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ABSTRACT
To avoid over- or under-treatment of primary prostate tumours, there is a critical 

need for molecular signatures to discriminate indolent from aggressive, lethal disease. 
Reprogrammed energy metabolism is an important hallmark of cancer, and abnormal 
metabolic characteristics of cancers have been implicated as potential diagnostic/
prognostic signatures. While genomic and transcriptomic heterogeneity of prostate 
cancer is well documented and associated with tumour progression, less is known 
about metabolic heterogeneity of the disease. Using a panel of high fidelity patient-
derived xenograft (PDX) models derived from hormone-naïve prostate cancer, we 
demonstrated heterogeneity of expression of genes involved in cellular energetics 
and macromolecular biosynthesis. Such heterogeneity was also observed in clinical, 
treatment-naïve prostate cancers by analyzing the transcriptome sequencing data. 
Importantly, a metabolic gene signature of increased one-carbon metabolism or 
decreased proline degradation was identified to be associated with significantly 
decreased biochemical disease-free patient survival. These results suggest that 
metabolic heterogeneity of hormone-naïve prostate cancer is of biological and clinical 
importance and motivate further studies to determine the heterogeneity in metabolic 
flux in the disease that may lead to identification of new signatures for tumour/
patient stratification and the development of new strategies and targets for therapy 
of prostate cancer.

INTRODUCTION

Prostate cancer is a clinically heterogeneous disease 
covering a wide variety of phenotypes, ranging from 
indolent disease to aggressive lethal disease. At present, 
there is a lack of methods for reliably identifying such 
phenotypes, rendering use of first-line androgen ablation 
therapy a challenge with a risk of over- or under-treatment 
[1]. As such, there is an urgent need for signatures to 

stratify indolent from aggressive prostate cancer which 
could be developed through identification of differences 
in energy metabolisms of prostate cancer subtypes [2]. 

Reprogramming energy metabolism is an important 
hallmark of cancer [3, 4] and abnormal metabolic 
characteristics of cancers have been implicated as 
potential diagnostic/prognostic biomarkers [5-9]. 
Thus in contrast to normal resting cells whose energy 
production is mainly based on mitochondrial oxidative 
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phosphorylation, the majority of cancer cells rely on 
aerobic glycolysis coupled to increased glucose uptake 
and lactic acid production/secretion (the Warburg effect) 
[3, 7]. The augmented glucose consumption can be 
observed using (18F)-fluoro-2-deoxyglucose positron 
emission tomography (FDG-PET) [10, 11]. However, 
prostate cancers are characterized by a lack of increased 
glycolysis rendering FDG-PET less effective in imaging 
this malignancy [12], (although a small group of tumours 
do utilize aerobic glycolysis [9]). Instead, prostate cancers 
have abnormal metabolisms for citrate and choline [13-
15] and are characterized by increased levels of choline-
containing compounds (ChoCCs). These compounds 
have been linked to increased cell proliferation and 
survival [16]. Tracing metabolites with (11C)- and (18F)-
labeled choline derivative-based PET and PET/CT scans 
is increasingly used in the clinic. Together, these glucose 
and choline-based imaging studies demonstrated the 
metabolic heterogeneity of clinical prostate cancer [17, 
18]. However, it is not clear whether prostate cancer 
subtypes are metabolically different, or whether metabolic 
heterogeneity (intra-tumoural and inter-tumoural) can 
affect tumour response to treatment. In view of this, 
a better understanding of metabolic heterogeneity 
of prostate cancer at a molecular level will provide 
mechanistic insights into disease progression and may lead 
to identification of novel diagnostic/prognostic signatures 
for stratification of patients’ prostate cancers. 

To focus on the metabolic heterogeneity of prostate 
cancer cells and avoid complication from the stromal 
compartment, we used our unique panel of transplantable, 
patient-derived xenograft (PDX) models, derived 
from hormone-naïve prostate cancer tissues (www.
livingtumorlab.com) [19, 20]. Using these hormone-
naïve prostate cancer PDX models and clinical samples, 
we, for the first time, demonstrated the heterogeneity of 
expression of genes involved in cellular energetics and 
macromolecule biosynthesis and identified an inter-tumour 
metabolic heterogeneity signature in clinical samples that 
is associated with patients’ prognosis. 

