
Khamis et al. Malar J  (2018) 17:174 
https://doi.org/10.1186/s12936-018-2321-6

RESEARCH

Optimal control of malaria: combining 
vector interventions and drug therapies
Doran Khamis, Claire El Mouden, Klodeta Kura and Michael B. Bonsall* 

Abstract 

Background:  The sterile insect technique and transgenic equivalents are considered promising tools for controlling 
vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with 
artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing arte-
misinin resistance. While the cost-effectiveness of these controls has been investigated independently, their com-
bined usage has not been dynamically optimized in response to ecological and epidemiological processes.

Results:  An optimal control framework based on coupled models of mosquito population dynamics and malaria epi-
demiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homoge-
neous environments with and without vector migration. The costs of endemic malaria are weighed against the costs 
of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density 
dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with trans-
genic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release 
ratio necessary to cause disease fadeout.

Conclusions:  Combining vector control and drug therapies is the most effective and efficient use of resources, and 
using optimized implementation strategies can substantially reduce costs.
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Background
Vector-borne diseases inflict significant levels of human 
morbidity and mortality. Current estimates suggest that 
vector borne disease account for 17% of the global dis-
ease burden and over half of the world’s population are 
at risk of contracting a vector-borne disease. Just under 
half the world’s population live at risk of dengue [1] with 
more than 300M people contracting dengue annually [1]. 
Similarly, while the global incidence of malaria is falling, 
in 2015,  200M malaria infections were reported leading 
to an estimated 429,000 deaths mostly among African 
children under the age of 5 [2].

The World Health Organization (WHO) recom-
mends insecticide-treated bed nets (ITNs), indoor 
residual spraying (IRS) and anti-malarial drug therapies, 

specifically, the treatment of clinical malaria with arte-
misinin-based combination therapy (ACT), as the prin-
cipal methods used to combat malaria  [2, 3]. Catalyzed 
by the Roll Back Malaria Initiative around the United 
National Millennium Development Goals, a widespread 
scale-up of coverage of these control interventions suc-
cessfully reduced and locally eliminated malaria in 
sub-Saharan Africa; between 2000 and 2015, Plasmo-
dium infection in endemic regions of Africa halved and 
the incidence of clinical disease fell by 40%  [4]. This 
remarkable and widespread reduction is estimated to 
have averted 663 million clinical cases of malaria since 
2000  [4]. However, these gains are fragile and they are 
increasingly threatened by the emergence of Plasmodium 
strains that are resistant to anti-malarial drugs and mos-
quitoes that are resistant to the insecticides used to kill 
them.

Due to widespread resistance to anti-malarial drugs, 
the WHO recommends ACT as the front-line treatment 

Open Access

Malaria Journal

*Correspondence:  michael.bonsall@zoo.ox.ac.uk 
Mathematical Ecology Research Group, Department of Zoology, 
University of Oxford, South Parks Road, Oxford OX1 3PS, UK

http://orcid.org/0000-0003-0250-0423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-018-2321-6&domain=pdf


Page 2 of 18Khamis et al. Malar J  (2018) 17:174 

in all countries with endemic malaria. ACT was first 
introduced in the mid-1990s and are generally cost-
effective  [5]. Artemisinin is a highly potent plant-based 
compound which clears parasitaemia more rapidly than 
all other currently available anti-malarial drugs  [6, 7]. 
Moreover, genetic mutations which are thought to con-
fer resistance to the anti-malarial drug chloroquine also 
increase susceptibility to artemisinin and quinine  [8]. 
Therefore, ACT can help delay the development of 
resistance, as they combine fast-acting artemisinin with 
another class of anti-malarial drug (such as quinines or 
anti-folates). Despite these efforts, artemisinin resistance 
first emerged in the mid-2000s in Cambodia, resulting in 
longer parasite-clearance times and rising failure rates 
for some artemisinin-based drug combinations  [9]. This 
resistance has now emerged in or spread across main-
land Southeast Asia, appearing in Thailand, Cambodia, 
Myanmar and Vietnam [10–12]. For now, ACT is still an 
effective treatment in these countries, as parasites remain 
susceptible to some partner drugs  [13]. However, it is 
only a matter of time before these drugs begin to fail and 
while new anti-malarial drugs are being developed, it will 
be several years before they become available.

By far the most cost-effective intervention for reduc-
ing Plasmodium infection rates since 2000 has been 
the widespread roll-out of ITNs—bed nets treated with 
pyrethroid insecticides [4, 14]. As ITNs kill or disable the 
mosquitoes which land on them, even modest adoption 
rates of ITNs can reduce the malaria vector population 
and achieve community-wide benefits  [15]. Unfortu-
nately, although not surprisingly, the intense exposure to 
insecticides due to the adoption of ITNs and increase 
in IRS programmes is driving the spread of insecticide 
resistance in mosquitoes. Pyrethroid resistance was first 
detected in the mid-1990s [16], and is now ubiquitous in 
all African malaria vectors and is increasing in strength, 
meaning mosquitoes can tolerate ever-higher levels of 
chemical exposure [17]. Several countries have identified 
mosquito populations that are starting to develop resist-
ance to all four classes of insecticide that are approved by 
the WHO for IRS (organochlorines, organophosphates, 
carbamates and pyrethroids  [18–20]). Worryingly, there 
are indications that this insecticide resistance is already 
compromising the effectiveness of ITN and IRS control 
measures [17].

In this environment of ever-growing resistance, novel 
vector control techniques which seek to reduce mos-
quito populations without the need for chemical insecti-
cides may be vital for effective malaria management [10]. 
Pest control via the release of sterile insects is an old 
idea  [21] and its successes have been well-documented 
in other species  [22, 23]—although unforeseen circum-
stances, such as unidentified wild breeding sites, can 

cause problems for these control programmes  [24, 25]. 
The Sterile Insect Technique (SIT) may offer a means to 
control mosquito populations [26], and much modelling 
work has shown that SIT and its transgenic equivalents 
could be successful  [27–30]. The traditional radiation-
based SIT represents a form of ‘early-acting lethality’, 
in the sense that offspring die at the very earliest stage. 
However, such early-acting lethality may be undesir-
able: ecological studies show that larval habitats can 
exhibit overcompensatory density dependence, where 
the size of the adult population increases as larval den-
sity decreases  [31]. Consequently, traditional SIT con-
trol may be ineffective [32] or, worse, even increase adult 
mosquito populations [33, 34]! If overcompensatory den-
sity dependence occurs, an SIT is needed which exhib-
its ‘late-acting lethality’, where larvae fully contribute to 
density-dependent competition but then die at the end of 
the larval stage. Advances in molecular genetics are mak-
ing such late-acting SITs possible as transgenic insects 
carrying a dominant lethal gene have been developed [32, 
35, 36], where the progeny of transgenic mosquitoes die 
at the end of the larval or pupal stage [37].

