 
and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is 
essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combina-
tion with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only 
disease resistance but also susceptibility are just as important. Such combined genetic 
factors were recently reported in the rhesus macaque AIDS model. Here, we review the 
rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms 
in the SIV infection model.
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inTRODUCTiOn

Natural killer (NK) cells are lymphoid cells that are part of the innate immune system. They are 
known to play important roles that include the elimination of infected cells (1), immune surveillance 
of cancer cells (2), the regulation of adaptive immune responses (3), and human reproduction (4). The 
activation of NK cells is regulated by input from both inhibitory and stimulatory receptors with many 
of those showing clonal expression patterns (5). NK cell receptors belong to two divergent protein 
families, the killer cell lectin-like receptors (KLR) and the killer cell immunoglobulin-like receptors 
(KIR), which are characterized by their extracellular C-type lectin-like and immunoglobulin-like 
domains, respectively. While keeping their KLR system relatively conserved (6), platyrrhine (New 
World monkeys) and catarrhine primates (Old Word monkeys, apes, human) have substantially 
diversified their KIR system (7–9). Important ligands for many KLRs and KIRs are members of 
the family of major histocompatibility complex (MHC) class I proteins. Both the KIRs and their 
natural cognate ligands display enormous genetic variability (10–12) and combinations of respective 
allotypes show differential binding strengths and can, therefore, substantially impact NK cell func-
tion (13–18). Consequently, certain polymorphisms of MHC class I ligands and KIR are associated 
with various diseases, including infections with the immunodeficiency viruses [for reviews, see 
Ref. (19, 20)]. Progression to AIDS is significantly delayed in HIV-1 infected individuals carrying 
the HLA-Bw4 serological epitope, in particular those having isoleucine at amino acid position 80 
(Bw4-80I), and certain allotypes of the inhibitory KIR3DL1 or the activating KIR3DS1 receptors 
(20–22). These genetic and epidemiologic data were supported by in vitro functional data showing 
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enhanced cytolytic activity of KIR3DS1+ NK cells toward HIV-
infected Bw4-80I+ target cells and elevated control of HIV-1 
replication compared to KIR3DS1− NK cells (23). The expansion 
of KIR3DL1+ and KIR3DS1+ NK cells that were dependent on 
the presence of the cognate Bw4 epitope were also monitored in 
patients during acute HIV-1 infection (24). Evidence for success-
ful interaction between KIR3DS1 and HLA-Bw4-80I has only 
recently been documented (25) despite numerous attempts in 
the past. Interestingly, this interaction is peptide dependent and 
includes peptides from HIV-1 proteins pol and nef (25).

MHC Class I Gene Polymorphisms and the 
Outcome of experimental Siv infection in 
Rhesus Macaques
The first human AIDS-like symptoms were observed in a colony 
of macaques (26). Subsequently, it was demonstrated that AIDS 
could be induced by experimental inoculation of naïve macaques 
with tissues from the diseased animals (27, 28). Since then infec-
tion of macaques with the simian immunodeficiency virus (SIV) 
has become an established and excellent animal model for study-
ing HIV infection and AIDS. Similar to human HIV infection, 
macaques are not natural hosts of SIV and have therefore not 
adapted to it. Of the currently known 23 species of macaques, 
the rhesus macaques (Macaca mulatta), long-tailed (or cynomol-
gus) macaques (Macaca fascicularis), and pig-tailed macaques 
(Macaca nemestrina) are the predominant species utilized for 
studies following experimental infection with a number of SIV 
isolates (29, 30). Notably, rhesus macaques of Chinese and Indian 
geographic origin differ genetically (31) and these differences are 
expected to underlie the known phenotypic alterations of Chinese 
and Indian SIV-infected rhesus macaques [reviewed in Ref. (32)]. 
Particularly influencing disease course and progression to AIDS 
are polymorphisms of MHC class I genes due to their crucial role 
in regulating cytotoxic T cell and NK cell responses. Indeed, there 
are striking differences in the frequencies of MHC class I alleles 
between rhesus macaques of different geographic origin (33–35).