RESULTS

A panel of PDX models of hormone-naïve prostate 
cancers demonstrates heterogeneity of expression 
of genes involved in energy metabolism and 
recapitulates metabolic heterogeneity of clinical 
samples

A panel of 11 well-characterized LTL (Living 
Tumour Laboratory) prostate cancer PDX-models that 
are derived from hormone-naïve prostate cancer tissues, 
presents a unique opportunity for focusing on metabolic 
alterations in prostate cancer cells by analyzing human 

genes (while stromal genes are of mouse origin) in vivo 
[19]. To investigate whether these hormone-naïve PDX 
models present with molecular metabolic heterogeneity, 
transcriptome microarray data were generated and cluster 
analysis was performed using mean pathway scores 
(derived from per gene z-scores normalized to cancer 
mean and standard deviation, Supplementary Table 2). 
As shown in Figure 2, the metabolic pathway scores 
demonstrated variation among these models. For example, 
four tumours had increased pathway scores for glycolysis, 
while seven other tumours had decreased scores for this 
pathway. Heterogeneity was evident for all pathways.

To investigate whether such heterogeneity of 
metabolic gene expression observed in the PDX models 
represents the clinical situation, we analyzed transcriptome 
sequencing data of treatment-naïve, primary prostate 
cancer specimens of the VPC cohort (n = 14). The VPC 
prostate cancer per-gene z-scores were normalized to 
cancer mean and standard deviation, to generate mean 
pathway scores. The cluster analysis combining PDX 
models and VPC clinical samples showed that (in Figure 
3), all the PDX models were clustered into different arms 
as observed for the clinical samples, suggesting that 
this set of PDX models recapitulates the heterogeneous 
metabolic nature of the clinical samples. In addition, the 
matched PDX/parental tissue pairs LTL-331/VPCT24 and 
LTL418/VPCT23, clustered closely together, as seen in 
dendrogram arms A and B respectively, illustrating the 
fidelity of the PDX models (arrow brackets). Interestingly, 
the LTL-313 xenograft lines, which had been derived 
from needle biopsies at five different foci of one patient’s 
primary prostate cancer (asterisk), show a diverse 
heterogeneity signature in each focus. The observed 
differences between the five cores from which these 
models originate suggest the existence of diverging events 
that are continually associated with the development of 
intra-tumoural metabolic heterogeneity of prostate cancer. 
In summary, we documented molecular evidence of cancer 
metabolic heterogeneity in PDX models and clinical 
hormone-naïve prostate cancer samples. Importantly, the 
metabolic heterogeneity discovered in PDX models was 
validated in clinical prostate cancer samples.

Change in expression of genes involved in 
metabolism is consistent with the metabolomic 
changes in prostate cancer

To determine whether the gene expression involved 
in metabolic pathways is consistent with the metabolic 
properties of prostate cancer cells, we first analyzed the 
transcriptomic differences, between benign and treatment-
naïve prostate tumours, of genes involved in metabolic 
pathways and we then explored the correlation with 
clinical metabolomics. A comparison of the MSKCC 
dataset [21] consisting of 28 benign prostate tissues and 
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112 prostate adenocarcinomas from treatment-naïve 
patients, showed significantly increased expression of 
genes involved in choline/phosphocholine generation (p 
< 0.0002) and in proline synthesis (p < 0.0029) (Table 
2) in tumours compared to benign tissue. These results 
reflect the findings of several recent clinical metabolomics 
studies reporting increased choline metabolites and 
increased proline [22-25] in prostate cancer compared to 
benign tissue. 

Interestingly, expression of genes involved in 
pyruvate to acetyl-CoA formation was significantly 
decreased (p < 0.0092). As expected, there were no 
significant differences in the expression of glycolysis 
pathway genes (i.e. upstream of the PDH complex) 

between benign tissue and cancer (Table 2), which is 
consistent with previous reports and reflects the clinical 
finding that FDG-PET is less effective in imaging prostate 
malignancy [15] than other cancers. 

Gene expression of a metabolic signature 
demonstrates heterogeneity in clinical samples 
and clinical outcome of prostate cancer patients

To further validate our finding of metabolic 
heterogeneity of treatment-naïve prostate tumours 
and explore its clinical significance, we analyzed the 
correlation of our heterogeneous metabolic signature 