Information on the costs and effectiveness of differ-
ent interventions are essential so that policy makers can 
make informed decisions. Detailed studies of the efficacy 
and cost-effectiveness of malaria interventions show that 
ACT is generally cost-effective [5, 38], and ITNs and IRSs 
are highly cost-effective  [39–41]—though in the long 
term resistance is likely to render them ineffective. There-
fore, even if it is technically possible to engineer trans-
genic insects which could reduce vector populations to a 
level where they can no longer sustain malaria transmis-
sion, if they are prohibitively expensive compared to the 
alternatives they are unlikely to change malaria manage-
ment policy. For this reason, it is important to assess the 
cost-effectiveness of novel vector control techniques at 
the earliest opportunity; although such estimates require 
many assumptions to be made, they can still be indicative 
of whether policy makers should take such vector con-
trol techniques seriously or not. To date, little is known 
about the the cost-effectiveness of early- or late-acting 
SITs. Cost–benefit analyses have been performed for tra-
ditional SITs in other pest insect species [42], but not for 
mosquitoes. One study has examined the cost-effective-
ness of using constant releases (rather than dynamically 
managed releases, which is investigated here) of trans-
genic late-acting SIT mosquitoes to reduce dengue [43]. 
However the cost-effectiveness of dynamic, optimized 
releases of transgenic late-acting SITs for malaria has 
not been examined, nor has any comparison been made 
between the cost effectiveness of early vs late-acting SIT.

Here, conventional early-acting SIT with genetics-
based late-acting SIT is compared for various strengths of 
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larval density dependence to assess how ecology affects 
the efficacy and cost-effectiveness of vector control. This 
vector control model is coupled to an epidemiological 
model of malaria spread between vector and host, using 
P. falciparum estimates for parameterization, under the 
action of ACT. The aim is to investigate both the efficacy 
of the combined drug and vector control strategies and 
identify the most cost-efficient way to deploy these strat-
egies. To do this, two control parameters are introduced: 
the SIT release ratio u and artemisinin treatment ratio w, 
which act on the population model and disease model, 
respectively. Cost functions for these two parameters are 
developed and then weigh against the economic burden 
of endemic disease. This ‘optimal control framework’ is 
used to investigate the most cost effective way to reduce 
the disease burden.

Methods
A stage-structured model of the mosquito popula-
tion [44, 45] is combined with a Ross–MacDonald epide-
miological model of the malaria dynamics  [46–50]. The 
governing ordinary differential equations for the larval 
(L) and adult female (A) mosquito populations and the 
proportion of the human (h) and vector (v) populations 
that are infected (and infective) are 

(1a)
dL

dt
= ρA(t)C(A,u)− f (L)L(t)− (m+ µL)L(t),

where ρ is the mosquito oviposition rate, m is the rate 
at which larvae mature into adults (m/2 represents half 
the larvae maturing into adult females), µL and µA are 
the density-independent mortality rates of the larval and 
adult stages, respectively, N is the total host population, 
b is the biting rate of the vectors, a is the proportion of 
bites by infected mosquitoes on susceptible humans that 
produce an infected human, c is the proportion of bites 
on infected humans by a susceptible mosquitoes that 
produce an infected mosquito, γ is the rate of recovery. 
The disease model is parameterized using P. falciparum 
estimates, see Table 1. ACT is assumed to affect a frac-
tion w (the treatment proportion, or drug coverage) of 
infected humans through an increase in their recovery 
rate by an amount s. A continuous-time approach is cho-
sen over a discrete-time model in order to capture the 
effect of control technologies and density-dependent 
regulation in overlapping generations. However, in order 
to develop the mathematics for an optimization analysis, 

(1b)
dA

dt
= m

2
L(t)− µAA(t),

(1c)
dh

dt
= A(t)

N
ba(1− h(t))v(t)− (γ + w(t)s)h(t),

(1d)
dv

dt
= bc(1− v(t))h(t)−

(

µA + 1

A(t)

dA

dt

)

v(t),

Table 1  Parameter definitions and  values. Disease parameters use P. falciparum estimates  Costs inflated to 2016 US$ 
using, where available, the 2008 baseline values from the supporting material of Alphey et al. [43]

Parameter Description Default value Notes

N Host population 2× 105 Variable

k
∗ Vectors per host at equilibrium 2 But can be as high as 200 [69, 71–73]

b Mosquito bite rate 0.5 per day [74]

a Vector to human transmission efficiency 0.07 [75]

c Human to vector transmission efficiency 0.1  [76, 77]

γ Malaria recovery rate 1/14 per day Variable, assuming a 2-week average with conventional 
treatment

s Artemisinin-enhanced recovery rate 1
3
ln 10 per day 90% success rate over 3 days [5, 78]

ρ Per adult female oviposition rate 16 per day [79–81]

m Larval maturation rate 0.1 (0.05, 0.17) [82]

µA Adult mosquito death rate ln 10
9  per day [73, 76, 77, 83, 84], chosen to be conservative

µL Density-independent larval death rate 0.03 per day [85]

β Strength of density dependence 0.9 Varies from β < 1 for contest to β > 1 for scramble

ν Scale of larval density-dependence Eq. (4) Ensures A∗ = k
∗
N

θ1 Cost per infected individual 11.43γ (3.03γ , 37.12γ ) $ per day Mean (min, max) from [61]

θ2 Cost of artemisinin therapy 4.61
3  (

3.96
3
, 5.57

3
) $ per day Mean (min, max) from [5] assuming 3 day treatment

θ3 × 104 Cost per 104 insects released 9.11 (1.93, 25.36) $ per day Mean (min, max) from [43, 86–89, 89, 90]

ψ Future discounting factor 0.1/365 per day Variable
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a simplifying assumption is made such that no time-
delayed effects occur, such as parasite incubation, egg 
development or drug-clearing times.

The function C(A,  u) in (1) describes the effective 
reduction in fecundity due to mating with released ster-
ile males (assuming the populations are well-mixed and 
undergo random mating), and is defined as

where A∗ is the equilibrium adult female mosquito popu-
lation (without vector control), and u is the release ratio 
of sterile male mosquitoes (hence uA∗ gives the instanta-
neous, i.e. daily, number of insects being released). The 
equilibrium levels of endemic P. falciparum infection (as 
a fraction of the total populations) are h∗ (hosts) and v∗ 
(vectors). Using Global Health Observatory data [51] for 
malaria prevalence in the most hard-hit African nations 
and estimates of sporozoite rates from Kilama et al. [52] 
to produce order-of-magnitude approximations for h∗ 
and v∗, we use the transmission efficiencies a and c to set 
the endemic equilibrium levels to ∼1%.

While there is some rudimentary information on the 
magnitude and type of intraspecific competition in larval 
Anopheles [31, 53], this is neither sufficiently comprehen-
sive nor definitive. As such a relatively flexible form of 
density dependence [54] is chosen that has been recently 
used elsewhere to explore the impact of ecological 
intraspecific competition and genetics-based methods of 
vector control [34]. This form of density dependence was 
originally proposed by Maynard  Smith and Slatkin  [55] 
and is of the form

Density dependent effects are set by a scale parameter 
(ν ) and all larval cohorts experience the same strength 
of density dependence (which can range from contest—
resources monopolized by few individuals—to scram-
ble—resources shared equally by all—by varying the 
coefficient β). Both the timing of density dependence 
with respect to genetic lethality mechanisms and the 
strength of density dependence are well-known to affect 
vector control programmes and can lead to ‘bad’ SIT 
effects [33, 34]. ν is set to satisfy the relation

to ensure that the equilibrium population A∗ is equiva-
lent to k∗N , the number of vectors per host at equilib-
rium multiplied by the host population.

