
RESEARCH Open Access

Genome-wide sequencing as a first-tier
screening test for short tandem repeat
expansions
Indhu-Shree Rajan-Babu1,2*, Junran J. Peng1, Readman Chiu3, IMAGINE Study1, CAUSES Study1, Chenkai Li3,4,
Arezoo Mohajeri1, Egor Dolzhenko5, Michael A. Eberle5, Inanc Birol1,3 and Jan M. Friedman1

Abstract

Background: Screening for short tandem repeat (STR) expansions in next-generation sequencing data can enable
diagnosis, optimal clinical management/treatment, and accurate genetic counseling of patients with repeat
expansion disorders. We aimed to develop an efficient computational workflow for reliable detection of STR
expansions in next-generation sequencing data and demonstrate its clinical utility.

Methods: We characterized the performance of eight STR analysis methods (lobSTR, HipSTR, RepeatSeq,
ExpansionHunter, TREDPARSE, GangSTR, STRetch, and exSTRa) on next-generation sequencing datasets of samples
with known disease-causing full-mutation STR expansions and genomes simulated to harbor repeat expansions at
selected loci and optimized their sensitivity. We then used a machine learning decision tree classifier to identify an
optimal combination of methods for full-mutation detection. In Burrows-Wheeler Aligner (BWA)-aligned genomes,
the ensemble approach of using ExpansionHunter, STRetch, and exSTRa performed the best (precision = 82%, recall
= 100%, F1-score = 90%). We applied this pipeline to screen 301 families of children with suspected genetic
disorders.

Results: We identified 10 individuals with full-mutations in the AR, ATXN1, ATXN8, DMPK, FXN, or HTT disease STR
locus in the analyzed families. Additional candidates identified in our analysis include two probands with borderline
ATXN2 expansions between the established repeat size range for reduced-penetrance and full-penetrance full-
mutation and seven individuals with FMR1 CGG repeats in the intermediate/premutation repeat size range. In 67
probands with a prior negative clinical PCR test for the FMR1, FXN, or DMPK disease STR locus, or the
spinocerebellar ataxia disease STR panel, our pipeline did not falsely identify aberrant expansion. We performed
clinical PCR tests on seven (out of 10) full-mutation samples identified by our pipeline and confirmed the expansion
status in all, showing absolute concordance between our bioinformatics and molecular findings.
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Conclusions: We have successfully demonstrated the application of a well-optimized bioinformatics pipeline that
promotes the utility of genome-wide sequencing as a first-tier screening test to detect expansions of known
disease STRs. Interrogating clinical next-generation sequencing data for pathogenic STR expansions using our
ensemble pipeline can improve diagnostic yield and enhance clinical outcomes for patients with repeat expansion
disorders.

Keywords: Clinical bioinformatics, Repeat expansion, Next-generation sequencing, Short tandem repeats, Machine
learning

Background
Expansions of short tandem repeats (STRs; tandemly re-
peated arrays of 1–6 base pair (bp) sequence motifs [1])
can cause several neurological and neuromuscular disor-
ders [2]. Accurate genotyping (i.e., the determination of
the number of copies of repeat units in an STR) is crit-
ical to the molecular diagnosis of STR expansion disor-
ders as repeat length often influences disease severity
and age of onset of clinical symptoms [3]. Repeat length
also determines an STR’s allelic class (normal, inter-
mediate, premutation, or full-mutation), which may dif-
fer with respect to the associated disease phenotype [3,
4]. For example, the FMR1 (MIM 309550) premutation
(55–200 CGG repeats) increases the risk for primary
ovarian insufficiency (MIM 311360) and tremor/ataxia
syndrome (MIM 300623). In contrast, FMR1 full-
mutation (> 200 CGG repeats) causes fragile X syn-
drome (MIM 300624), the most frequent Mendelian
cause of intellectual disability [5]. Premutation and inter-
mediate (also known as “mutable normal”) alleles that
are meiotically unstable can expand into pathogenic full-
mutation in a single generation, while normal alleles
rarely, if ever, do so [6, 7]. Expanded alleles tend to fur-
ther increase in repeat length during intergenerational
transmission, and as a result, genetic anticipation (the
earlier and more severe manifestation of disease symp-
toms with each successive generation) is common in
repeat expansion disorders [8].
Clinical laboratories typically use polymerase chain re-