Figure 1: Metabolic pathways assessed in benign tissue, primary hormone-naive prostate cancer and patient-derived 
hormone-naïve xenograft models. Products of choline metabolism are linked to cell proliferation and are used for prostate cancer 
diagnosis. The remaining pathways are involved in biosynthesis of macromolecules and bioenergetics. Numbers in brackets indicate the 
number of genes analyzed within a particular pathway. LDHA (Lactate Dehydrogenase A), a-KG (alpha ketoglutarate).
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Figure 2: Metabolic heterogeneity in the PDX model. Cluster analysis of metabolic pathway scores from the PDX model (LTL). 
Z-scores were normalized to all tumours (mean/standard deviation) for each gene within a pathway. Average z-scores were then used to 
generate pathway scores. Red, upregulated; blue, downregulated; white, no change from tumour average. A, B, and b1 represent various 
arms of the dendogram.
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Figure 3: Cluster analysis of metabolic pathway z-scores derived from DESEq RNA sequencing expression data from 
the VPC Cohort (VPC) compared to z-scores derived from quantile normalized microarray expression data from the 
PDX cohort (LTL). Red, upregulated; blue, downregulated; white, no change from tumour average. Two patient/LTL PDX pairs are 
indicated by arrow brackets. *Five LTL PDXs derived from needle biopsy specimens of 5 different foci of a patient’s primary prostate 
cancer tissue.
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with clinical outcome in the MSKCC dataset [21]. As 
shown in Figure 4, heterogeneity of metabolic pathways 
between tumours is evident. Dendrogram arms I and II 
indicate two broadly different groups of tumours. Group 
II shows further heterogeneity as indicated by dendrogram 
arms (i and ii). The MSKCC validation cohort showed 
significant heterogeneity (Wilcoxon Rank test, p < 0.05) of 
metabolic pathways involved in cholesterogenesis, choline 
metabolism, gluconeogenesis, glutaminolysis, glycolysis, 
ketogenesis, lipogenesis, oxidative phosphorylation 
involving complexes I, IV and V, the TCA cycle and one-
carbon metabolism (Supplementary Table 4). Pathways 
with less heterogeneity also occurred, including fatty acid 
activation and ketolysis. Interestingly, proline synthesis 
and proline degradation pathways showed opposite 

directions of expression. The proline synthesis pathway 
was consistently upregulated and proline degradation 
pathway was downregulated compared to benign tissue 
controls, which together supports metabolomics results 
[17] of increased proline content in aggressive prostate 
cancer. This is also consistent with results in the previous 
section (Table 2) where we showed that the proline 
synthesis pathway score was significantly increased in 
cancer compared to benign tissue (p < 0.0029). 

To determine the clinical relevance of the 
observed metabolic heterogeneity we carried out 
survival curve analyses (5 year-overall survival as 
well as biochemical recurrence-free survival) for the 
MSKCC cohort (Supplementary Table 5). Patients with 
elevated expression levels of genes involved in one-

Table 1: VPC prostate cancer cohort clinical details

The prostate cancer cohort of the Vancouver Prostate Centre (VPC) consisted of 14 untreated primary tumours and 3 matched 
benign prostate tissues [44]. Abbreviations: T, tumour; B, Benign; Dx, diagnosis; PSA, prostate specific antigen; nrn, never 
reached nadir; N, no; Y, yes; LTFU, lost to follow-up. There were no differences in stromal content across the cohort based 
on comparisons of desmin and vimentin expression (fibroblasts) [44].
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carbon metabolism, compared to controls ( > 2 Standard 
Deviations, Supplementary Table 6), showed significantly 
poorer biochemical-free survival compared to patients 
with lower expression of these genes (p < 0.01) (Figure 
5A-5B). Additionally, patients with low expression levels 
of genes involved in proline degradation, compared to 
controls (Supplementary Table 6), had significantly poorer 

biochemical-free survival compared to patients with higher 
expression levels (Figure 5C-5D). Therefore, increased 
one-carbon metabolism or decreased proline degradation 
in these patients was associated with significantly 
decreased survival, suggesting these metabolic changes 
form clinically important metabolic signatures. There was 
a likely-correlation (Spearman) of one carbon metabolism 

Figure 4: Cluster analysis of metabolic pathway scores derived from quantile normalized microarray expression data 
from the MSKCC cohort. Z-scores were normalized to benign mean and standard deviation for each gene within a pathway. Average 
z-scores were then used to generate pathway scores. Dendrogram arms labelled I, II, I and ii, represent various groups of tumours. Red, 
upregulated; blue, downregulated; white, no change from benign. 
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and proline degradation pathway scores with Pathology 
stage (p = 0.06 and p = 0.08 respectively). This suggests 
that increased one carbon metabolism or decreased 
proline degradation (therefore increased proline levels) 
is observed in more aggressive tumours compared to 

less aggressive tumours. Such increased one carbon 
metabolism or decreased proline degradation signature 
was also observed in 50% or 75% (respectively) of PDX 
models with metastatic ability suggesting a predictive 
value of aggressiveness.