The class I genes of the rhesus macaque MHC (Mamu) belong 
to the MHC-A, MHC-B, MHC-E, MHC-G, and MHC-F types. The 
characterization of both the MHC-A and MHC-B genes shows 
that there is a substantial degree of genetic variability with duplica-
tions/deletions of genes and presence of multiple alleles (36–45). 
Seven Mamu-A genes are known. While Mamu-A1 is present on 
almost all haplotypes and is the most polymorphic gene in terms 
of number of alleles (41) (see also IPD database1), the other six 
genes (Mamu-A2–Mamu-A7) show considerable variability with 
respect to presence/absence on Mamu haplotypes but display 
only low allelic polymorphism. Thus, in contrast to humans, 
chimpanzees, and gorillas, the number of MHC class I genes on 
haplotypes is not fixed and contributes significantly to the genetic 
variability of the rhesus macaque MHC (37). Up to six Mamu-A 
genes per haplotype have been observed (43). Assignment of new 
sequences to one of the seven types of Mamu-A genes is rather 
straightforward and is usually accomplished by phylogenetic 

1 http://www.ebi.ac.uk/ipd/mhc/nhp/align.html

tree analysis (39). Similar to Mamu-A, the Mamu-B genes also 
show different region configurations and some degree of allelic 
polymorphism (38, 42–45). So far, only a single MHC haplotype 
has been completely sequenced and contains 19 Mamu-B genes 
of which at least five appear non-functional (36). Studies of 
segregating sequences in offspring has identified up to 12 tran-
scribed Mamu-B genes per haplotype (38, 45). The transcription 
strength of both Mamu-A and Mamu-B genes differs, leading to 
the assignment of genes either as a “major” or “minor” (37, 39). 
Notably, Mamu-A1 is a major and the other Mamu-A genes are 
minors. The majority of haplotypes contains only 1–3 Mamu-B 
majors, whereas the number of “minor” Mamu-B genes is variable 
and ranges from 1 to 10 (43). Thus, although the rhesus macaque 
genome contains a substantial number of MHC-A and MHC-B 
type of genes, there appear to be only up to 4 or 5 genes with 
substantial mRNA production and, most probably, high protein 
expression on the cell surface.

Mamu-E and Mamu-F are single copy genes and clear 
orthologs of the human HLA-E and HLA-F, respectively, with 
Mamu-E being more polymorphic than HLA-E (see IPD data-
base2). All Mamu-G genes are pseudogenes and the so-called 
Mamu-AG genes, which are a result of a combination of charac-
teristics of both the Mamu-A and Mamu-G genes, have overtaken 
their individual function (46, 47). Four potentially functional 
Mamu-AG genes have been identified in the sequenced Mamu 
haplotype (36).

Early studies identified the MHC class I allotype Mamu-A1*001 
(previous designations Mamu-A1 or Mamu-A*01) to induce and 
serve as targets of SIV gag-specific CD8 T cell responses (48–50). 
Mamu-A1*001-positive rhesus macaques experimentally infected 
with either SIVmac239 or SIVmac251 exhibit a delayed progression 
to AIDS, longer survival times, and lower viral loads at set 
point as compared to Mamu-A1*001-negative animals (51–54) 
(Table 1). Similarly, Mamu-A1*002 and A1*011 were found sig-
nificantly enriched in a cohort of elite controller rhesus macaques 
infected with SIVmac239 (55). By contrast, Mamu-A1*004 (56) and 
A1*004-positive haplotypes (57) were identified as negatively 
influencing SIV infection and subsequent progression to disease 
[odds ratio 11.0 (56)]. Mamu-B*008, B*017, and B*029 have 
also been identified as beneficial (54, 55, 58) (Table 1). Of note, 
B*017 and B*029 are frequently observed together in individual 
rhesus macaques (43, 54, 56, 57, 59) and both genes have been 
observed as well together with Mamu-A1*001 (54). Thus, the 
individual contribution of B*017 and B*029 to SIV resistance is 
difficult to distinguish. Actually, rhesus macaques with identical 
Mamu-B*017 haplotypes (which probably carry B*029 as well) 
display substantial variations in chronic-phasic viremia, making 
it unlikely to predict disease outcome based on the presence of 
Mamu-B*017 (60). This indicates that a set of combinations of 
individual Mamu-A1 alleles and Mamu-B region configurations 
instead of single gene analyses might be more powerful in SIV 
disease association studies. However, previous association studies 
had to rely on complex and labor-intensive (Sanger) sequence-
based typing of MHC class I genes. As a result of this limitation, 

