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This paper describes in silico models developed using a wide range of peptide features
for predicting antifungal peptides (AFPs). Our analyses indicate that certain types of
residue (e.g., C, G, H, K, R, Y) are more abundant in AFPs. The positional residue
preference analysis reveals the prominence of the particular type of residues (e.g., R, V,
K) at N-terminus and a certain type of residues (e.g., C, H) at C-terminus. In this study,
models have been developed for predicting AFPs using a wide range of peptide features
(like residue composition, binary profile, terminal residues). The support vector machine
based model developed using compositional features of peptides achieved maximum
accuracy of 88.78% on the training dataset and 83.33% on independent or validation
dataset. Our model developed using binary patterns of terminal residues of peptides
achieved maximum accuracy of 84.88% on training and 84.64% on validation dataset.
We benchmark models developed in this study and existing methods on a dataset
containing compositionally similar antifungal and non-AFPs. It was observed that binary
based model developed in this study preforms better than any model/method. In order
to facilitate scientific community, we developed a mobile app, standalone and a user-
friendly web server ‘Antifp’ (http://webs.iiitd.edu.in/raghava/antifp).

Keywords: antimicrobial peptides, antifungal peptides, amino acid composition, support vector machine, motifs

INTRODUCTION

Despite tremendous advances in the field of antibiotics; the morbidity and mortality are quite
high due to invasive fungal infections (Kanafani and Perfect, 2008). The major fungal species
like Candida, Aspergillus, Pneumocystis, and Cryptococcus spp. (Sanglard, 2016) are responsible
for causing 1.4 million deaths worldwide per year (Brown et al., 2012). Drug or antibiotic
resistance is one of the major causes of millions death per year due to antifungal infections
(Haegerstrand et al., 1992; Miceli et al., 2011). In order to overcome the problem of drug resistance,
researchers are exploring alternatives to antibiotics (small molecules). One of the alternates to small
chemical-based drugs is peptide-based therapeutics. It is safer and more effective than traditional
therapeutics and provides effective arms to researchers fight against fungus. One can understand
importance of peptide-based therapeutics from the fact that in the last one decade, number of
peptide resources has been developed (Kapoor et al., 2012; Novković, 2012; Gautam et al., 2014;
Waghu et al., 2014; Kumar et al., 2015; Agrawal et al., 2016; Mathur et al., 2016; Singh et al., 2016;
Wang et al., 2016; Usmani et al., 2017).
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One of the major classes of peptide-based therapeutics comes
from the antimicrobial peptides (AMPs). AMPs can be classified
into different kinds of peptides like antibacterial, antiviral,
antifungal, antiparasitic, etc. In past, extensive efforts have
been made to the study and development of novel AMPs.
More than 2300 AMPs are reported in the different AMP
databases. It includes more than 100 peptide-based drugs that
are present in the market and approximately 600 are in pre-
clinical stage (Craik et al., 2013). Though AMPs can be used
to treat fungal infection but lack of specificity reduces their
potential. Thus, there is a strong need to design antifungal
peptides (AFPs) to treat fungal infections as existing drugs
(e.g., Amphotericin B deoxycholate, Voriconazole, Fluconazole,
Itraconazole, Terbinafine, Posaconazole) fail due to drug
resistance. AFPs have the ability to kill fungus as it disrupts
membrane physiology of fungus (Eckert, 2011; Fjell et al., 2011;
Wimley and Hristova, 2011). AFPs have been found to be very
effective in several cases, for example, in the case of azole-resistant
Candida species, Brevinin-1BYa is a highly effective α-helical
peptide (Zubkov et al., 2000). P113 is one of the histidine variants,
which has shown efficacy against C. albicans in vitro (Oppenheim
et al., 1988).

Numerous methods have been developed in past for predicting
and designing AMPs (antibacterial, antiviral, etc.) such as
template-based method (Pag et al., 2008; Robinson, 2011),
docking simulations (Schneider and Fechner, 2005; Jorgensen,
2009), hidden Markov model (HMM) (Fjell et al., 2007,
2008) and sequence-based methods (Lata et al., 2007, 2010).
Recently, existing methods developed for predicting/designing
antimicrobial have been evaluated and reviewed in depth (Fjell
et al., 2011; Porto et al., 2017a). In comparison to AMPs, limited
attempts have been made to understand and develop methods
for predicting AFPs. ClassAMP is one of the methods which
predicts the given peptide as Antibacterial, Antiviral, Antifungal,
etc. with a probability score (Joseph et al., 2012). Another
such method is iAMP-2L which first predicts the antimicrobial
activity and then classifies them into specific antimicrobial class
(Xiao et al., 2013). In the current study, an attempt has been
made to develop models using machine learning techniques for
discriminating AFPs from natural peptides and other AMPs
(Mousavizadegan and Mohabatkar, 2016). The machine learning
techniques derive rules from experimentally validated antifungal
and non-AFPs to discriminate two classes of peptides. These
rules are used to predict antifungal properties of a peptide.
One of the challenges for designing any prediction method is
the compilation of negative dataset (Saha and Raghava, 2006;
Chou, 2011; Porto et al., 2017c). Therefore, in our study for
designing negative dataset, we selected those AMPs as negative
peptides, which do not show any antifungal activity, since there
is no dedicated database that maintains non-AFPs. In addition,
we also generated random peptides from proteins in SwissProt
database and used them as non-AFPs. The overall objective
of this study was to develop an in silico prediction method
which can discriminate AFPs from non-AFPs with high accuracy,
similar to Chou’s five-step rule (Chou, 2011). We also developed
a mobile app and standalone software to facilitate users in
predicting AFPs.