The population model (1a) and (1b) is modified slightly 
if sterile insect releases are replaced with releases of 
insects modified with a late-acting lethal gene [an 

(2)C(A,u) = A(t)

A(t)+ u(t)A∗ ,

(3)f (L) = ln
(

1+ (νL)β
)

.

(4)ν = m

2k∗NµA

(

e{ρm/(2µA)−m−µL} − 1
)

1
β
,

early-acting lethal gene is adequately modelled by (1a) 
and (1b)]. Genetic mortality is assumed to occur at the 
end of the larval stage, such that all offspring will contrib-
ute fully to density-dependent mortality. Thus, the stage-
structured mosquito population model takes the form 

where C(A,  u) is as defined in (2). Model (5) will be 
referred to as ‘late-acting SIT’ as opposed to the ‘early-
acting SIT’ (Eq. 1).

Optimal control
A cost functional is defined that measures the cost per 
capita, in US$, of disease level (h), artemisinin medica-
tion (w) and vector control (u) over a fixed time period 
t ∈ [0,T ]:

where future costs are discounted at a constant rate ψ to 
deal with opportunity costs in investing in public health 
control for immediate benefits [56, 57], x = (L,A, h, v)⊤ is 
the vector of state variables and the parameters θi, k∗ and 
ψ take values given in Table 1. The price factors θi and the 
cost function exponents mi govern the scale and behav-
iour of cost for each contributing factor, and form the 
(per capita) cost functions Ch = θ1h

m1, Cw = θ2hw
m2 and 

Cu = θ3k
∗um3 (see Appendix A: “Optimal control formu-

lation” for more details). Drug coverage was capped at 
a maximum of 60% (wmax = 0.6); this prevents the opti-
mization approach from recommending drug coverages 
close to 100%, as such high levels would be unachievable 
in reality.

The goal is to minimize the total cost of the malaria 
management strategy, where the controls are the insect 
release ratio (u) and the artemisinin treatment ratio (i.e. 
drug coverage, w):

The method used to solve this optimisation problem is 
described in Appendix A: “Optimal control formulation”, 
along with some associated mathematical results.

Results
Disease elimination and extinction
Model simulations (based on the parameters in Table 1) 
show, as expected, that in the absence of control, the 

(5a)
dL

dt
= ρA(t)− f (L)L(t)− (m+ µL)L(t)

(5b)
dA

dt
= m

2
L(t)C(A,u)− µAA(t),

(6)
Jpc[x(u,w)] =

∫ T

0
e−ψt

[

θ1h
m1 + θ2hw

m2 + θ3k
∗um3

]

dt,

(7)
min
u≥0

0≤w≤0.6

{Jpc}.
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proportion of infected individuals, h, and infected vec-
tors, v, will reach an endemic level (Fig.  1a). Introduc-
ing drug control, whereby individuals recover at an 
enhanced rate, can reduce endemic levels of disease in 
hosts (Fig. 1b). Mosquito vector control (through popu-
lation suppression technologies such as SIT or genetic 
engineering) can effectively reduce disease (Fig.  1c); by 
combining both vector control and drug-based therapies, 
disease spread is reduced and disease control is most 
effective (Fig. 1d).

It is usual to discuss values of the basic reproductive 
ratio (R0) of disease when analysing epidemiological 
models. The value of R0 is a static measure of the speed 
of disease spread in a naïve environment [49, 58]. Effec-
tive reproductive ratios can be constructed which take 
account of growing host populations  [59] or heterog-
enous environments  [60], but these still cannot capture 
the dynamic effect of vector control via SIT or transgenic 
insect releases. Rather than investigating how quickly a 
disease might invade a disease-free population (a situa-
tion in which SIT releases would not be in use), here it 
is investigated how far below the control-free endemic 
equilibrium the prevalence of disease is pushed by vec-
tor control (a situation in which insect releases would be 

called for). The equilibria of the system with and with-
out control are given in Appendix B: “R0 and equilibria”. 
If the application of control (drug-based and vector) 
takes the new equilibrium of h to zero, then that point 
in parameter space is considered disease-free. In the 
classic control-free, disease-naïve scenario, the R0 value 
depends upon the square of biting rate b, and is linear in 
a and c (see Appendix B: “R0 and equilibria”). Thus, b is 
of greater importance to disease spread than the other 
parameters that constitute R0 (a, c, k, γ and µA). Changes 
in b will therefore exert relatively large changes in dis-
ease prevalence, which can be balanced by implementa-
tion of drug therapies (w) and vector control. Therefore, 
disease-free regions that occur in b–w parameter space 
are investigated.

For the constant release ratio u = 0.25 (where here 
releases are made in a ratio to the current vector popu-
lation A(t) rather than the equilibrium population A∗, a 
comparison first made in [37]) the disease-free region 
of b–w space is increased considerably (Fig.  2), and the 
severity of the endemic disease away from the disease-
free region is reduced for both early- and late-acting SIT 
(compare Fig.  2a with Fig.  2b, c). The greatest effect of 
vector control on h∗ is seen at w = 1 (Fig. 2b, c), showing 

Fig. 1  Vector control and drug therapies are most effective when used in tandem. Proportions of humans (h) and vectors (v) infected are plotted 
under four control scenarios. a no control, w = 0, u = 0; b only artemisinin treatment, w = 0.05 (5% drug coverage), u = 0; c only vector control, 
w = 0, u = 0.2 (releasing modified males at a rate of 20% of the wild male populations per day); d both artemisinin treatment and vector control, 
w = 0.05, u = 0.2. The total number of infected mosquitoes at time t = 90 days for each scenario is a 6125 b 1145 c 238 d 55; the vector control 
suppresses the vector population significantly. Early-acting SIT is assumed
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that the most effective way to combat endemic disease is 
through a combination of vector control and drug-based 
therapies. Late-acting SIT is seen to out-perform early-
acting SIT at the same release ratio.

The critical release ratio u = uc (when releasing uA(t) 
insects rather than uA∗ insects) that leads to disease fade-
out (h∗ → 0) may be found (see Appendix B.2: “Equi-
libria and the effect of control”). For biting rates below 
b ≈ 1 (i.e. vectors blood feed as frequently as once per 

day), manageable vector control releases, u < 0.1, can 
be used to cause disease fadeout when drug coverage is 
sparse, w < 0.2 (Fig. 3). For high biting rates, b > 1.2, the 
use of drug therapies can substantially reduce the critical 
release ratio, for example for b = 2 maintaining drug cov-
erage of 60% can reduce the required mosquito release 
rates from 30% of the wild male population daily to under 
5%.