2 http://www.ebi.ac.uk/ipd/mhc/
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only a select number of genes were typed in the cohorts of 
infected and control animals. This limitation has recently been 
overcome by the advent of massive parallel sequencing, which 
enables comprehensive MHC class I genotyping (42, 56, 61, 62). 
This technological progress avoids the need to restrict genotyping 
to a few loci/alleles and, therefore, allows the inclusion of new and 
previously ignored rhesus macaque MHC class I alleles in studies 
of association analysis.

KIR Gene Polymorphisms and the 
Outcome of experimental Siv infection in 
Rhesus Macaques
The rhesus macaque KIR region has been completely sequenced 
using two overlapping BAC clones (67). This sequenced KIR 
haplotype contains five KIR genes: 1D, 2DL4, 3DL01, 3DL10, 
and 3DL20. The open reading frame of the KIR1D gene mRNA 
contains exons for the D1 domain, a truncated D2 with prema-
ture termination, stem, trans-membrane, and cytoplasmic parts, 
respectively. However, evidence to date is lacking as to whether 
this transcribed gene is expressed at the protein level as well. The 
rhesus macaque KIR2DL4 gene is orthologous to KIR2DL4 of 

TABLe 1 | Associations of MHC class I and KIR genes with experimental Siv infection (Sivmac239, Sivmac251) in rhesus macaques.

Gene (previous designations) effect in Siv infection Reference

MHC class i
Mamu-A1*001 (A*01) Lower viral load at set point; fewer loss of CD4+ T cells; longer survival (51–53, 57)

Mamu-A1*002 (A*02) More frequently found in elite controllers; longer survival (55, 57, 58)

Mamu-A1*004 (A*04) Higher viral load at set point (56)

Mamu-A3*1303 (A*13) Longer survival (53, 57)

Mamu-A1*011 (A*11) More frequently found in elite controllers; lower viremia in chronic phase of infection (55, 58)

Mamu-B*001 (B*01) Not found in elite controllers (58)

Mamu-B*008 (B*08) More frequently found in elite controllers; lower viremia in chronic phase of infection (55)

Mamu-B*017a(B*17) More frequently found in elite controllers; lower viremia in chronic phase of infection (55, 58)

Mamu-B*029a(B*29) More frequently found in elite controllers; lower viremia in chronic phase of infection (55, 58)

Mamu-B*047:01 (NB5) Lower viral load at set point (53, 57)

Mamu-B*069:01 (NB2) Lower viral load at set point (53)

KIR

KIR3DS gene copy number variation Enhanced copies of KIR3DS: lower peak viral load but only in animals that are Mamu-A1*001-negative  
and carry a protective TRIM5 allele

(63)

KIR2DL4 gene copy number variation Enhanced copies of KIR2DL4: decreased loss of CD4+ T cells and increased IFN-g production of 
CD56−CD16− population of NK cells

(64)

KIR3DL02 More frequently found in LVLb animals; longer survival; higher numbers of blood NK cells; lower frequency  
of proliferating blood NK cells, higher percentage of degranulating NK cells

(56)

KIR3DL05 More frequently found in HVLb animals; more transcripts found in HVL compared to LVL animals (56, 65, 66)

KIR3DL05-KIR3DS05-KIR3DL10c More frequently found in HVL animals; fewer numbers of blood NK cells; lower percentage of  
degranulating NK cells

(56)

KIR3DS01 Longer survival; higher numbers of blood NK cells (56)

KIR3DS02 More frequently found in HVL animals; shorter survival (56)

KIR3DSW08 More frequently found in LVL animals; longer survival; higher numbers of blood NK cells; lower frequency  
of proliferating blood NK cells

(56)