MATERIALS AND METHODS

Datasets Preparation
We extracted 1585 exclusive AFPs from the AMP-maintaining
database DRAMP (Fan et al., 2016). Peptides containing non-
natural amino acids (BJOUZX) and repeated sequences were
removed which led to the 1459 unique AFPs. We created three
datasets, first is our main dataset termed as “Antifp_Main”
and two alternate datasets termed as “Antifp_DS1” and
“Antifp_DS2.” During dataset creation, the range of peptide
length was kept same in both positive and negative datasets. We
generated different bins (e.g., 0-10, 11-20, 20-30, etc. till 90-100)
and ensured that same number of peptides are present in the bin
of both datasets. Details about three different datasets used in the
study are described below.

(i) Antifp_Main
Our main dataset consists of 1459 positive peptides, which
are exclusive AFPs, and 1459 negative peptides, which
were generated mixing peptides possessing antimicrobial
function other than antifungal and peptides generated
randomly from SwissProt.
(ii) Antifp_DS1
This first alternate dataset consists of 1459 exclusive AFPs
as the positive dataset and an equal number of peptides,
which possess antimicrobial activity other than antifungal
(e.g., antibacterial, antiviral, etc.) as the negative dataset.
(iii) Antifp_DS2
We also developed a second alternate dataset in which
exclusive AFPs were taken as positive peptides and keeping
in mind the similar length distribution, an equal number of
negative peptide sequences was generated randomly from
SwissProt. This kind of approach has been used earlier
(Chaudhary et al., 2016).

Internal and External Validation
The datasets were randomly divided into two parts (i) training
dataset, which comprises of 80% data (1168 positive and negative
sequences) and (ii) validation dataset with 20% data (291 positive
and negative sequences). In case of internal validation, we
developed and evaluate prediction models using fivefold cross-
validation techniques. Here, sequences present in the dataset are
divided randomly into five different sets, out of which any four
sets out of five are used for training and the remaining fifth
set is used for testing. In the process, each set is used once for
testing by repeating the process five times, and the final result is
calculated by averaging the performance of all the five sets. The
validation of any prediction method plays a very significant role
in its evaluation. We evaluated the performance of all the models
on validation dataset, termed as external validation.

Dataset for Additional Benchmarking
Previous studies have shown that discriminating between the
peptides with the same composition but different activity is a
big challenge (Loose et al., 2006; Porto et al., 2017b). In order to
evaluate the performance of models developed in this study and
methods developed in the past, we create a dataset Antifp_hard
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that contain compositionally similar antifungal and non-anti-
fungal peptides. The positive set of Antifp_hard dataset contains
exclusive AFPs used in the validation set. The negative set or non-
AFPs in Antifp_hard is obtained from AMPs, which have highest
compositional similarity with exclusive AFPs. In order to identify
compositionally similar peptides, we compute Euclidean distance
between composition of two peptides (Kumar et al., 2008) and
identify peptides having minimum Euclidean distance.

Positional Residues Preference in AFPs
We calculate positional preferences of all types of residues at
different positions in both the terminus (N and C) in the
form of quantitative matrices (QMs). This kind of approach
has been used in previous studies also for computing positional
preferences (Gupta et al., 2013). It shows the propensity of each
amino acid at each position in both the dataset, positive as well
as negative. We generated the QM for first 15 residues from
N-terminal and first 15 residues from the C-terminal generating
matrix of dimension 20× 15.

MERCI Motifs Analysis
We also looked for various common patterns or motifs present
in AFPs and non-AFPs and to identify those patterns/motifs;
we have used MERCI program (Vens et al., 2011). The default
criteria were set while running the program. The motifs were
extracted from all the datasets, i.e., Antifp_Main, Antifp_DS1,
and Antifp_DS2. This program compares both the positive and
negative peptides for extracting motifs. In order to know motifs,
present in AFPs and non-AFPs, we used two-step strategy. In
this method, we first provided AFPs as positive input and non-
AFPs as a negative input. In the next step, we reversed the order
of input where non-AFPs were given as positive input and AFPs
were given as negative input. The same procedure was followed
for all the datasets. Finally, we obtained several numbers of motifs
present in AFPs and non-AFPs, which can be utilized further to
scan peptides for the presence of AFP-specific motif.

