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Technology Explained
Sprayable gel for postsurgical immunotherapy
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A B S T R A C T

Background: Surgery remains the first option to treat most solid tumors. However, despite the development of
surgical techniques, the elimination of tumor recurrence after surgery remains a challenge.
Design: In a recent study published in Nature Nanotechnology, we described an in-situ-sprayed gel for local delivery
of bioresponsive and immunotherapeutic calcium carbonate nanoparticles encapsulated with anti-CD47 anti-
bodies (aCD47@CaCO3) to the surgical site after surgery. CaCO3 nanoparticles react with H+ in the surgical
wound site, eliciting an immunosupportive tumor microenvironment after surgery. Meanwhile, the subsequently
released aCD47 blocks the ‘don’t eat me’ signal expressed on cancer cells to increase the phagocytosis of cancer
cells by macrophages and activate T-cell-mediated antitumor immune responses.
Conclusion: The engineered immunotherapeutic gel could activate both innate and adaptive immune responses
systemically after local treatment, effectively destroying the remaining cancer cells and reducing tumor
recurrence.
Surgical resection remains the first option to treat most solid tumors
[1]. However, even after resection of the primary tumor tissues, it re-
mains challenging to eliminate residual microtumors and circulating
cancer cells [2,3]. Perioperative inflammation induced by trauma poses a
high risk for the development of tumor recurrence, accelerating local
remaining tumor relapse as well as promoting tumor invasion and
metastasis [4–6]. Thus, additional treatments including chemotherapy
and radiotherapy are usually applied after surgery. Unfortunately, ther-
apeutic efficacy is still limited [7], as even a very small number of
remaining tumor cells could result in the regrowth of tumor tissues at
local or distant sites.

Cancer immunotherapy by educating and awakening a patient's own
immune system against cancer cells has been progressing rapidly, and
exhibits tremendous promise for the next generation of cancer treatments
[8–11]. Macrophages, an important component of innate immunity, are
important for the uptake of cells that are damaged, superfluous and/or
cancerous. Phagocytosis of ‘self’ cells is a tightly regulated multifactorial
process, partially governed by the ‘self-signal’ protein on their surface
including CD47 [12,13]. However, cancer cells can up-regulate the
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antiphagocytic ‘don't eat me’ signal from inflammatory trauma after
surgery, thus avoiding phagocytosis by macrophages [14,15]. The
immunotherapeutic antibody anti-CD47 is able to neutralize CD47;
activate phagocytic cells including macrophages, dendritic cells and
neutrophils; and further activate the adoptive immune response. Despite
significant investment and remarkable progress in phase I clinical trials,
there is still potential for improvement of the current CD47 blockade
strategy [16–19]. The occurrence of thrombocytopenia and anemia after
systemic injection of CD47 antagonists usually limits their wide appli-
cation. Efforts to reduce these sideeffects and improve therapeutic effects
are highly desirable in the field of CD47-mediated immunotherapy. In
addition, an immunosuppressive tumor microenvironment (TME) can
lead to the failure of immunotherapy [20,21].

In our recent work published in Nature Nanotechnology, we engi-
neered a sprayable bioresponsive immunotherapeutic fibrin gel to inhibit
tumor recurrence and metastasis after surgery (Figure 1) [22]. Briefly,
biocompatible carbonate (CaCO3) nanoparticles containing anti-CD47
were synthesized via biomineralization, and incorporated into a fibrin
gel which has been approved previously by the Food and Drug
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Figure 1. Schematic representation of in-situ-sprayed immunotherapeutic fibrin gel. (A) Following surgical resection of a tumor, biodegradable fibrin gel containing
CaCO3 nanoparticles encapsulated with the immunotherapeutic antibody anti-CD47 is sprayed on the wound. (B) Anti-CD47 is gradually released into the tissue,
blocking CD47 on the surface of cancer cells, to increase the phagocytosis of cancer cells by macrophages and initiate T-cell-mediated antitumor responses. CaCO3