KIR + MHC

(KIR3DL05/KIR3DS05/
KIR3DL10) + Mamu-A1*001

Longer survival; lower viral load in gut tissue (56)

(KIR3DL05/KIR3DS05/
KIR3DL10) + Mamu-B*012

Shorter survival; higher viral load in gut tissue (56)

aMamu-B*017 and Mamu-B*029 are closely linked and usually co-occur on haplotypes (43, 54, 56, 57, 59). Therefore, their individual effect in SIV infection is hard to distinguish.
bHVL (high viral load), LVL (low viral load): animals were grouped according to viral load at set point, disease course, CD4+ T cell decline, and other clinical parameters (56).
c3DL05–3DS05–3DL10 are correlated in rhesus macaques (56).

hominoids (humans, great, and small apes) and belongs to the 
KIR lineage I. The two rhesus macaque KIR3D genes are not 
particularly related to any of the human or the great ape KIR3D 
genes but are also assigned to the KIR lineage II. Phylogenetic 
tree analysis indicates that there is a mixed relationship between 
the rhesus macaque KIR3DL20 with KIR genes of human lineage 
I (2DL4, 2DL5) and lineage V (3DL3) genes. Exon 3 (D0 domain) 
of KIR3DL20 shows closest similarity to human KIR2DL5, while 
the exons 4 and 5 (D1, D2 domain) of KIR3DL20 are more closely 
related to human KIR3DL3. The KIR3DL20 exons encoding 
the stem, trans-membrane, and cytoplasmic regions are more 
closely related to macaque KIR genes (67). Support for a shared 
phylogenetic origin of the human KIR3DL3 and rhesus macaque 
KIR3DL20 is based on the presence of an identical position at the 
centromeric end in the KIR region of both species (67).

Interestingly, the sequenced haplotype does not appear 
to encode for any known activating KIR. Further analyses of 
additional rhesus macaques indicated the presence of activating 
KIR genes, documented the fact that the lineage II KIR genes 
have substantially expanded, and demonstrated differential 
KIR gene content between individuals (56, 62, 65, 67–72). 
Besides KIR1D, KIR2DL4, and KIR3DL20, 10 inhibitory KIR 
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TABLe 2 | Prominent differences of KIR genes in rhesus macaques from 
different geographic origin.

Geographic origin

KiR Burmese (%) (71) Chinese (%) (71) indian (%) (56, 71) 

3DL04 0 0 2–10

3DL06 43 94 0–4

3DS05 28 0 50–56

3DS07 31 39 0–9
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genes (3DL01, 3DL02, 3DLW03, 3DL04, 3DL05, 3DL06, 
3DL07, 3DL08, 3DL10, and 3DL11) and 9 activating KIR 
genes (3DS01, 3DS02, 3DS03, 3DS04, 3DS05, 3DS06, 3DS07, 
3DS08, and 3DS09) were identified. In addition to differential 
gene content, there is also significant allelic polymorphism 
of the various KIR genes (62, 65, 70, 72). The frequencies of 
the individual rhesus macaque KIR genes within and between 
populations differ considerably. For example, KIR3DL01 is pre-
sent in most animals [84–98% (56, 62, 71)], whereas KIR3DL04, 
KIR3DL06, KIR3DS01, KIR3DS04, KIR3DS06, and KIR3DS07 
are rather rare or even absent in the studied populations (56, 
62, 71). As already pointed out, rhesus macaques from different 
geographic origins differ genetically (31). In accord with this, 
there are striking differences in the presence of KIR3DL04, 
3DL06, 3DS05, and 3DS07 genes between Burmese, Chinese, 
and Indian rhesus macaques (Table 2). Additional differences 
in the frequencies of other KIR genes inherited by macaques of 
Burmese, Chinese, and Indian origin have been described (71). 
Such data are indeed useful and important information when 
analyzing cohorts of animals with known (but also unknown or 
mixed) geographic origin for studies of genetic association with 
SIV disease outcome.