Table 2: MSKCC cohort: comparison of metabolic pathway scores between hormone-naïve prostate cancer and 
benign tissue

Using the Students t-test (p<0.05) prostate cancer (n=112) log2 gene expression for each pathway was compared to benign 
tissue (n=28) log2 gene expression for each pathway.
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DISCUSSION

Whereas the genomic and transcriptomic 
heterogeneity of prostate cancer is well documented 
[26], less is known about metabolic heterogeneity of this 
malignancy and its relevance to malignant progression. 
Studies of the heterogeneity of prostate cancer, in 
particular hormone-naïve cancers, have been impeded 
by a lack of clinically relevant experimental models. 
Commonly used prostate cancer xenograft models based 
on cultured human prostate cancer cells do not accurately 
recapitulate the tumour heterogeneity, nor the cancer-

stroma architecture of the original cancer specimens from 
which the cell lines were derived [19, 20]. Importantly, the 
majority of prostate cancer cell lines and xenograft models 
used were derived from advanced metastatic castration-
resistant cancer, rather than untreated hormone-naïve 
cancer. In this study, we demonstrated the heterogeneous 
expression of cancer cell genes involved in energy 
metabolisms in 11 patient-derived prostate cancer PDX 
models derived from hormone-naïve tumours. These 
models belong to a previously produced panel of prostate 
cancer PDX models [19, 20] and to our knowledge 
currently form the largest collection of hormone-naïve 

Figure 5: Metabolic pathways within the MSKCC Cohort associated with significantly decreased survival. A) Tumours 
over-expressing genes in the one-carbon metabolism pathway were associated with significantly decreased biochemical-free survival (B), 
p = 0.01. C) Tumours with decreased expression of genes regulating proline degradation were associated with significantly decreased 
biochemical-free survival (D), p = 0.0001. Red and black boxes indicate tumour outliers ( > 2 Standard deviations).
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prostate cancer PDX models in the field. Furthermore, 
the metabolic heterogeneity signature in these models 
suggests, for the first time, that a panel of PDX models 
can recapitulate heterogeneous metabolic signatures 
observed in clinical samples. The metabolic program that 
correlated with poor prognosis in the MSKCC dataset was 
associated with metastasis in PDX models. As such, these 
models provide a valuable platform for studying metabolic 
heterogeneity.

Using RNA sequencing strategies and microarrays 
to investigate heterogeneity of expression of genes 
involved in cellular energetics and macromolecular 
biosynthesis pathways, the present study documents inter-
tumour metabolic expression heterogeneity of several 
pathways/sub-pathways in PDX models and in two 
clinical cohorts of, treatment-naïve prostate cancers as 
summarized in Figure 6. Consistent with these findings, 
heterogeneity of several metabolic pathways has been 

Figure 6: Summary of heterogeneity of expression of genes related to core metabolic pathways involved in cellular 
energetics and macromolecule biosynthesis in hormone-naive prostate cancer. The one-carbon metabolism pathway score 
was significantly increased (red) and the proline degradation pathway score was decreased (blue) compared to benign and both were 
associated with decreased biochemical-free survival in the MSKCC subset. It has been reported that the one-carbon metabolism and proline 
metabolism pathways interconnect with glycolysis and pentose phosphate pathway to provide ATP, and NADH and NADPH (mediators of 
electron transfer for energy, reductive biosynthesis and redox defense) [8, 9, 42]. (Pink indicates upregulated pathways in MSKCC subset; 
grey indicates other heterogeneous pathways). ALDH18A1, Pyrroline-5-carboxylase synthase; ALDH4A1, Pyrroline-5-carboxylase 
dehydrogenase; GLS, Glutaminase; GLUL, Glutamine synthase; P5C, Pyrroline-5-carboxylase; LDHA, Lactate Dehydrogenase A; OAT, 
Ornithine aminotransferase; PHGH, Phosphoglycerate Dehydrogenase; PRODH, Proline Dehydrogenase; PYCR1,2,L, Pyrroline-5-
carboxylate reductase 1,2,L.