nanoparticles also scavenge Hþ in the surgical wound site, eliciting an immunosupportive tumor microenvironment after surgery. TAM, tumor-associated macrophage.
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Administration for wound healing [23,24]. The fibrin gel was formed by
the interaction of fibrinogen and thrombin, and can be sprayed on sur-
gical wounds for quick and convenient treatment, promoting wound
healing by forming a connective, protective layer over the injured tissue.
The fibrin-gel-based delivery platform enhanced the local retention of
immunotherapeutics, improved their effect on tumor-infiltrating lym-
phocytes (TILs), and reduced the toxicity resulting from leakage into the
systemic circulation. CaCO3 nanoparticles were expected to dissolve
gradually, releasing the encapsulated anti-CD47 into the acidic inflam-
mation and TME, which usually plays an immunosuppressive role by
affecting immune cell functions including the polarization of
tumor-associated macrophages (TAMs), T-cell proliferation and cytokine
production. We found that the CaCO3 nanoparticles relieved the adverse
effects of the acidic environment, such as promoting the activation of M1
type TAMs. Meanwhile, the released anti-CD47 blocked the interaction
between CD47 and signal regulatory protein α, increasing macrophage
phagocytosis of cancer cells and tumor antigen presentation to T cells,
thus activating the adaptive immune response.

Utilizing fluorescent-dye-labelled anti-CD47, aCD47@CaCO3 nano-
particles and aCD47@CaCO3-loaded fibrin gel, we tracked the antibody
signal over time, confirming the prolonged retention and gradual release
of anti-CD47 from the gel over 3 weeks. As shown in the confocal imaging
and flow cytometry results, the blockade of different cancer cells by the
antibody significantly increased the phagocytosis of cancer cells by bone-
12
marrow-derived macrophages. Moreover, we demonstrated that CD47
blockade could activate dendritic cells and macrophages in vivo, which
usually play an important role in initiation of the adaptive immune
response after effective phagocytosis and presentation of antigens.

Application of aCD47@CaCO3-loaded fibrin gel to the tumor resec-
tion site effectively activated both the innate and adoptive immune re-
sponses, improving antitumor efficiency and decreasing the potential for
tumor recurrence. This prolonged the survival of mice without the in-
duction of side-effects. Moreover, local treatment with aCD47@CaCO3-
loaded fibrin gel was able to delay the growth of distant tumors due to
systemic immune responses induced by the local application of immu-
notherapeutic gel. Analysis of the mechanism of action confirmed that
the number of M1-polarized TAMs and CD103þ dendritic cells increased
significantly in the relapsed tumors after treatment. Of note, the infil-
tration of TILs, especially CD8þ T cells, increased in both relapsed and
distant tumors, and the infiltration of CD4þ T cells also increased but not
significantly. Increased TILs in distant tumors may be attributed to
activated macrophages and dendritic cells, which phagocytosed cancer
cells and presented tumor-specific antigens to CD8þ T cells, triggering the
robust antitumor immunity. Thus, local treatment with the immuno-
therapeutic gel activated the innate and adaptive immune responses both
locally and systemically. The local and systemic immune effects were
further improved, including a significant decrease in tumor growth, by
combination with T-cell-activating antibodies, such as anti-PD-1
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antibody.
Considering the ease of administration, good biocompatibility and

the positive therapeutic results of this technology, this method shows
potential for translation into clinical use. Further validation of the results
is needed in large animal models, which may help to define the feasibility
of this strategy. Specifically, we need to determine appropriate dose
levels and optimize the release kinetics of immunotherapeutics to
improve outcomes including overall survival, progression-free survival
and disease-free survival. More comprehensive evaluation of the poten-
tial side-effects is also important. As CD47 inhibitors have shown side-
effects after systemic administration in clinical trials, such as thrombo-
cytopenia and anemia, it is important to investigate whether local
application could cause toxicity in patients and define its dose-dependent
relationship. All mouse studies were carried out following the protocols
approved by the Institutional Animal Care and Use Committee at the
University of North Carolina at Chapel Hill and North Carolina State
University and complied with all relevant ethical regulations.
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