Input Features for Prediction
(i) Amino acid composition-based model
In earlier studies, people have shown that amino acid
composition can be used for classifying various peptides
and for developing prediction methods using machine-
learning techniques (Raghava and Han, 2005). The amino
acid composition tells us about the fraction of each amino
acid type within a peptide. The vector of dimension 20
was obtained when the amino acid composition for both
AFPs and non-AFPs was calculated by using the following
equation:

Composition(i) =
Ri

N
∗100 (1)

Here, Composition (i) is the percent composition of amino
acid (i); Ri is the number of residues of type i, and N
represents the total number of peptide’s residues.
(ii) Dipeptide composition-based model
The dipeptide composition provides the composition of
the residues present in a pair (e.g., A-A, A-L, etc.) in the

peptide, and used to convert the variable length of peptides
to fixed length feature vector size of 400. It summarizes
information about the amino acid’s fraction as well as
their local order. Dipeptide composition is calculated using
following equation:

Dipeptide fraction(i) = (2)

Total number of Dipeptide (i)
Total number of all possible dipeptides

∗100

Where dipeptide (i) is 1 out of 400 dipeptides.
(iii) Split composition-based model
We also compute amino acid and dipeptide composition
of N-terminus and C-terminus residues; first 5, 10, and
15 residues from N-terminus and the last 5, 10, and 15
residues from the C-terminus. Also, we joined the terminal
residues like N5C5, N10C10, and N15C15 and checked the
performance of combination.
(iv) Binary profile based model
In this study, length of antifungal and non-AFP is variable,
thus it is difficult to generate fixed length pattern. Thus
we extract fixed length segment from either N-terminus
or C-terminus of the peptide to generate fixed length
binary profile (Lata et al., 2010). A vector of dimension
20 represented each amino acid in segment obtained from
terminal residues. We generated binary profiles for first 5,
10, and 15 N-terminus residues and for the last 5, 10, and 15
residues from the peptide C-terminus. We also created the
binary profile for the N5C5, N10C10, and N15C15 residues
of peptides by combining N- and C-terminus residues. The
binary profile has been used heavily in a number of studies
for predicting functional properties of peptides (Xiao et al.,
2009; Gautam et al., 2013; Chaudhary et al., 2016).
(v) Calculation of Mass, Charge, and pI value of peptide
Mass, charge, and pI value of peptide were calculated
using R package “peptides” (Osorio et al., 2015), which is
specifically designed for the quick and easy calculation of
different AMPs features. This would help in their better
classification and design. Default parameters were used
for calculation of mass, charge, and pI values and the
values were used as features along with the amino acid
composition on which the best performance was found. We
wanted to check whether adding these properties would
help in further increasing the performance of a model.
Thus, the dimension of our composition based model
increased from 20 to 23 to adjust above three properties.

Machine Learning Approaches
We used different machine learning techniques for developing
prediction models. The approaches are as follows:

Support Vector Machine
We used SVMlight Version 6.02 package of SVM for
building the prediction models, which is a highly successful
machine learning classifier (Schölkopf et al., 1999). This
package consists of various kernels and machine learning
was performed using these kernels where each input dot
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is transformed into non-linear kernel function. SVM’s RBF
kernel was used here at various parameters; g € [10−4–10],
c € [1–15], j € [1–5] for optimizing the SVM performance
to obtain the best performances. RBF kernel is squared
exponential kernel which provides more functional space
and is more flexible than a linear or polynomial kernel and
hence provides much better results. Sets of input features
with a fixed length are required for training, thus imposing
a strategy for encapsulating the overall information about
proteins/peptides of fixed length format. Different features
like the binary profile, different composition methods
(amino-acid, dipeptide) are used to get fixed length format
from protein/peptide sequences of variable length. After
training, learned models could be employed for the
prediction of unknown examples.
WEKA Classifiers
We used different classifiers incorporated in WEKA suite
for building training models, which could be used for the
prediction of unidentified examples. The different classifiers
we used include Random Forest, J48, SMO, and Naïve
Bayes (Rudensky et al., 1991). Parameters were tuned while
performing the different machine learning techniques and
the results obtained on best parameters were reported.

Performance Measure
Broadly, the performance of any classification is measured using
two type measures call threshold-dependent and threshold-
independent. In this study, we used both types of measure
to evaluate the performance of models. In case of threshold-
dependent parameters, we compute performance of a model
in following terms; Sensitivity (Sen), Specificity (Spc), Accuracy
(Acc), and Matthews correlation coefficient (MCC). Following
equations are commonly used for computing, threshold-
dependent measures.

Sensitivity =
TP
PS
× 100 (3)

Specificity =
TN
NS
× 100 (4)

Accuracy =
TP + TN
PS+ NS

× 100 (5)

MCC =
1−

( FN
PS +

FP
NS
)√(

1+ FP−FN
PS

)
×
(
1+ FN−FP

NS
) (6)

Where TP represents correctly predicted positive, TN represents
the negative examples, PS represents total sequences in positive
set, NS represents total sequences in negative set, FP represents
actual negative examples which have been wrongly predicted as
positive and FN represents wrongly predicted positive examples.
This is a well-established method of measuring performance and
has been used earlier in many studies (Porto et al., 2017b).