Oncotarget25938www.impactjournals.com/oncotarget

observed in a meta-analysis of datasets of 22 different 
tumour types [27]. Importantly, we identified metabolic 
gene signatures of increased one-carbon metabolism or 
decreased proline degradation associated with significantly 
decreased biochemical disease-free survival of patients. 
One limitation of this study is the lack of metabolomics 
validation. Further integrated analysis of transcriptomic 
and metabolomics data and functional studies will provide 
more insights regarding the significance of metabolic 
heterogeneity in prostate cancer.

It is widely reported that cancer cells can direct 
glucose metabolism toward aerobic glycolysis [28]. 
However, consistent with our own results, emerging 
evidence suggests that prostate cancer cells can also 
direct glucose towards another ATP-generating pathway 
involving 3-phosphoglycerate conversion to serine through 
phosphoglycerate dehydrogenase (PHGDH), resulting in 
activation of one-carbon metabolism [29-31]. One-carbon 
metabolism facilitates NADPH generation [32] and the 
anabolic synthesis of amino acids, proteins, nucleotides 
and phospholipids, and has a role in the maintenance 
of redox balance and methylation reactions involved in 
post-translational modifications [33, 34] and so may be 
a potential driver of oncogenesis. Indeed, methotrexate, 
an inhibitor of the one-carbon cycle, is used as an anti-
cancer agent and preclinical studies are evaluating several 
other enzymes in this pathway [33]. Importantly, however, 
methotrexate has recently been associated with accelerated 
progression of a previously indolent prostate cancer [35]. 
An alternative therapeutic, metformin, has also been 
shown to indirectly inhibit one-carbon metabolism [36] 
and is being tested in preclinical trials for prostate cancer 
[37-39]. Several agents targeting metabolic enzymes exist 
for other metabolic syndromes that could be re-purposed 
for prostate cancer [37].

Proline metabolism promotes cancer cell 
proliferation and energy production [40]. The cycling of 
proline catabolism and proline synthesis acts as a redox 
shuttle between the mitochondria and cytosol to maintain 
redox homeostasis [41, 42]. Furthermore, increased 
proline biosynthesis contributes to cancer cell growth 
by providing NAD+/NADP+ molecules to the pentose 
phosphate pathway and to glycolysis [40]. Here we show 
that a decreased pathway score for proline degradation 
is associated with significantly decreased biochemical 
disease-free survival of prostate cancer patients. 
Concomitantly, the expression of the proline synthesis 
pathway genes was consistently increased in prostate 
tumours implying a strong propensity of these tumours 
to activate the proline synthesis cycle. In support of our 
findings, LC/GC-MS metabolomic profiling identified 
increased proline levels with increased progression of 
prostate cancer [22-25]. 

Increased proline synthesis has also been reported 
as the major metabolic shift in metastatic breast cancer 
cells, in melanoma cell lines compared to melanocytes and 

in ovarian cancer cells (OVCAR3) compared to ovarian 
cancer stem cells [40]. Furthermore, a recent study of 
133 metabolic genes identified five genes whose siRNA-
induced knockdown resulted in strong growth-inhibitory 
effects on breast cancer cells. Included were PYCR1 
involved in proline synthesis and the serine biosynthesis 
gene, PDGDH, involved in one-carbon metabolism [43].

In conclusion, we have, for the first time, 
demonstrated heterogeneity of expression of genes related 
to metabolic pathways in both hormone-naïve prostate 
cancer PDX models and clinical samples and provided 
insight into the metabolic heterogeneity of hormone-naïve 
prostate cancer associated with patient clinical outcome. 
These results not only suggest the potential of a metabolic 
heterogeneity signature as a biomarker for patient risk 
stratification, but also motivate further work to determine 
whether the observed differences in expression of genes 
involved in metabolic pathways translate into differences 
in metabolic flux. A better understanding of metabolic 
heterogeneity of hormone-naïve prostate cancer will 
lead to the identification of new signatures for patient 
stratification and the development of new strategies and 
targets for therapy of prostate cancer.

MATERIALS AND METHODS

Patient-derived xenograft (PDX) models - 
discovery cohort

Transplantable xenograft lines of patients’ prostate 
cancer tissues were developed by grafting of fresh 
cancer tissue (obtained from needle biopsies), and serial 
transplantation, into the subrenal capsule (SRC) graft site 
of male NOD/SCID mice supplemented with testosterone 
as previously described [19]. Animal care and experiments 
were carried out in accordance with the guidelines of the 
Canadian Council on Animal Care.