action (PCR) or Southern blot (alone or in combination)
to characterize expansions at known disease STR loci
[9]. Although highly sensitive in detecting and genotyp-
ing STR expansions, PCR and Southern blot tests have
several limitations. They are time- and labor-intensive,
require extensive optimization, and do not permit con-
current analyses of more than a handful of STR loci.
Next-generation sequencing (NGS), on the other hand,
enables exome- or genome-wide characterization of
STRs.
Several algorithms have recently been developed to

analyze STRs in NGS data [1, 10–14]. The incorporation
of bioinformatics tools to screen for STR expansions may
permit the diagnosis of repeat expansion disorders during
routine diagnostic exome or genome sequencing, allowing

accurate genetic counseling of affected individuals and
their families, and improving clinical outcomes. The cur-
rently available STR analysis algorithms have different at-
tributes that determine their utility and sensitivity in
detecting and characterizing repeat expansions in NGS
data (Table 1). Methods like STRetch [11] and exSTRa
[12] identify STR expansions via case-control analysis,
with a caveat of either underestimating the repeat lengths
of some expanded STRs [11] or not providing repeat
length estimates at all [12]. Methods that genotype STRs
perform better across certain repeat length ranges de-
pending on the read type evidence considered. For in-
stance, lobSTR [15], HipSTR [16], and RepeatSeq [17],
which only rely on reads that fully encompass an STR
(“spanning reads”) to compute repeat length, can size al-
leles within the length of an Illumina read (125–150 bp)
but perform poorly in detecting pathogenic full-mutation
expansions that exceed read length. More recent methods
[1, 10, 13, 14] that leverage additional read types such as
flanking or partially flanking reads (those that map to
unique flanking sequences), in-repeat reads (IRR; those
that are entirely composed of STRs with a read-pair mate
that maps to the STR’s flanking sequence), and/or IRR
pairs (both reads of a pair mapping to the STR) can size
STRs that exceed read length. ExpansionHunter (EH) [10,
13] and GangSTR [14], in particular, enable the recovery
of IRR and IRR pairs, which originate from an expanded
STR but may incorrectly map to other STR (or “off-tar-
get”) regions with longer tracts of the same repeat motif.
By allowing the inclusion of off-target sites (OTS), EH and
GangSTR analyses facilitate sizing STRs that are longer
than an Illumina sequencing library fragment length
(350–500 bp).
In terms of utility, some of these methods can analyze

STRs in both exome sequencing (ES) and whole-genome
sequencing (WGS) data [11, 12, 14], while others are de-
signed specifically for WGS [1, 10, 13]. Some tools have
specific NGS data requirements; for example, EH is de-
signed for PCR-free WGS, and exSTRa has only been
extensively tested on bowtie 2 [18] alignments. Also,
most methods perform less well on GC-rich STR expan-
sions [10, 12].
These varied attributes and performance characteris-

tics have led to the acknowledgement that a single
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bioinformatics tool is less likely to be able to identify
pathogenic STR expansions of all repeat lengths and
sequence content/composition in NGS data [12]. Re-
cently, Tankard et al. recommended a consensus call-
ing approach using at least two out of four tools
(TREDPARSE [1], EH, STRetch, and exSTRa) to

characterize expansions of known disease STRs [12].
However, it is not clear which of these (or other)
STR methods alone or in combination yield optimal
sensitivity and specificity.
In this study, we employed a decision tree classifier to

identify the optimal tool(s) for classifying expanded full-

Table 1 Features of some publicly available short tandem repeat analysis algorithms

Features lobSTR RepeatSeq HipSTR TRED EH STRetch exSTRa GangSTR

Outputs
repeat length?