Fig. 2  Vector control broadens disease-free parameter space, causing disease fade-out even for high biting rates. The level of endemic disease, h∗

, across b–w parameter space (biting rate–drug treatment proportion) with a no vector control, b early-acting SIT releases and c late-acting SIT 
releases. The release ratio in b and c is u = 0.1 (daily releases of 10% of the wild male population), with the ratio being of the current vector popula-
tion A(t) rather than the equilibrium population A∗ (elsewhere in the paper the ratio of A∗ is used). Disease-free regions of parameter space are 
coloured white. Other parameters as in Table 1

Fig. 3  Vector control releases can achieve disease fade-out for sparse drug coverage when biting rates are below b < 1.2. The critical release ratio 
u = uc that leads to disease fadeout (h∗ → 0) for a given treatment proportion w as the mosquito biting rate b varies, as calculated using (46) and 
(47). The release ratio u is of the current vector population A(t) rather than the equilibrium population A∗ (elsewhere in the paper the ratio of A∗ is 
used). Early and late SIT are compared; all other parameters as in Table 1
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Optimal control
Control regimes may more efficiently (with respect to 
time and cost) combat disease when the optimal con-
trol solutions (described in Appendix A.1: “Optimality 
conditions”) are implemented (Fig. 4). In Fig. 4a the four 
naïve control scenarios of Fig.  1 are compared with an 
optimal vector control strategy u∗(t), (29), with no arte-
misinin treatment, and an optimal control strategy using 
both vector control and drug therapies w∗(t), (18). The 
breakdown of costs (using the pricing parameters given 
in Table  1) neglects the one-off capital investment used 
to a construct insect-rearing facility (the facility could 
be used again for future control efforts—the operational 
costs for a single season are presented here).

When density-dependent effects at the larval stage are 
weak, early- and late-acting SIT technologies are similar 
in efficacy; when density-dependent effects are strong, 
the two technologies diverge and late-acting SIT is shown 
to be the most cost-effective (Fig. 5). Although the form 
of the optimal control strategies for early- and late-acting 
SIT are similar (Fig. 5b, c), the enhanced efficacy of late-
acting SIT due to density-dependent mortality means 
lower release ratios produce optimal results, requiring 
facilities with lower weekly rearing capacities.

The general cost function exponents in (6) for h and 
u allow for possible nonlinearities in cost to be investi-
gated separately for each variable; the exponent of Cw  is 
restricted to m2 > 1 as outlined in the discussion in 
Appendix A.1: “Optimality conditions”. Figure  6a shows 
that reducing the cost exponent m1 of Ch increases the 

cost per capita over the control period for the combined 
vector control and drug therapies optimal strategy. An 
exponent m1 < 1 describes a situation where treating a 
small proportion of the population is expensive, but the 
cost levels off at higher treatment proportions as econo-
mies of scale take effect; conversely, an exponent m1 > 1 
describes a situation where treating a reasonable pro-
portion of the population can be done cheaply, but the 
price steepens for high proportions, capturing the fact 
that clinics may exceed capacity, or some sections of the 
population may be more difficult to reach (see Fig.  6b). 
Changing the cost function of the vector control variable 
u has a relatively small effect due to the low cost associ-
ated with releasing a large number of mosquitoes (Fig. 6a, 
lower plot). The optimal strategy for vector control is 
generally to swamp the wild population at the beginning 
of the control period, and then reduce the releases as the 
control takes effect (Fig. 7a). For a square root cost func-
tion it is very cheap to release a large number of mosqui-
toes (which is mathematically optimal), but the greater 
the initial influx of released mosquitoes, the greater the 
capacity must be of the rearing facility. This can lead to 
construction costs that dwarf the control-free costs of 
conventional treatment of endemic malaria over a single 
season. In fact, diminishing returns are seen in the effect 
on h of increasing the initial release ratio u (Fig. 7b), as 
the square root cost function solution for u causes only 
a slight decrease in h over the control period when com-
pared to linear or quadratic cost functions, for which the 
optimal release strategies are initially more conservative.

Fig. 4  Optimal strategies for releases and drug treatments can substantially reduce the cost of managing malaria. a The proportion of infected 
humans under six control scenarios (where w is the host treatment proportion and u is the insect release ratio with respect to the wild vector popu-
lation): no control (x-axis label “0,0”), w = w0, u = 0 (x-axis label “w0,0”), w = 0, u = u0 (x-axis label “0,u0”), w = w0, u = u0 (x-axis label “w0,u0”), w = 0

, u = u
∗(t) (x-axis label “0,u∗”), w = w

∗(t), u = u
∗(t) (x-axis label “w∗,u∗”), where w0 = 0.05, u0 = 0.2 (5% drug coverage and releasing 20% of the wild 

male population per day) and w∗, u∗ are the optimal control strategies defined in (18) and (29), respectively. b The total cost of the scenario, includ-
ing spending on traditional healthcare (h), spending on artemisinin treatment (w) and spending on insect releases (u). Early-acting SIT is assumed. 
Quadratic cost functions of h, w and u are assumed
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Fig. 5  Late-acting lethality suppresses the effects of over-compensatory larval density dependence. a Cost per case averted (excluding initial 
capital investment in construction) for optimized release strategies of early-acting and late-acting SIT, for the parameters given in Table 1, as the 
strength of the larval density dependence β is increased. The density dependence runs from contest for β < 1 to scramble for β > 1. The number 
of cases averted is approximated by ([mean no. with no control − mean no. with control]/average duration of disease) × no. of days). The change in 
the optimal release strategy is shown for b early SIT, and c late SIT for three specific values of β. Artemisinin treatment is not used

Fig. 6  Vector control costs, unlike medical care costs, are insensitive to the form of cost function. a Cost per capita for the optimal strategy over a 
40 day control period for three cost functions: linear, quadratic and square root; and three epidemiological parameter sets: low, medium and high 
(for low a, b, c, k∗ = 75% of medium, for high a, b, c, k∗ = 125% of medium). In the top figure of a the cost function Ch is varied while keeping Cu and 
Cw quadratic (m2 = m3 = 2); in the bottom figure the cost function Cu is varied while keeping Ch and Cw quadratic (m1 = m2 = 2). The number of 
cases averted is approximated by ([mean no. with no control - mean no. with control]/average duration of disease) × no. of days). b A sketch of the 
three cost functions θ̂i(·) (linear), θ̂i(·)1/2 (square root) and θ̂i(·)2 (quadratic), where the altered price θ̂i that multiplies the cost function is: 0.8 (square 
root), 1 (linear), 1.5 (quadratic). Late-acting SIT is used
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Concentrated or distributed control?
A small network of three equally spaced populations is 
established to investigate the effects of migration on the 

efficacy of vector control, Fig. 8 (see Appendix C: “A net-
work model” for model details). Three methods of vector 
control are compared: a concentrated control approach, 

Fig. 7  Increasing the initial insect release ratio has diminishing returns on the effect on disease prevalence. Example solutions from the default 
epidemiological parameter set of Fig. 6a when Cu is varied through square root, linear and quadratic. a Shows the optimal vector release strategy, b 
shows the resulting suppression of disease in the host population. Late-acting SIT is used. Other parameters as in Table 1