Gene expression analysis of xenografts using RNA 
microarray analysis

RNA microarray analysis of PDX tissue was 
performed as previously described [19]. Data are available 
at GEO accession number GSE41193. Total RNA samples 
were prepared and processed using Agilent’s One-Color 
Microarray-Based Gene Expression Analysis Low Input 
Quick Amp Labelling v6.0. An input of 100 ng of total 
RNA was used to generate cyanine-3-labeled cRNA. 
Samples were hybridized on Agilent SurePrint G3 Human 
GE 8X60K Microarray (Design ID, 028004). Arrays 
were scanned with the Agilent DNA Microarray Scanner 
at 3-μm scan resolution and data were processed with 
Agilent Feature Extraction 11.0.1.1. The processed signal 
was quantile normalized with Agilent GeneSpring 12.0.
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Validation cohorts

The prostate cancer cohort of the Vancouver Prostate 
Centre (VPC) consisted of 14 untreated primary tumours 
and 3 matched benign prostate tissues [44] as described 
in Table 1. Gleason scores ranged from 7-10 and samples 
consisted of ≥ 70% of malignant glands. The MSKCC 
cohort consisted of 112 untreated primary prostate tumours 
and 28 benign prostate tissues [21]. Data are available at 
GEO accession number GSE21032. 

Gene expression analysis of tumor sections using 
RNA sequencing

VPC clinical tumour sections were processed and 
RNA sequencing was performed at the BCCA Michael 
Smith Genome Sciences Centre according to standard 
protocol as previously described [44]. Briefly, RNA-
seq data reads were first mapped onto the hg19 human 
reference genome and exon-exon junctions by splice-
aware aligner STAR [45], using known gene model 
annotation from Ensembl Release 75. Reads with an 
unmapped mate or multi-mapped location were filtered 
out using Bam Tools [46]. Data are available at GEO 
accession number GSE55016.

Using aligned RNA-seq reads, gene expression 
profiles for each sample were calculated on the basis of 
gene annotation from Ensembl Release 75. Only reads that 
were unique to one gene and exactly corresponded with the 
structure of the gene were counted for the corresponding 
genes by using tool HTSeq [47]. In order to eliminate the 
variance of sequencing depth among samples, the raw read 
counts were normalized by R package DESeq [48].

Metabolic pathway score

Twenty-three pathways analyzed in this study 
include those of choline metabolism [13, 14] as well as 
energy production and macromolecule biosynthesis, as 
previously curated for cancer cells [6, 27, 49, 50] outlined 
in Figure 1 (and detailed in Supplementary Table 1). 
Assigning an ‘upregulation’ or ‘downregulation’ status to 
a metabolic pathway requires the contribution of all genes 
in the pathway. To this end, we selected well-established 
genes for each pathway, excluding upstream effectors. 

In the PDX models, gene expression z-scores were 
derived from the Mean/SD of all 11 xenograft lines. The 
pathway score was then calculated from the average 
z-scores of genes within each pathway/sub-pathway. 
To compare the VPC cohort with the PDX models, 
z-scores for VPC gene expression were derived from the 
Mean/SD of the 14 VPC cancer samples. We obtained 
enough matched patient tissue for a paired comparison 
for 2 of the PDX models and original patient tissues 
(VPCT24:LTL331 and VPCT23:LTL418).

To validate metabolic heterogeneity in a larger 
cohort of primary untreated prostate cancer specimens 
(MSKCC), and to ascertain potential clinical predictive 
value, prostate cancer gene expression was normalized 
to benign gene expression (Mean/SD) to generate per 
gene z-scores for the genes expressed in 23 metabolic 
pathways/sub-pathways (Figure 1).

Statistical analyses

The pathway scores calculated from the average 
z-scores of genes within a pathway provide information 
about the direction of the gene/pathway regulation. In 
the MSKCC cohort, Wilcoxon rank tests (p < 0.05) were 
applied to determine if pathway scores were significantly 
up- or down-regulated in tumours compared to benign 
tissue. Pathways containing fewer than 6 genes were not 
tested by the Wilcoxon rank test. The MSKCC cohort 
was also subjected to t-test (p < 0.05) using log2 gene 
expression (cancer vs benign) and survival curve analysis 
using pathway z-scores normalized to benign (Kaplan 
Meier plots) performed in Graphpad 6 Prism (significance 
determined using the Mantel-Cox test and the Gehan-
Breslow test). Cox regression analysis and Spearman 
correlation were also undertaken to determine if metabolic 
pathway scores correlated with clinical parameters. 
Hierarchical clustering was used as previously described 
[51] using the R language (http://cran.r-project.org/). 
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