Y Y Y Y Y Y N Y

Sequencing
reads

Single- and
paired-end

Single- and
paired-end

Single-
and
paired-
end

Paired-end Paired-end Paired-
end

Paired-end Paired-end

Sequencing
platforms
supported

Illumina, Sanger,
454, and
IonTorrent

Illumina Illumina Illumina Illumina Illumina Illumina Illumina

Library prep.
supported

PCR and PCR-
free

n.a. PCR and
PCR-free

PCR and PCR-free PCR and PCR-
free

PCR and
PCR-free

PCR and PCR-
free

PCR and PCR-
free

Library prep.
(rcmd)

None None None None PCR-free PCR-free None None

Aligners
(rcmd)

lobSTR and
BWA-MEM

Novoalign
and Bowtie
2

Indel-
sensitive
aligner

None None None Bowtie 2 None

Analysis
approach

Targeted and
GW

Targeted
and GW

Targeted
and GW

Targeted Targeted GW Targeted and
GW

Targeted and
GW

NGS data type
supported

WGS WGS WGS WGS WGS and ES WGS and
ES

WGS and ES WGS and ES

NGS data
format

.bam, .fastq, or

.fasta
.bam .bam .bam .bam or .cram .bam or

.fastq
.bam .bam

Built-in stutter
correction
modela

Y Y Y Y n.a. n.a. n.a. Y

Test of
significance

N N N N N Y Y N

Read types
used

Spanning Spanning Spanning Spanning, flanking or
partial, paired-end reads,
and IRR

Spanning,
flanking, and
IRR/IRR pairs

Anchored
IRR

Flanking and
anchored IRR

Spanning,
flanking, and
IRR/IRR pairs

Phasingb n.a n.a Y n.a n.a n.a n.a n.a

PL C++ C++ C++ Python C++ Java Perl and R C++

Sizing
limitation

RL RL RL FL Not limited FL n.a. Not limited

Control
dataset

Not required Not
required

Not
required

Not required Not required Required Not required Not required

Complex
repeats

n.a. n.a. n.a. n.a. Y n.a. n.a. N

Output files .vcf and
.allelotype.stats

.repeatseq,

.calls, and

.vcf

.vcf .vcf and .json .vcf, .json, and
.log

.tsv p-values,
ECDF, and
tsum plots

.vcf

Customized
regions file

Possible Possible Possible Possible Possible Possible,
but not
rcmd

Possible Possible

EH ExpansionHunter, TRED TREDPARSE, Y feature included, N feature not included, Library prep library preparation protocol, rcmd recommended, PL programming
language used, n.a. not applicable/information not available, GW genome-wide, WGS whole-genome sequencing, ES exome sequencing, IRR in-repeat reads, RL
read length, FL fragment length, Not limited not limited by either RL or FL, ECDF Empirical Cumulative Distribution Function, t-sum aggregated T statistic
aCorrects the noise (stutters) introduced during PCR amplification-based library preparation
bUtilizes phased single nucleotide variant haplotypes
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mutation and non-expanded alleles at known disease
STR loci with high accuracy, precision, recall, and F1-
score. We performed our analysis on STR calls from
eight different tools (lobSTR, HipSTR, RepeatSeq, EH,
TREDPARSE, GangSTR, STRetch, and exSTRa) made
on WGS data of patients with well-characterized STR
expansions in one of eight different loci (AR, ATN1,
ATXN1, ATXN3, DMPK, FMR1, FXN, or HTT) and sim-
ulated WGS data harboring expansions at GC-rich
FMR1, FMR2, or C9orf72 STR loci. We included the
spanning-read-only algorithms (lobSTR, HipSTR, and
RepeatSeq), which have been used in recent studies to
characterize normal polymorphic STR variations [19,
20], to investigate their utility and reliability in genotyp-
ing alleles that are within read length compared to more
recent algorithms that consider a wider variety of read
type evidence. The WGS data were aligned using two
different aligners, Isaac [21] — an ultra-fast aligner, and
Burrows-Wheeler Aligner (BWA)-MEM [22] — which is
widely used in WGS studies [23], to see if the choice of
aligner would influence the performance of STR
methods.
First, we tested the classifier on results generated by