Specific interactions between MHC class I proteins and a 
couple of KIR proteins have been described. Thus, the rhesus 
macaque KIR3D molecules bind to Mamu-A and Mamu-B 
proteins (15–17). The specificity of the interactions between 
the lineage II KIR proteins and the corresponding MHC-A 
and MHC-B ligands is conserved in evolution and has been 
traced to the divergence of the lineages leading to macaques 
and humans, i.e., about 31.5 million years ago (73). Similar 
to human KIR, the binding of rhesus macaque KIR proteins 
to their cognate ligand is influenced by the peptide content of 
the ligand (15). Of interest in the context of KIR and MHC 
class I polymorphism and SIV infection, Colantonio et al. (15) 
showed that allotypes of KIR3DL05 differ in their specificity for 
SIV peptide-loaded Mamu-A1*002 tetramers. Such differences 
likely contribute to variations in disease susceptibility and the 
further elucidation of ligand/peptide specificity of the rhesus 
macaque KIR/MHC ligand system is central to an understand-
ing of the mechanisms underlying the epidemiological disease 
association data.

The first studies to show an association between KIR genes 
and SIV-induced disease progression identified KIR3DL05 to be 
more frequent in animals that rapidly progressed to AIDS (65, 
66). However, KIR3DL05 was later found to be part of a group 
of closely linked KIR genes (KIR3DL05–KIR3DS05–KIR3DL10) 
that were identified in a correlation analysis (56), which makes 

it difficult to clearly identify one member of this cluster as the 
responsible gene. Nevertheless, at least one KIR gene of this clus-
ter is thought to be responsible for the observed association with 
various parameters such as high viral load, decreased number of 
blood NK cells and the lower frequencies of degranulating NK 
cells (Table 1).

Follow-up studies identified the protective role of KIR3DL02 
and KIR3DSW08 in SIV infection (56). Thus, animals carrying 
either one of these two genes (a) slowly progressed to disease or 
became elite controllers (odds ratio 0.09 and OR = 0.1, respec-
tively), (b) showed longer survival times (hazard ratio 0.24 and 
0.29, respectively), (c) exhibited higher number of blood NK 
cells, and (d) lower numbers of proliferating NK cells (Table 1). 
Animals having the KIR3DL02 gene were additionally character-
ized by a higher conservation of the lytic potential of NK cells. A 
further beneficial gene might be ascribed to the KIR3DS01 gene, 
but the frequency of this gene in the studied cohort was too low 
to provide robust association data. Future studies are needed 
that include sufficient number of KIR3DS01-positive animals to 
clarify and establish this association.

Besides gene association studies, several studies have examined 
copy number variation (CNV) of KIR genes to investigate their 
association with SIV infection outcome (63, 64). It was shown 
that enhanced copies of KIR2DL4 is associated with decreased 
loss of CD4+ T cells and an increase in IFN-gamma production 
by the CD56−CD16− population of NK cells during the acute 
phase of SIV infection (64). However, these studies did not inves-
tigate whether the CD56−CD16− population indeed expressed 
the KIR2DL4 protein. It is also conceivable that the observed 
CNV of KIR2DL4 is associated with certain KIR haplotypes and 
genes other than KIR2DL4 could potentially contribute to the 
associated phenotype. Consistent with this assumption, Hermes 
et al. (74) found that the CD56−CD16− NK cell subset expressed 
readily detectable levels of the KIR3D proteins. A further study 
by Hellmann et al. (63) indicated that higher copy numbers of 
activating KIR genes is associated with lower peak viral load upon 
SIV infection but only in animals that are Mamu-A1*001-negative 
and carry a protective TRIM5 allele.