Fig. 8  Migration can harm concentrated control efforts; distributed vector control with combined drug treatment is optimal. The proportion of 
hosts infected in each of three identical populations with SIT release ratios u1, u2 and u3, where migration is 10% between nodes except in a where 
there is no migration. a u1 = 3, u2 = u3 = wi = 0; b u1 = 3, u2 = u3 = wi = 0 (concentrated control); c u1 = u2 = u3 = 1. wi = 0 (distributed con-
trol); d ui(t) = u

∗
i
(t), wi = 0 (optimal vector control); e ui(t) = u

∗(t), wi(t) = w
∗
i
(t) (optimal combined drug treatment and vector control). f Cost 

breakdowns for the five scenarios plotted above. All parameters as in Table 1. Late-acting lethality is used
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where one population is subjected to a constant high SIT 
release ratio u = 3, a distributed control approach, where 
each population is subjected to a constant low SIT release 
ratio u = 1 (the total number of released insects is the 
same in these two cases), and an optimal vector control 
approach for each population, with and without com-
bined optimized drug treatment. As SIT methods are an 
area-wide control strategy, mosquito dispersal, although 
often limited by energy resources, from an uncontrolled 
population can damage the efficacy of vector control in a 
focal population (Fig. 8a, b). Distributing control efforts 
across populations is shown to be a more economically 
efficient and effective vector intervention strategy than 
focusing on a single disease hot-spot (Fig. 8b, c). Optimal 
vector control strategies (rather than constant release 
ratios) can reduce total expenditure, but the greatest 
monetary saving is made when combining optimal vector 
control with optimal drug treatment (Fig. 8d–f).

Discussion and conclusions
Here a novel framework that links disease dynamics, an 
ecological mosquito population model and an economic 
optimal control formulation has been developed. An 
optimal control framework was used to assess the effi-
cacy and cost-effectiveness of combining ACT with two 
novel vector control technologies: releasing either ster-
ile mosquitoes or transgenic mosquitoes carrying a late-
acting lethal gene. In all cases, the transgenic late-acting 
mosquitoes are more cost-effective than the early-acting 
sterile insects. This is because the transgenic mosquito 
larvae compete with the wild mosquito larvae; the result-
ing competition increases larval mortality which reduces 
the wild type adult mosquito population. Immigration 
of vectors from uncontrolled populations can damage a 
concentrated control effort, and found that it is optimal 
to use distributed control strategies combined with drug 
treatments. Results from this analysis revealed that the 
combined drug and vector control interventions have 
a cost per case averted of ∼ $1 (2016 US$) if construc-
tion costs are neglected, or ∼ $4 if construction costs are 
included in the control costs for a single season. These 
estimates are necessarily based on assumptions about 
the cost of transgenic releases and construction costs 
of insect rearing facilities, which are uncertain given 
that this technique is at such an early stage of develop-
ment. Nevertheless, even if the real costs are double or 
even triple those predicted here, they compare extremely 
favourably with the economic costs of the current leading 
malaria control methods [61].

Boundaries of disease-free regions of (biting rate–drug 
treatment ratio) parameter space were found by calculat-
ing post-control population equilibria. This method was 
chosen over the usual R0 calculations for two reasons: (i) 

the dynamic effect of vector control could not be captured 
by the static R0 value, (ii) the disease-naïve invasion basis 
of R0 does not fit well with the goal of assessing the control 
of endemic disease. Vector control has a positive effect on 
the size of disease-free regions and can reduce the preva-
lence of disease outside of these regions (Fig. 2). The use 
of drug therapies can significantly lower the critical release 
ratio required to eradicate disease even for high vector bit-
ing rates (Fig. 3), showing that combining control methods 
can be an effective disease management strategy.

Drug therapies act to reduce the level of endemicity and 
suppress the initial spread of disease, while vector con-
trol combats disease over time and continuously reduces 
infection levels towards zero (Fig.  4a). Optimal control 
strategies follow a robust pattern, indicating that a high 
initial release ratio is necessary for cost-effective vector 
control (Fig. 7a). A large proportion of the cost of a single-
season control regime is taken up by the construction of 
the insect rearing facility, but these costs were neglected 
as it was assumed that vector control efforts will be 
repeated every season using the same infrastructure. 
Multi-season control efforts will benefit more from opti-
mal vector release strategies as returns are made from the 
construction investment in the form of efficiency savings 
and reductions in the burden of conventional health care. 
There is an opportunity to extend this work by including 
construction costs in the optimization procedure which, 
while not straightforward, would enable an investigation 
of the (possibly competing) dual desires to keep initial 
costs down but strive for long-term cost efficiency.

An investigation of nonlinear (concave or convex) cost 
structures was carried out to model different real-world cost 
responses (Fig. 6). For concave-cost SIT releases, diminish-
ing returns were found in the effect on the infection level 
when swamping the wild population with large numbers 
of lab-reared insects (Fig.  7). This suggests that it is wise 
to be conservative with maximum facility output require-
ments and highlights the importance of checking (prior to 
implementation) the cost-effectiveness of optimal strategies 
derived using a variety of cost structures. The exact form of 
the cost functions could be better-informed with additional, 
or more specific, data. Alternatively, to develop better com-
parisons between different regions, costs associated with 
endemic malaria and costs of controls might be weighted 
using GDP per capita, or through a purchasing power par-
ity scheme (such as the Geary–Khamis dollar; [62]). Vector 
control costing could be made more reliable if information 
on Anopheles gambiae facility operational costs (insect rear-
ing, staff pay, heating, materials etc.) was available, rather 
than inferring from data about facilities rearing different 
species. Information on the cost of surveying (needed for 
estimating current vector populations and for effectively 
targeting releases) would also be beneficial.
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A network population model with migration between 
nodes weighted by relative distance allowed optimal con-
trol in a spatial environment with identical host popula-
tions to be studied. Migration from uncontrolled nodes 
was seen to lessen the effectiveness of control on neigh-
bouring nodes (Fig. 8a, b). Distributed control at all per-
tinent nodes was shown to be the most efficient use of 
resources (Fig. 8c). While it is difficult to parameterize a 
model of mosquito movement  (though values between 
4–24% migration between neighbouring villages are 
reported in [63]), the spatial ecology of A. gambiae will 
undoubtedly be crucial in determining the spread or con-
tainment of control efforts. The network model proposed 
here could be improved by including human move-
ment [64] as a means to spread infection. Using the opti-
mal control framework in such a model would require 
reformulating cost functions capable of capturing hetero-
geneous populations, which is beyond the scope of this 
study.