the implementation of tools using default parameter set-
tings. We then tweaked several parameters to optimize
the sensitivity and specificity of STR tools included in
this study. Once we established the parameters that
yielded the best results, we used data generated with
these settings to train and test the classifier and found a
significant improvement in our model’s ability to detect
full-mutations compared to our default assessment. We
then applied our decision tree model of STR algorithms
to screen for expansions in known disease STR loci in
ES and WGS data of 301 families (patient-parent trios
(patient and both biological parents) or quads (patient,
similarly affected sibling, and both biological parents))
with a proband who is suspected clinically to have a gen-
etic disorder.

Methods
WGS datasets with a known repeat expansion
The WGS datasets with a known repeat expansion ana-
lyzed in this study include the BWA and Isaac align-
ments of: (1) the European Genome-phenome Archive
(EGA) dataset [10] (EGAD00001003562), which con-
sisted of data from 118 PCR-free WGS of Coriell sam-
ples, each with an AR, ATN1, ATXN1, ATXN3, DMPK,
FMR1, FXN, or HTT expansion (see Additional file 1:
Table S1), and (2) C9orf72, FMR1, or FMR2 expansions
of varying repeat lengths simulated using the ART NGS
read simulator [24] (Additional file 1: Table S2). The
simulated WGS data were included in our analysis to as-
sess the performance of STR callers on expansions of

extremely high GC content (100%) that may be refrac-
tory to detection.

Patient cohorts and ES and WGS data generation
The patient cohorts screened for known STR expansions
in this study consist of the ES data of 141 trios or quads
from the Clinical Assessment of the Utility of Sequen-
cing and Evaluation as a Service (CAUSES) Study [25]
and the WGS data of 160 trios or quads from the Inte-
grated Metabolomics And Genomics In Neurodevelop-
ment (IMAGINE) [26] or CAUSES Studies. Subjects
enrolled in the CAUSES Study were children who were
suspected on clinical grounds to have a single gene dis-
order but in whom conventional testing had not identi-
fied a genetic cause. Subjects enrolled in the IMAGINE
Study had impairment of motor function with onset be-
fore birth or within the first year of life and additional
clinical features that made perinatal complications such
as hypoxia or intracranial hemorrhage an unlikely ex-
planation for their symptoms. The CAUSES and IMAG
INE Study subjects were enrolled at the Children’s and
Women’s Health Centre (Vancouver, British Columbia,
Canada), and most of the enrolled subjects in both stud-
ies had intellectual disability. The ES or WGS data from
the unaffected parents were used to verify the inherit-
ance or unstable transmission of variants. The CAUSES
and IMAGINE Studies were approved by the Institu-
tional Review Board of the Children’s and Women’s
Health Centre of British Columbia and the University of
British Columbia (H15-00092 and H16-02126,
respectively).
The trio/quad ES data were sequenced by Ambry Gen-

etics (Aliso Viejo, USA), Centogene (Rostock, Germany),
or Canada’s Michael Smith Genome Sciences Centre
(Vancouver, Canada) to a mean coverage of ~ 60×. The
library preparation protocols and sequencers used to
generate the trio/quad ES data are described in Add-
itional file 2: Table S3.
The median coverage of the trio/quad WGS data

ranged from 36 to 80× and was generated by the McGill
University and Genome Quebec Innovation Centre
(Quebec, Canada) or Canada’s Michael Smith Genome
Sciences Centre. WGS libraries were prepared using the
NxSeq® AmpFREE Low DNA Library Kit Library Prepar-
ation Kit and Adaptors (Lucigen, Wisconsin, US) or
xGen Dual Index UMI Adapters (Integrated DNA Tech-
nologies, Coralville, US) and sequenced on an Illumina
HiSeqX sequencer.
The paired-end reads (125 or 150 bp) of both ES and