Case Study
Although we validated our model on the independent dataset,
we also checked the performance of our model on the recently
discovered AFPs.

We obtained peptides from different study performed by
Datta et al. (2016), Li et al. (2016), and Garrigues et al. (2017).
Therefore, to prevent biases we have taken peptides from different
studies and checked the performance of our model on these
peptides.

RESULTS

Analysis of Residues Composition
It is important to analyze AFPs to understand their nature before
we develop in silico models for prediction. As all peptides are
made of 20 types of residues, it is important to examine the
frequency of each type of residues in AFPs. Thus, we computed
and compared the amino acid composition of AFPs and non-
AFPs of our main dataset, Antifp_Main. The analysis showed
that certain residues like C, G, H, K, R, and S, are more
abundant or frequent in AFPs whereas non-AFPs are dominated
by residues like A, D, E, I, L, V, and W (Figure 1). Presence of
residues like C, K, R makes AFPs positively charged and cationic
in nature. These peptides are divided in two different classes
(i) membrane traversing peptides, which forms a pore or act
on specific target like chitin synthesis, and (ii) non-membrane
traversing peptides, which interacts with the negatively charged
fungal membrane and carry out cell lysis (Neelabh et al.,
2016).

Likewise, in Antifp_DS1, residues like C, G, H, K, R, S,
and T were significantly abundant in AFPs and can be used to
discriminate AFPs with other AMPs which are predominant with
residues like D, E, I, L, V, and W (Supplementary Figure S1A). In
case of Antifp_DS2, we found the abundance of residues like C,
H, K, and R whereas non-AFPs contain mainly A, D, E, I, L, and V
(Supplementary Figure S1B).

First 15 N and C-terminal residues amino acid composition
was also calculated for the three datasets, Antifp_DS1,
Antifp_DS2, and Antifp_Main dataset and has been shown
in Supplementary Figures S2A, S3A, S4A and for C-terminal
residue composition in Supplementary Figures S2B, S3B, and
S4B, respectively.

Positional Residues Preference in AFPs
The probability of residue R is highest at 1st position followed
by V and K at the 2nd and 3rd position in AFPs. Similarly, at
C-terminus, residue C was highly preferred at the 1st and 3rd

position and H at 2nd position in AFPs (Figure 2A) as compared
to non-AFPs (Figure 2B). Likewise, positional residue preference
from the QM for Antifp_DS1 and Antifp_DS2 positive and
negative data is given in Supplementary Figures S5A,B and S6A,B,
respectively.

Motif Analysis Using MERCI
In order to identify pattern/motifs present in AFPs or non-
AFPs, we used software MERCI suite. Sequence analysis of
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FIGURE 1 | Comparison of percent average amino acid composition of the AFPs- and non- AFPs in Antifp_Main dataset.

Antifp_Main dataset revealed 13 exclusive motifs for positive
and 11 for the negative dataset. Some of the exclusive motifs
that are present only in AFPs are “CFCT,” “RCFC,” “NCAS,”
“CASV,” etc. whereas motifs present exclusively only in non-AFPs
are “CGNTK,” “GNTK,” “NTKH,” etc. (Supplementary Table S1).
Similarly, we also extracted exclusive motifs present in positive
and negative peptides for Antifp_DS1 (Supplementary Table S2)
and Antifp_DS2 (Supplementary Table S3).

Performance of Various Machine
Learning Techniques
Different machine learning approaches like SVMlight, Random
Forest (RF), Naïve Bayes, J48, and SMO were used in the study
to generate models on different input features for distinguishing
AFPs from non-AFPs. The results are explained in detail in the
following sections.

Amino Acid Composition Based SVM
Model
We developed the prediction model using different classifiers
like SVM, Random Forest, SMO, Naïve Bayes and J48 on amino
acid composition as an input feature. For Antifp_Main, the
highest accuracy of 88.27%, MCC of 0.77 and ROC of 0.94
was obtained for training dataset and for validation dataset
the accuracy of 86.25%, MCC of 0.73 and ROC of 0.94 was
achieved (Table 1). In the case of Antifp_DS1, the accuracy of
86.26% with MCC and ROC values 0.73 and 0.93 respectively
for the training dataset and accuracy of 85.91%, MCC of
0.72 and ROC of 0.93 for the validation dataset was observed
(Supplementary Table S4). For Antifp_DS2 (best dataset obtained
after repeating 100 times prediction) we achieved the accuracy
of 92.81% and MCC and ROC value 0.86 and 0.97 respectively
for the training dataset and accuracy of 90.38%, MCC value
0.81 and ROC of 0.96 for the validation dataset (Supplementary
Table S5).