The ecological and epidemiological models used here 
are simplified to allow an optimal control framework to 
be established. Worthwhile extensions to this work would 
be the addition of a disease incubation period in either 
the vector or host; use of time delays between egg laying 
and hatching and pupation and emergence; modelling 
possible periods of immunity to reinfection conferred 
by artemisinin treatments  (if the prophylactic period is 
greater than the infectious period; [65]), although the 
relationship between drug half-life and resistance devel-
opment is complex [66, 67]; a relaxation of the assump-
tions of random mating between wild and released 
mosquitoes  (unsuccessful mating has been a serious 
impediment to codling moth control programmes; [68]) 
and of perfect sterility and lethality; the inclusion of fit-
ness costs for sterile or transgenic mosquitoes. Finally, 
that other vectors of malaria (e.g. Anopheles funestus) 
can be important  [69], and interspecific competition 
may lead to a shift of primary vector if A. gambiae is sup-
pressed [70]. A model incorporating the ecologies of two 
vector species would shed light on the cost-effectiveness 
of control if primary vector replacement occurs.
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Appendix A: Optimal control formulation
Optimal control strategies for disease control rely on 
defining objective functions from which the cost-effec-
tiveness of interventions can be evaluated. Here the 
costs of treating infected individuals, the costs of drug 
based therapies and the costs of SIT mosquito releases 
are explored, and an objective functional is defined to 
explore different cost structures (costs are linear, costs 
are convex, costs are concave).

Two control parameters are present in the model (1): 
the release ratio u and the proportion medicated w as 
optimal control strategy to manage the spread of malaria 
is required. This strategy would minimize the socioeco-
nomic burden of malaria, the cost of artemisinin medi-
cation and the cost of vector control via sterile insect 
release. If the cost of direct and indirect health care and 
lost productivity due to a single case of malaria is θ1 
per day, then the daily cost of having a proportion h of 
a population of size N infected is θ1Nh, which has units 
of dollars per day. To capture the potential nonlinear-
ity of cost, the cost function is defined as Ch = θ1Nh

m1 , 
which also has units of dollars per day. The exponent 
0 < m1 ≤ 2 affects only the dimensionless quantity h, 
and varying m1 over its range allows us to investigate cost 
structures that are linear, convex or concave. Similarly, if 
the dollar cost of medicating a single patient with arte-
misinin-based therapy is θ2 per day, then the daily cost of 
medicating a proportion w of an infected population of 
size Nh is θ2Nhw. As before, a cost function is defined, 
Cw = θ2Nhw

m2 , which has units of dollars per day and 
where the exponent 0 < m2 ≤ 2 affects only the dimen-
sionless quantity w. Finally, if the cost of rearing and 
releasing one (or 100, or 1000, depending on population 
units) sterile or GM insect per day is θ3, then releasing 
a proportion u of the equilibrium vector population A∗ 
daily will cost θ3A∗u per day. Again, to allow for possi-
ble nonlinearity in costing, the cost function is defined as 
Cu = θ3A

∗um3 , which has units of dollars per day inde-
pendent of the value of the exponent 0 < m3 ≤ 2, which 
affects only the dimensionless quantity u.

Using the cost functions defined above, a cost func-
tional is defined

http://osf.io/8kf6x
http://osf.io/8kf6x
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where future costs are discounted at a constant rate ψ to 
deal with opportunity costs in investing in public health 
control for immediate benefits [56], and x = (L,A, h, v)⊤ 
is the vector of state variables. The cost function J meas-
ures the total cost of disease, artemisinin medication and 
vector control over a fixed time period T, and has units of 
dollars. From (8) a new functional is defined Jpc = J/N , 
which measures the total cost per capita:

where k∗ = A∗/N  is the number of vectors per host at 
control-free equilibrium. The goal, then, is to minimize 
the total cost of the malaria management strategy:

To solve the optimization problem (1) (9) and (10), the 
Hamiltonian and adjoint system (see below) are formed 
and analytical expressions for the characterizations of the 
optimal controls u∗(t) and w∗(t) are derived that mini-
mize the Hamiltonian (see Appendix A.1: “Optimality 
conditions”). To solve the system, the forward–backward 
sweep method is used with Runge–Kutta integration 
schemes [91].

For early-acting SIT, the Hamiltonian is

where �i(t) are the adjoint variables. Each adjoint variable 
�i satisfies an equation found by differentiating the Ham-
iltonian with respect to its corresponding state variable xi 
and negating: 

(8)
J [x(u,w)] =

∫

T

0

e
−ψt

[

θ1Nh
m1 + θ2Nhw

m2 + θ3A
∗
u
m3

]

dt,

(9)
Jpc[x(u,w)] =

∫ T

0
e−ψt

[

θ1h
m1 + θ2hw

m2 + θ3k
∗um3

]

dt,

(10)
min
u≥0

0≤w≤0.6

{Jpc}.

(11)

H = e
−ψt

[

θ1h
m1 + θ2hw

m2 + θ3k
∗
u
m3

]

+ �1[ρAC(A,u)

−f (L)L− (m+ µL)L]+ �2

[

m

2
L− µAA

]

+ �3

[

A

N
ba(1− h)v − (γ + ws)h

]

+ �4

[

bc(1− v)h− mL

2A
v

]

,

(12a)

d�1

dt
= − ∂H

∂L
= �1(f

′(L)L+ f (L)+m+ µL)

− 1

2
�2m+ �4

mv

2A
,

(12b)

d�2

dt
= − ∂H

∂A
= −�1ρC(A,u)

(

1+ A
∂

∂A
logC(A,u)

)

+ �2µA − �3
ba

N
(1− h)v − �4

mLv

2A2
,

 The system (12) is closed by the transversality condition

For the late-acting SIT, which prevents larvae from 
reaching the adult stage [the dynamics of which are cap-
tured in (5)], the Hamiltonian is

and the adjoint system is 

 with boundary conditions as defined in (13).

(12c)

d�3

dt
= − ∂H

∂h
= −e

−ψt(m1θ1h
m1−1 + θ2w

m2)

+ �3

(

A

N
bav + γ + ws

)

− �4bc(1− v),

(12d)

d�4

dt
= − ∂H

∂v
= −�3

A

N
ba(1− h)+ �4

(

bch+ mL

2A

)

.

(13)�i(T ) = 0.

(14)

H = e
−ψt

[

θ1h
m1 + θ2hw

m2 + θ3k
∗
u
m3

]

+ �1[ρA− f (L)L− (m+ µL)L]

+ �2

[

m

2
LC(A,u)− µAA

]

+ �3

[

A

N
ba(1− h)v − (γ + ws)h

]

+ �4

[

bc(1− v)h− mL

2A
C(A,u)v

]

,

(15a)

d�1

dt
= − ∂H

∂L
= �1(f

′(L)L+ f (L)+m+ µL)

− 1

2
�2mC(A,u)+ �4

m

2A
C(A,u)v,

(15b)

d�2

dt
= −∂H

∂A
= −�1ρ − �2

(

m

2
L

∂

∂A
C(A,u)− µA

)

− �3
ba

N
(1− h)v

− �4
mLv

2A2
C(A,u)

(

1− A
∂

∂A
logC(A,u)

)

,

(15c)

d�3

dt
= − ∂H

∂h
= −e

−ψt(m1θ1h
m1−1 + θ2w

m2)

+ �3

(

A

N
bav + γ + ws

)

− �4bc(1− v),

(15d)

d�4

dt
= − ∂H

∂v
= −�3

A

N
ba(1− h)

+ �4

(

bch+ mL

2A
C(A,u)

)

.
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A.1 Optimality conditions
The optimal controls (u∗,w∗) minimize the Hamiltonian 
H. Thus,

For the early-acting SIT, artemisinin control is investi-
gated. When m2 �= 1,

The optimal control w∗ may then be found:

The second derivative of H indicates whether the solution 
is a maximum or a minimum:

this is only positive if m2 > 1, so the solution (18) is 
restricted to cost functions with m2 > 1.