WGS datasets were aligned to the UCSC hg19 human
reference genome using BWA-MEM, and duplicates
were marked with Picard [27]. All patient ES data under-
went single-nucleotide variant (SNV) and indel analysis,
and 140 out of the 141 trios or quads included in this
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study had no clinically relevant SNV/indel variants. We
also analyzed the ES data of a quad with known myo-
tonic dystrophy (type 1; DM1–MIM 160900) in the pro-
band and his mother as a positive control. Our patient
WGS data underwent SNV, indel, structural, and mito-
chondrial variant analysis. We have diagnosed a genetic
disease in 44 of 85 (52%) trios/quads studied in the
CAUSES Study. Similarly, we have diagnosed a genetic
disease in 46 of 88 (52%) trios/quads studied in the
IMAGINE Study to date. The WGS data of all trios/
quads from both CAUSES and IMAGINE Studies were
included in this study.

Bioinformatics tools for STR analysis
The STR analysis tools implemented in this study in-
clude lobSTR [15], HipSTR [16], RepeatSeq [17],
TREDPARSE [1], EH [10, 13], GangSTR [14], STRetch
[11], and exSTRa [12]. The key features of these tools
and the commands and parameters used to execute
them are described in Table 1 and Additional file 2:
Table S4, respectively. The two versions of EH v2 [10]
and v3 [13] implement different algorithms. While we
found EH_v2 to be easily tailorable for other STR loci,
EH_v3 facilitates the analysis of STRs with complex or
mixed repeat motifs. Therefore, we evaluated both
versions of EH.

Disease STR catalogs
The STR analysis tools assess known disease STRs in-
cluded within a pre-defined STR catalog that contains
repeat coordinate/motif information supplied by the
tools’ developers. The known pathogenic STR loci in-
cluded in these catalogs, as well as their allelic categories
and corresponding repeat lengths, are summarized in
Additional file 2: Table S5. Notably, the region files for
EH only included pre-defined OTS for FMR1 and
C9orf72 loci, while GangSTR included OTS in the region
files of all 12 pathogenic STR loci provided with the tool.
Some of the known disease STRs analyzed in this study
(AR, ATN1, FXN, and FMR2) were missing for
GangSTR. Therefore, we added these loci and included
their OTS as described in Mousavi et al. [14].

Interpretation of full-mutations and non-full-mutations
The data from the genotyping methods were classified
as “full-mutation” if the estimated repeat lengths of the
STRs exceeded their respective full-mutation thresholds
(Additional file 2: Table S5). STRetch and exSTRa calls
were classified as “full-mutation” if the p-values post-
multiple-testing-adjustment were less than < 0.05. For
STRetch, we used the control file (containing data from
143 healthy individuals) provided with the tool.

Negative control cohort
Our negative control cohort included 100 individuals
(healthy parents of affected children) from the IMAG
INE Study who did not harbor expanded disease STR al-
leles based on the genotype calls from TREDPARSE, EH,
and GangSTR.

Decision tree classification
Decision tree analysis is a supervised machine learning
classification method [28]. We employed this approach
to infer the best model or best combination of STR ana-
lysis tools to detect full-mutation expansions with opti-
mal sensitivity and specificity. We used the Python
scikit-learn machine learning library [29] to implement
the decision tree classifier and used STR calls from EGA
WGS to train and test the classifiers on data from Isaac
and BWA alignments.
For our preliminary decision tree analysis, we used the

outputs generated using the default parameters for each of
the STR analysis tools. We compiled the results generated
by the STR analysis tools on Isaac- and BWA-aligned
WGS data. We labeled each EGA genome’s true STR ex-
pansion status or class label as full-mutation or non-full-
mutation for a given locus. The single known or charac-
terized STR expansion in each of the EGA and simulated
genomes was assigned to the “full-mutation” class, while
the status of the other STR loci was assigned to “non-full-
mutation”. The data from STR callers were then trans-
formed into binary flags: 1 indicating at least one of the
two alleles was called as “full-mutation”, and 0 indicating
both alleles were “non-full-mutation”. From there, we re-
moved all rows with missing values and supplied the data
to the classifier. We divided our dataset into 80 and 20%
to train and test the classifier, respectively.
We used the Gini index approach to ascertain the