Combinations of KIR and MHC Class I 
Gene Polymorphisms and the Outcome of 
experimental Siv infection in Rhesus 
Macaques
There had been no information about epistasis of KIR and 
MHC class I genes in rhesus macaques compared to respective 
information in the human KIR/HLA system and HIV-1 infection 
until a recent study by Albrecht et  al. (56) who used 52 SIV-
infected rhesus macaques of Indian origin. While not all KIR 
genes could be included in the epistasis analysis due to limited 
numbers of animals carrying these genes such as KIR3DL02 
or KIR3DSW08, the most consistent results were obtained for 
the linked KIR3DL05–KIR3DS05–KIR3DL10 genes. The odds 
ratio of rapid progression to AIDS and presence of KIR3DS05 
or KIR3DL10 [odds ratio 21.6 (56)] is nullified in animals car-
rying in addition Mamu-A1*001 [OR  =  0.035 for KIR3DS05; 
OR0.036 for KIR3DL10 (56)]. It appears rather unlikely that the 
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effect is attributable to only Mamu-A1*001, as the risk estimate 
(i.e., rapid progression to AIDS) for Mamu-A1*001 in animals 
negative for either KIR3DS05 or KIR3DL10 was OR = 1.5 and a 
considerable number of Mamu-A1*001-positive animals rapidly 
progressed to disease. Therefore, the authors speculated that the 
known protective effect of Mamu-A1*001 is more a consequence 
from epistasis with KIR genes than from Mamu-A1*001 alone 
(56). In addition, there was a potential epistasis of both KIR3DS05 
and KIR3DL10 with Mamu-B*012 [OR = 25.0, p = 0.036 (56)]. 
Support for the epistases on SIV outcome was obtained by study-
ing also viral copy numbers in gut tissue and the survival time: 
the simultaneous presence of either KIR3DS05 and Mamu-B*012 
or KIR3DL10 and Mamu-B*012 is associated with significantly 
higher viral copy numbers in gut tissue and shorter survival time 
(hazard ratio 11.1).

Epistasis of KIR and MHC class I genes and outcome of immu-
nodeficiency virus infection were rather hard to interpret, because 
interactions between the KIR and corresponding MHC molecules 
could not be demonstrated (KIR3DS1 and HLA-Bw4-80I) (75). In 
addition, functional interactions were not performed (KIR3DS05 
or KIR3DL10 with Mamu-B*012) (56). However, O’Connor et al. 
(25) recently demonstrated binding of HLA-B*57 (Bw4-80I posi-
tive) tetramers loaded with HIV-1 peptides Pol839–847 and Nef82–90 
to KIR3DS1. This finding is consistent with the idea of activating 
KIR’s having much lower affinity to self-peptides than pathogen-
derived peptides presented on cognate MHC class I proteins. It is 
generally thought that presentation of peptides influences the rela-
tive affinity to both inhibitory and stimulatory KIR’s and, thereby, 
on the activation of NK cells (76). Higher affinity of inhibitory 
KIR’s and lower affinity of stimulatory KIR’s to self-peptides would 
secure tolerance of the NK cell, while presentation of viral peptides 
would then lead to loss of inhibitory KIR binding (“missing self ”) 

and involvement of activating KIR’s (76–80). It has been specu-
lated that viruses try to evade this NK cell activation by selection 
of escape mutations enabling stronger binding to inhibitory recep-
tors (76–80). However, it is rather difficult to attribute such escape 
mutations to only the KIR system and NK cell recognition and not 
to T cell receptor and CD8+ T cell recognition as both lymphocyte 
populations use MHC class I proteins as ligands. Nevertheless, 
from a virus point of view, mutations of MHC class I-presented 
peptides could kill two birds with one stone and potentially lead to 
immune escape of both NK and CD8+ T cell responses.

COnCLUSiOn

Products of a number of host genes such as MHC class I and KIR 
play crucial roles in the defense of viruses as they are directly 
involved in the recognition of infected cells and in the restriction 
of viruses. The enormous genetic variability of both KIR and MHC 
class I genes in rhesus macaques impacts the relative susceptibil-
ity to SIV infection. The genetic complexity of such host genes, 
however, formed a major obstacle in the past for molecular typing 
and comprehensive genetic association analyses. With the advent 
of next-generation sequencing methods, such limitations are now 
overcome. Both detrimental and beneficial KIR and MHC class 
I genes and alleles as well as combinations of both have already 
been identified. Further studies will show whether the identified 
associations can be confirmed in other cohorts and whether 
further risk or beneficial genes/alleles can be identified. In addi-
tion, the KIR/MHC class I ligand system needs further detailed 
characterization at the protein level, which should allow for a 
better understanding of the observed genetic associations. Such 
knowledge would also further strengthen the rhesus macaque 
SIV infection model of AIDS.
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