The performance on the first 5, 10, and 15 residues of N and
C-terminus as well as their combined form (N5C5, N10C10, and
N15C15) of SVM based model is summarized in Figure 3 and
Supplementary Table S6 for Antifp_Main. Similarly, results on
different terminus residues obtained by the SVM based model for
Antifp_DS1 and Antifp_DS2 has been shown in Supplementary
Tables S7 and S8, respectively.

Dipeptide Composition Based SVM
Model
The dipeptide is a comprehensive feature as compared to
amino acid composition alone because it encloses the overall
information of the amino acids fraction and their local order.
This feature has been used in previous studies to discriminate
two types of proteins and peptides (Petrilli, 1993) Thus, SVM
model was developed based utilizing dipeptide composition
as an input feature. In Antifp_Main, maximum accuracy of
86.77%, MCC of 0.74 and ROC of 0.94 was achieved for
training dataset and for validation dataset we achieved the
accuracy of 88.66%, MCC of 0.77 and ROC of 0.95 (Table 2).
In Antifp_DS1, we observed the maximum accuracy of 87.20%
with MCC and ROC values 0.74 and 0.94 respectively for
the training dataset and accuracy of 86.60%, MCC value 0.73
and ROC of 0.94 for the validation dataset (Supplementary
Table S9). In the case of Antifp_DS2, we found the maximum
accuracy of 91.87%, MCC of 0.84 and ROC of 0.96 for the
training dataset and accuracy of 92.10%, MCC value 0.84
and ROC of 0.96 for the validation dataset (Supplementary
Table S10).

Binary Profile Based SVM Model
An SVM based model was developed using the binary
profile as an input feature. In the case of a binary profile
based model developed using N15C15 achieved maximum
accuracy of 84.88% with MCC of 0.70 and ROC of 0.92 on
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FIGURE 2 | Heat map illustrating the positional preference of each type of residue at (first 15 positions) N and C-terminus (A) positive and (B) negative data of
Antifp_Main dataset.

training dataset. This model achieved an accuracy of 84.64%
with MCC of 0.69 and ROC of 0.92 on validation dataset
(Table 3). It is important to note that performance of this
model is nearly same for training and validation dataset. All
these models were developed on Antifp_Main dataset that
contains AFPs and negative set of peptides (random and
AMPs). We also developed and evaluate models on dataset
Antifp_DS1 and achieved maximum accuracy (N15C15) of
84.44% with MCC of 0.69 and ROC of 0.92 for training
dataset and accuracy of 81.63% with MCC of 0.63 and ROC
of 0.92 on for validation dataset (Supplementary Table S11).
In case of Antifp_DS2, we achieved maximum accuracy
(N15C15) of 92.32% with MCC of 0.85 and ROC of 0.97
for training dataset and accuracy of 92.70% with MCC of

0.85 and ROC of 0.97 for validation dataset (Supplementary
Table S12).

Amino Acid Composition along with
Mass, Charge, and pI Value Based SVM
Model
In order to check whether the addition of mass, charge, and pI
values of peptides would help in achieving better performance,
we run SVM and other machine learning classifiers on the all
the three datasets and developed model in order to classify AFPs
from non-AFPs. We found the addition of extra three features
increased the performance of MCC up to 0.01% compared to
that obtained from the simple amino acid composition. We
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TABLE 1 | The performance of different machine learning techniques based models on Antifp_Main dataset developed using amino acid composition of peptides.

Parameter Main Dataset Validation Dataset

Sen Spc Acc MCC ROC Sen Spc Acc MCC ROC

SVM g = 0.01, c = 5, j = 4 88.61 87.93 88.27 0.77 0.94 86.60 85.91 86.25 0.73 0.94

Random Forest Ntree = 130 87.84 86.64 87.24 0.74 0.93 86.94 80.76 83.85 0.68 0.91

SMO g = 0.001, c = 2 87.84 82.11 84.97 0.70 0.84 88.32 81.44 84.88 0.70 0.84

J48 c = 0.1, m = 7 80.39 80.65 80.52 0.61 0.82 82.82 81.44 82.13 0.64 0.84

Naïve Bayes Default 76.46 75.86 76.16 0.52 0.80 74.91 78.01 76.46 0.53 0.81

Sen, Sensitivity; Spc, Specificity; Acc, Accuracy; MCC, Matthews Correlation Coefficient; ROC, Receiver Operating Characteristic.

obtained accuracy of 88.78% with MCC of 0.78 on the training
dataset and for validation dataset accuracy of 83.33% with MCC
of 0.67 was obtained in the case of Antifp_Main (Figure 4 and
Supplementary Table S13). Similarly, results for Antifp_DS1 and
Antifp_DS2 were also calculated and is given in Supplementary
Tables S14, S15. However, in case of Antifp_DS2, we repeated the
machine learning prediction 100 times using Scikit learn method
(Pedregosa et al., 2011). This is a common practice when we
handle data generated randomly from SwissProt (Bhalla et al.,
2017). The mean accuracy, MCC, and ROC obtained after the
process was 89.17%, 0.79 and 0.96 respectively for the training
dataset and on the validation dataset mean accuracy of 90.75%,
mean MCC of 0.82 and mean ROC of 0.97 was achieved. The
mean standard deviation reported for accuracy, MCC and ROC
were 1.01, 0.017 and 0.004 respectively. The prediction process
was repeated 100 times on this particular feature because this
feature was giving the best result in Antifp_DS1 and after the
process was completed, we selected the dataset giving the best
result and used it further for rest of the prediction process.