For the vector control, consider the case m3 = 1. Differ-
entiating the Hamiltonian for early-acting SIT produces

which may be rearranged to form a quadratic in u and 
subsequently solved to give

where Ar = A/A∗ and

The concavity condition holds for (21), as ∂
2H
∂u2

> 0. For 
late-acting SIT, the form (21) still holds but with

For the case m3 �= 1, differentiating the Hamiltonian 
leads to a rather more complicated equation for the char-
acterization of u∗. For the quadratic cost function m3 = 2, 
the derivative of the Hamiltonian for early-acting SIT is

Equation (24) may be rearranged to form a cubic in u:

(16)
∂H

∂u
= 0 at u = u∗,

∂H

∂w
= 0 at w = w∗.

(17)
∂H

∂w
= m2θ2hw

m2−1e−ψt − �3sh = 0 at w = w∗.

(18)w∗ =
(

�3s

m2θ2
eψt

)
1

m2−1

.

(19)∂2H

∂w2
= (m2 − 1)m2θ2hw

m2−2eψt;

(20)

∂H

∂u
= m3θ3

A∗

N
e−ψt − �1ρA

2A∗

(A+ A∗u)2
= 0 at u = u∗,

(21)u∗ = −Ar ±
√
χ ,

(22)χ = A2
r

�1ρN

m3θ3
eψt .

(23)χ = mLA2
rA

∗

2m3θ3k∗
eψt(�2A− �4v).

(24)

∂H

∂u
= 2θ3u

A∗

N
e−ψt − �1ρA

2A∗

(A+ A∗u)2
= 0 at u = u∗.

(25)u3 + 2Aru
2 + A2

r u− χ = 0 at u = u∗.

To aid analysis, (25) is rewritten as a depressed cubic by 
making the change of variables û = u+ 2Ar/3; then,

where

where χ is as defined in (22). The three roots of the equa-
tion (26) may be succinctly expressed in the form

from which the optimal control u∗ may be constructed by 
inverting the change of variables,

For late-acting SIT the characterization is also defined by 
(29) with (27) and (28), but with χ now defined by (23).

The solutions (29) and (28) will either be all real, or 
be made up of one real root and two complex conjugate 
roots; on top of this, any real root may be negative. The 
character of each root—each value of j in (28)—is not 
fixed in time, and each may shift from real to complex as 
the parameters p, q evolve. When choosing the optimal 
solution, at each point in time, the non-zero, non-neg-
ative real root is selected. If (all) the real root(s) is (are) 
negative at a given time, the control is set to zero at that 
time. If all three roots are real and positive, the minimum 
value is taken. For m3 = 2, ∂

2H
∂u2

> 0 is found so the solu-
tion is a minimum.

An analytical solution may also be found for a square 
root cost function, m3 = 1

2 . In this case, for early-acting 
SIT, the solution is

Making the change of variables µ = u
1
2 (30) can be writ-

ten as a depressed quartic equation for µ,

where

where χ is as defined in (22). The solutions may then be 
written down using the canonical theory,

(26)û3 + pû+ q = 0 at u = u∗,

(27)p = −A2
r

3
, q = − 2

27
A3
r − χ ,

(28)
û
∗
j = 2

√

−p

3
cos

(

1

3
arccos

(

3q

2p

√

3

−p

)

− 2π j

3

)

,

j = 0, 1, 2,

(29)u∗ = û∗ − 2

3
Ar .

(30)

∂H

∂u
= 1

2
θ3u

− 1
2 k

∗
e
−ψt − �1ρA

2

A∗(Ar + u)2
= 0 at u = u

∗
.

(31)µ4 + pµ2 + qµ+ r = 0,

(32)p = 2Ar , q = −2A2
rχ , r = A2

r ,

(33)µ = ±1
1

2

√
2m̄±2

√

√

√

√−
(

p+ m̄

2
±1

√
2q

4
√
m̄

)

,
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where

with

and

The characterization of the control may then be found by 
reversing the change of variables, u∗ = µ2. For late-acting 
SIT, the solution may also be expressed in the form (33), 
but with χ as defined in (23).

In the m3 = 1
2 case, the concavity condition on 

∂2H/∂u2 holds only partially throughout the domain. It 
is found that

which is positive for large enough u, but goes negative when

This relation generally corresponds to a very low value of 
control. Since small errors in a near-zero release ratio do 
not alter the overall cost or efficacy of the control strategy 
to an appreciable degree, this problem may be ignored. 
(A similar result is found in the case of late-acting SIT).

Appendix B: R0 and equilibria
B.1 Basic reproductive ratio
For a constant mosquito population, the next generation 
matrix is given (using the A = F − V , G = FV−1 decom-
position method of [58]) by

for the rare initial infection scenario (1− h) ∼ 1, 
(1− v) ∼ 1. The basic reproductive ratio of disease (host 
to host) is given by the (square of the) dominant eigen-
value of G;

hence

(34)m̄ = 1

2

(

−2

3
p+ 1

3

(

Q + �0

Q

))

,

(35)Q =
[

1

2

(

�1 +
√

�2
1 − 4�3

0

)]
1
3

,

(36)�0 = p2 + 12r, �1 = 2p3 + 27q2 − 72pr.

(37)
∂2H

∂u2
= 2�1ρA

2A∗2

(A+ uA∗)3
− 1

4

θ3k
∗

u
3
2

e−ψt ,

(38)u
3
2 �

1

8

θ3A

�1ρA∗N
e−ψt .

(39)G =
(

0 k∗ba
µA

bc
γ+ws 0

)

,

(40)

∣

∣

∣

∣

∣

−�
k∗ba
µA

bc
γ+ws −�

∣

∣

∣

∣

∣

= �
2 − k∗b2ac

µA(γ + ws)
= 0,

(41)R0 =
k∗b2ac

µA(γ + ws)
.

The biting rate b appears as a square in the definition of 
R0, so b is considered to be an important parameter in 
determining the prevalence of disease.

From (41), the minimum number of vectors per host 
necessary to sustain the disease in a control-free environ-
ment is found to be

where default parameter values have been used (Table 1). 
Hence, even with less than one vector per host, the dis-
ease may be maintained at a low level.