FIGURE 3 | The performance of models on Antifp_Main dataset in term of
ROC curves, models were developed using composition features of peptides.

Additional Benchmarking
Porto et al. (2017c) evaluate the performance of methods
developed for predicting AMPs on a unique type of dataset that
contains 40 designed and 38 shuffled sequences (Loose et al.,
2006; Porto et al., 2017b). This dataset had compositionally
similar antimicrobial and non-AMPs, the only order of residues
has been changed. Existing AMP prediction methods fails on
this dataset as most of these methods are based on composition.
In order to repeat similar type of benchmarking for models
developed in this study, we also created an Antifp_hard dataset
that contains compositionally similarly AFPs and Non-AFPs (see
section “Materials and Methods”). In this dataset Antifp_hard,
negative sequences were compositionally quite similar to positive
sequences but have entirely different activity (as explained in
methods). The new dataset contained 291 AFPs and 291 non-
AFPs. The accuracy obtained from the benchmarking dataset
for the amino acid composition based model was decreased
from 86.25% to 62.20% as compared to the validation dataset.
The N15C15 binary profile feature-based model performed
well as compared to composition based model. It shows the
accuracy of 75.43%, as compared to 84.64% on validation dataset
(Table 4). The results showed that model based on binary
profile based feature were able to classify the sequences having
compositionally similarity but different activity much better
compared to composition based model.

We also evaluate the performance of methods developed in
past for predicting AFPs (i.e., ClassAMP and iAMP-2L). In case
of ClassAMP, there are two types of models; one based on
Random Forests and other on SVM. Positive sequences which
were predicted as antifungal were labeled as true positives and
not predicted as an antifungal but as other classes, were labeled as
false negatives. Similarly, negative sequences predicted as other
classes than antifungal were labeled as true negatives and the
peptides predicted as antifungal were labeled as false positives.
SVM classifier of ClassAMP showed the accuracy of 48.45%
whereas random forest classifier of the same method showed the
accuracy of 45.18% (Table 4).

In case of iAMPL-2L, any AFP predicted as antifungal, even
if it is predicted to belong to any other class were labeled
as true positive. Rest positive peptides are labeled as false
negatives. Similarly, any negative dataset peptide predicted as
non-antifungal is labeled as true negative and rest negative
peptides are labeled as false positives. The iAMPL-2L method
showed the accuracy of 21.56% (Table 4).
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In addition, we compiled the sequences from the different
study and submitted them to our server to check the performance
of our model. We observed that our binary profile based model
was able to predict three peptides correctly out of four peptides.
Here, we are providing the screenshot of the result page of the
binary profile based model below (Figure 5).

Implementation of Web Server
We have tried to develop a class-specific prediction web
server for the prediction of AFPs, exclusively. Thus, to
assist the scientific community, we have implemented our
three best models trained on three different datasets. An
overall prediction approach of Antifp is shown in Figure 6.
‘Model 1,’ developed on the Antifp_DS1 N15C15 binary
profile feature will be useful for those users who wish to
check whether their peptides possess exclusively antifungal
activity and no other antimicrobial activity. Second model
‘Model 2,’ developed on the Antifp_DS2, found to performing
best on N15C15 binary profile feature will be useful for
those users who do not have any previous knowledge of
their peptide and want to check whether their peptide
possess antifungal property or not. This peptide may have
other antimicrobial properties too. Finally, third model,
‘Model 3’ developed on the Antifp_Main and performing

best on the same feature as of ‘Model 1,’ will be helpful
for those users who do not have previous knowledge
of their peptide and want the exclusively antifungal
property. All the above three mentioned models were
implemented in a user-friendly web server ‘Antifp’ by the name
“Antifp_DS1_binary_model1,” “Antifp_DS1_binary_model 2,”
and “Antifp_Main_binary_model 3,” respectively.

Predict Page
This page provides the option to check whether the submitted
query is AFP or non-AFP. This page takes the sequence in FASTA
format as an input and displays the prediction as output along
with the prediction score at the chosen threshold cut-off value
by the user. Here, a user can submit either single sequence or
number of sequences at a time. In addition, the server also
provides facility to calculate important physiochemical properties
of the submitted query sequence.

Mutational Series Page
‘Antifp’ web server along with the facility to predict peptides,
as AFPs or non-AFPs also provides an opportunity to design
analogs with enhanced antifungal properties. All possible mutant
of given peptides with the single mutation can be obtained by
giving single letter code of peptide sequence (no FASTA format
required) as input to the design module of the web server.

TABLE 2 | The performance of SVM based models on Antifp_Main dataset, where models were developed using dipeptide composition of whole peptide and part of
peptides.

Parameter Main Dataset Validation Dataset

g c j Sen Spc Acc MCC ROC Sen Spc Acc MCC ROC

DPC 0.005 2 3 88.53 85.02 86.77 0.74 0.94 89.69 87.63 88.66 0.77 0.95

N5 0.001 1 2 77.94 73.88 75.91 0.52 0.85 82.61 75.69 79.08 0.58 0.87

N10 0.0005 8 2 78.74 79.77 79.26 0.59 0.87 86.63 81.21 84.01 0.68 0.90

N15 0.001 3 3 81.97 80.70 81.33 0.63 0.89 85.07 81.58 83.33 0.67 0.90

C5 0.0005 2 3 70.35 75.45 72.89 0.46 0.81 71.17 79.09 75.18 0.50 0.81

C10 0.001 5 1 80.89 74.01 77.43 0.55 0.87 79.71 76.16 77.92 0.56 0.85

C15 0.001 2 2 80.69 76.33 78.51 0.57 0.86 79.93 77.90 78.92 0.58 0.86

N5C5 0.0005 1 2 78.39 80.13 79.29 0.59 0.87 83.02 83.97 83.51 0.67 0.90

N10C10 0.001 1 2 84.65 78.84 81.73 0.64 0.90 87.87 83.33 85.56 0.71 0.92

N15C15 0.001 1 2 84.97 85.09 85.03 0.70 0.92 85.39 86.52 85.96 0.72 0.93

TABLE 3 | The performance of SVM based model on Antifp_Main dataset developed using binary profile/pattern of peptide segments obtained from terminals.

Parameter Main Dataset Validation Dataset

g c j Sen Spc Acc MCC ROC Sen Spc Acc MCC ROC

N5 0.5 1 2 76.07 81.66 78.86 0.58 0.86 81.16 81.25 81.21 0.62 0.87

N10 0.1 2 4 80.90 80.93 80.91 0.62 0.89 86.12 79.79 82.95 0.66 0.89

N15 0.1 1 2 82.63 82.40 82.52 0.65 0.89 86.57 81.20 83.90 0.68 0.90

C5 0.5 1 3 71.24 78.96 75.08 0.50 0.83 68.68 83.62 76.23 0.53 0.82

C10 0.1 2 2 76.99 78.67 77.84 0.56 0.86 75.36 80.43 77.92 0.56 0.84

C15 0.1 2 2 81.64 75.10 78.36 0.57 0.87 80.67 77.90 79.29 0.59 0.87

N5C5 0.1 4 2 82.02 76.59 79.20 0.59 0.87 87.55 80.49 83.88 0.68 0.90

N10C10 0.05 2 2 84.19 83.53 83.86 0.68 0.91 85.29 84.40 84.84 0.70 0.91

N15C15 0.05 1 3 85.55 84.23 84.88 0.70 0.92 85.39 83.90 84.64 0.69 0.92
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FIGURE 4 | ROC curves show performance of models on Antifp_Main dataset
developed using composition features along with mass, charge, and pI value.

For all mutant peptides, the server will give a result, which
constitutes an SVM score and prediction status of AFPs and
non-AFPs according to threshold cut-off selected by the user.
As a provision for selecting the threshold is provided in the
server, the user is suggested to select a higher value to get high
specificity. Therefore, the feature as mention above will be useful
for users in designing new and highly effective AFP analogs. In
this page, original input peptide will be shown along with all
generated analogs, and sorting option is also provided in the
table, which can be used to sort the peptide analogs based on
preferred properties and ultimately to choose the best peptide
analog.

Sliding Window Prediction Page
Another information tool is the protein-scanning tool for the
discovery of putative AFPs. Here, a user may give the protein
sequence as input and select the window length to generate
overlapping peptides of window length, where each of the
peptides will be ranked according to its score. This will help
in determining the possible regions in protein sequence, which
could be antifungal. We have also provided a download module

from where the user can download the dataset used in this study.
Antifp is freely accessible at http://webs.iiitd.edu.in/raghava/
antifp.

Antifp Standalone Software
The standalone software was also developed in order to let
the users predict and analyze the peptide sequences even in
the absence of Internet. The standalone was developed for
Linux, Mac as well as Windows 64-bit operating systems. The
software was developed using Python (v2.7.11) and wxPython
(v.3.0.0) platform. The standalone is implemented with our
best model which takes FASTA sequence of peptides as
input. It provides comparable results to that of the online
server. The software is bundled with all the required files
and libraries in the zip file format and can be downloaded
freely from the ‘Download’ menu of the online server
‘Antifp’1.