 B.2 Equilibria and the effect of control
The population and endemic disease equilibria, in the 
absence of vector control, are found to be 

 Vector control alters the equilibrium state of the sys-
tem. Imagine a system in which disease has reached an 
endemic level [at the level given in (43c)] at some time 
t < t0, and vector control starts at t = t0, releasing uA(t) 
insects (rather than uA∗) for some constant release ratio 
u. The new equilibrium at which the system arrives at 
some time t > t0 is then of key interest. For early-acting 
SIT, the new equilibria are

and (43c) and (43d); and for late-acting SIT the new equi-
libria are 

 and (43c), (43d).
Critical release ratios u = uc may be derived which 

cause disease fadeout (h∗ → 0); for early SIT, these 
release ratios are

(42)kd = γµA

b2ac
≈ 0.77,

(43a)L∗ = 1

ν

[

em(ρ/2µA−1)−µL − 1
]

1
β
,

(43b)A∗ = mL∗

2µA
,

(43c)h∗ = k∗b2ca− (γ + ws)µA

k∗b2ca+ (γ + ws)bc
,

(43d)v∗ = bch∗

bch∗ + µA
.

(44)

L
∗
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1

1+ u
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2µA
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− 1

]
1
β
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∗
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2µA

,

(45a)
L
∗
L = 1

ν

[

exp

{

1

1+ u

mρ

2µA

−m− µL

}

− 1

]
1
β

,

A
∗
L = 1

1+ u

mL
∗
E

2µA

,
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while for late SIT uc satisfies

where solutions of (47) may be found by Newton–Raph-
son iteration.

Appendix C: A network model
The model outlined above may be extended to allow for 
movement of mosquitoes between population clusters. 
Each node (or population cluster) has its own set of state 
variables Li(t), Ai(t), hi(t), vi(t) and controls ui(t), wi(t) 
satisfying the network model 

 where

(46)

uc =
ρm

2µA



m+ µL + ln



1+
�

2(γ + ws)
νµ2

A
N

b2cam

�β








−1

− 1,

(47)

(1+ uc)
−β

exp

{

1

1+ uc

mρ

2µA

−m− µL

}

= 1+
(

2(γ + ws)
νµ2

A
N

b2cam

)β

,

(48a)
dLi

dt
= ρAiC(Ai,ui)− f (Li)Li − (m+ µL)Li,

(48b)

dAi

dt
= m

2
LiD(Ai,ui)− µAAi −

EiA
2
i

A∗
i

+
∑

j �=i

σij
EjA

2
j

A∗
j

,

(48c)
dhi

dt
= Ai

Ni

ba(1− hi)vi − (γ + wis)hi,

(48d)

dvi

dt
= bc(1− vi)hi −

(

µA + 1

Ai

dAi

dt

)

vi

− Eivi
Aivi

A∗
i v

∗
i

+ 1

Ai

∑

j �=i

σijEj
A2
j v

2
j

A∗
j v

∗
j

,

The tensor σ defines the weighting of movement between 
nodes as a function of relative distance. An element σij 
gives the proportion of migrants from the jth popula-
tion that settle in the ith. For the three-node case, this is 
defined as

where dij is the distance between nodes j and i (thus dij = dji),  
the function ζ(dij) is Laplace-type dispersal kernel,

and Dj =
∑

k �=j ζ(dkj). In this way, σ is normalised such 
that each column sums to unity, while each row does not. 
The parameter Ei is a rate measuring the propensity for 
emigration of each population cluster. The parameters A∗

i  
may be defined as the migration- and control-free equi-
libria, (43b).

C.1 Optimal control of a network
A new per capita cost functional for a network of n iden-
tical population clusters is defined as,

where u and w are vectors containing the controls ui and 
wi, respectively. The Hamiltonian becomes

(49)

C(Ai,ui) =







Ai

Ai + uiA
∗
i

, early SIT,

1, late SIT,

D(Ai,ui) =







1, early SIT,
Ai

Ai + uiA
∗
i

, late SIT.

(50)σ =







0 ζ(d12)
D2

ζ(d13)
D3

ζ(d21)
D1

0 ζ(d23)
D3

ζ(d31)
D1

ζ(d32)
D2

0






,

(51)ζ(dij) =
1

2
e−|dij |,

(52)

Jpc[x(u,w)] =
∫ T

0

e
−ψt

n
∑

i

[

θ1h
m1

i + θ2hiw
m2

i + θ3k
∗
i u

m3

i

]

dt,

(53)

H = e
−ψt

n
�

i

�

θ1h
m1

i + θ2hiw
m2

i + θ3k
∗
i u

m3

i

�

+
n

�

i







�
(i)
1 [ρAiC(Ai,ui)− (f (Li)+m+ µL)Li]

+ �
(i)
2





m

2
LiD(Ai,ui)− µAAi −

EiA
2
i

A∗
i

+
�

j �=i

σij
EjA

2
j

A∗
j





+ �
(i)
3

�

Ai

Ni
ba(1− hi)vi − (γ + wis)hi

�

+ �
(i)
4



bc(1− vi)hi −
�

µA + 1

Ai

dAi

dt

�

vi − Eivi
Aivi

A∗
i v

∗
i

+ 1

Ai

�

j �=i

σijEj
A2
j v

2
j

A∗
j v

∗
j











.
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The adjoint system for both the early- and late-acting SIT 
may be expressed, with the definitions of (49) in mind, as 

 where 1−
∑

j �=i σji = 0 has been used in (54b).
The optimality conditions that define the best-practice 

for using artemisinin and vector-release controls are

The controls ui and wi never appear in equations Ljxj , for 
nodes i, j, differential operator L and vector of states and 
adjoints x—in either (48) or (54)—where j �= i, hence the 
results of the previous section are still valid for the net-
work model. Then, the optimal controls for each pricing 
structure and each population cluster may be defined as 
in (18), (21) and (29).

(54a)

d�
(i)
1

dt
= − ∂H

∂Li
= �

(i)
1 (f ′(Li)Li + f (Li)+m+ µL)

− 1

2
�
(i)
2 mD(Ai,ui)+ �

(i)
4

mvi

2Ai

D(Ai,ui),

(54b)

d�
(i)
2

dt
= − ∂H
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= −�

(i)
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− �
(i)
2
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m

2
Li

∂
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D(Ai ,ui)− µA

�

− �
(i)
3
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Ni
(1− hi)vi

− �
(i)
4 vi

�
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i

D(Ai ,ui)

�
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∂
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logD(Ai ,ui)
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i v

∗
i

�
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4

1
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i

�

j �=i

σijEj
A2
j v

2
j
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j v

∗
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− 2
EiAiv

2
i

A∗
i v

∗
i

�
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(j)
4
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σji

+ 2
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i



�
(i)
2 −

�

j �=i

�
(j)
2 σji



,

(54c)

d�
(i)
3

dt
= − ∂H

∂hi
= −e

−ψt(m1θ1h
m1−1

i
+ θ2w

m2

i
)

+ �
(i)
3

(

Ai
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(54d)

d�
(i)
4

dt
= − ∂H

∂vi
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3

Ai

Ni
ba(1− hi)

+ �
(i)
4

�
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Ai

dAi
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�

+ 2Ei
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i vi
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



�
(i)
4

Ai
−

�

j �=i

�
(j)
4

Aj
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

,

(55)
∂H

∂ui
= 0 at ui = u∗i ,

∂H

∂wi
= 0 at wi = w∗

i .
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