Anitfp Mobile App
We have also developed a mobile app of Antifp for the android
users where the user can use this service by downloading
and installing the app. The app was developed using Python
(v2.7.11) and kivy (v1.9.2). The app is implemented with
our best model which takes both sequences as well as
the file as input. The minimum length of the sequence
should be 15 or more. The app consists of the following
module:

(i) Predict: This module will be helpful in predicting the
antifungal property of the given peptide sequence as input.
A user can either give raw peptide sequence or multiple
sequences in FASTA format.
(ii) Mutational Series: This module will produce mutant
analogs of the given peptide sequence and predict the
antifungal property for each of them.
(iii) Sliding Window Prediction: This module scans
the protein sequence given as an input and will create
overlapping peptides of the particular window size given by
the user. The module will also provide result whether the
generated peptides are antifungal or not.

The ‘Antifp Mobile App’ is provided in the standard “apk” file
format and can be freely downloaded from the ‘Download’ menu
of the online server ‘Antifp’1.

1http://webs.iiitd.edu.in/raghava/antifp/algo.php

TABLE 4 | The performance of different models developed in this study and existing methods on Antifp_hard dataset contains compositionally similar peptides.

Method Algorithm Benchmarking Dataset

TP TN FP FN Sen Spc Acc

Composition-based model SVM 179 183 108 112 61.51 62.89 62.20

Binary profile based model SVM 218 92 53 48 81.95 63.45 75.43

ClassAMP SVM 108 174 117 183 37.11 59.79 48.45

ClassAMP Random Forest 42 221 70 249 14.43 75.94 45.18

iAMP-2L FKNN 61 65 226 230 20.96 22.34 21.56
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FIGURE 5 | Screenshot of the “Antifp” predict page showing the result of the sequences taken in case study.

FIGURE 6 | Schematic representation of procedure used to create datasets and building models in this study.

DISCUSSION

Due to pronounced therapeutic applications of AFPs,
identification and designing of the novel and highly efficient AFPs

is need of the hour but it is a very tedious and time-consuming
task for the biologists. One has to scan the whole protein in
overlapping windows patterns, and every peptide has to be tested
for the possible antifungal activity. An in silico method, which
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can predict in advance whether a peptide sequence can be
AFP or not, would definitely help experimental biologists for a
speedy screening of AFPs before synthesis and thus, fasten the
AFP based research. Development of a computational method
for AFP prediction is challenging due to various reasons since
(i) AFPs have a lot of flexibility in size (4–100 amino acids)
and fixed length pattern is required as input by machine
learning methods to develop a model (ii) due to lack of
experimentally validated AFPs. Till date, a very limited study
has been done in this area and currently; there are no web
services available exclusively for prediction and designing of
AFPs. In the last few years, a vast number of AMPs have been
reported which might act as AFPs and this vast amount of
data inspired us to develop a computational method on the
larger dataset of 1459 AFPs. In order to discriminate AFPs
from non-AFPs with higher precision, we have developed SVM
models based on features like amino acid composition, dipeptide
composition, amino acid composition along with mass, charge
and pI value, binary profile, N and C-terminal residue hybrid.
The performance of the models developed was found to be
quite impressive when features like amino acid composition,
amino acid composition along with mass, charge, and pI value
and dipeptide composition were used as input. We have also
developed SVM models based on a binary profile of patterns,
which integrates information on both amino acid order and its
composition. It was observed that this feature performed better
than the composition-based model. In Antifp_DS2, hybrid of
N15C15 binary profile feature outperformed other features based
model.

Discriminating two sequences with high identity but different
activity is a challenging task for most of the prediction methods.
To address this issue, we calculated the euclidean distance
between our positive and negative peptides and selected the
negative peptides with minimum distance. We tested the
performance of our composition based model as well as N15C15
binary profile based model and observed that composition
model didn’t perform well in discriminating two sequences very
accurately. However, our binary profile based model was able to
discriminate the two sequences with good accuracy, suggesting
that binary profile feature can be used in discriminating such
sequences where sequences are very similar to each other but
possess different activity. We also tested the performance of two
previous methods ClassAMP and iAMP-2L on this dataset, where
they failed to discriminate the two sequences. In comparison to
the above-mentioned methods, our method performed better.

Preliminary composition analysis has shown that AFPs are
rich in cationic residues like C, G, H, K, and R in comparison

to non-AFPs. Presence of the positively charged residues allows
the peptide to interact with negatively charged membrane and
carry out cell lysis. Positional residue preference studies showed
that residues like R, V, and K are mostly preferred at N-terminal
positions whereas residues like C and H are highly preferred at
C-terminus in AFPs. In addition, we have also looked out for
motifs, which could potentially be a part of AFPs using MERCI
software. We were able to find out various motifs. Furthermore,
to help biologists and serve scientific community, best models are
implemented in a user-friendly web server ‘Antifp,’ mobile app
and standalone where a user can predict whether their peptide or
series of peptides are AFP or non-AFP in nature.

Antifp, though has certain limitations like the method
does not consider modifications (e.g., post-translational
modifications) and other topological aspects during model
development. Secondly, our method cannot predict in advance
that putative peptides designed using the design tool, will show
broad-spectrum activities or not. However, our method is likely
to help biologists in designing a better peptide-based drug.
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