efficiency of an attribute (i.e., the STR caller) in dif-
ferentiating samples belonging to the full-mutation
and non-full-mutation classes. To evaluate the
performance of the classifier, we extracted different
metrics, including precision (true positives [TP]/(TP +
false positives [FP])), recall (TP/(TP + false negatives
[FN])), accuracy ((TP + true negatives [TN])/(TP +
TN + FP + FN)), and F1-score (2 × ((precision × re-
call)/(precision + recall))), and analyzed the receiver
operating characteristic (ROC) curve, a ratio of sensi-
tivity (TP/(TP + FN)) and inverted specificity (1 −
(TN/(TN + FP))), and precision-recall curve, a ratio
of precision and recall or sensitivity.
To identify the best analysis model, we first selected im-

portant features using the Exhaustive Feature Selector al-
gorithm from the machine learning extensions (MLxtend)
Python library [30], which assessed the performance of all
possible combinations of STR tools on 50 train-validation
splits generated by five repeats of stratified 10-fold cross-

Rajan-Babu et al. Genome Medicine          (2021) 13:126 Page 5 of 15



validation on the training dataset. We then chose the best
feature subset with the highest mean ROC_AUC (area
under the curve) and tuned the hyper-parameters of the
decision tree using the scikit’s GridSearchCV on the train-
ing dataset for improved predictions.
We next ascertained whether tweaking some of the pa-

rameters would improve the performance of the STR
analysis tools and the resultant decision tree model.
First, we assessed the performance of EH with OTS on
selected STR loci that are known to harbor expansions
exceeding sequencing fragment lengths to retrieve un-
mapped and mismapped IRR/IRR pairs and improve the
repeat length estimation and detection of full-mutations.
Second, we used the intermediate repeat length thresh-
old instead of the full-mutation threshold for the FMR1
locus to classify expanded alleles and documented the
sensitivity as well as the false-positive rates of the geno-
typers. Third, we tested exSTRa’s performance with con-
trol data from our negative control cohort. We carefully
evaluated how these parameter tweaks influenced the
performance of the STR analysis tools and selected the
optimized outcomes to reimplement our decision tree
classification analysis as mentioned above, and compared
the results to our preliminary decision tree analysis with
default parameters.

Screening for known disease STR expansions in patient
data
Finally, we screened our patient trio/quad ES and WGS
data for known disease STR expansions using the tools
identified by the classifier. Of the probands analyzed in
this study, 60 have had a clinical FMR1 STR testing,
three have had clinical spinocerebellar ataxia (SCA) STR
panel tests, one has had a clinical FXN STR test, and
four have had a clinical DMPK STR test. All of these
clinical PCR-based STR tests were negative for a patho-
genic expansion, except for a confirmed DMPK full-
mutation in a proband and his mother. All individuals
who were expansion-negative at the tested locus were
used as negative controls.
For all expanded STRs identified in patients, we ana-

lyzed the parental genotype calls to verify the inheritance
or unstable transmission of the alleles. Subjects with po-
tential expansions of known disease STRs were identified
for orthogonal validation to ascertain the specificity of
our decision tree. Molecular testing (PCR and capillary
electrophoresis) of some of the identified STR candidates
was performed by Centogene (Germany).

Results
Performance of STR algorithms on Isaac- versus BWA-
aligned WGS data
The lobSTR [15], HipSTR [16], RepeatSeq [17], EH ver-
sions 2 [10] and 3 [13], GangSTR [14], TREDPARSE [1],

STRetch [11], and exSTRa [12] results of Isaac- and
BWA-aligned EGA and simulated FMR2 and C9orf72
WGS data are shown in Additional file 2: Table S6 and
S7, respectively.
Of the known normal alleles (n = 94) in EGA/simu-

lated Isaac WGS, GangSTR, TREDPARSE, EH_v2, and
EH_v3 correctly genotyped > 89% of normal alleles
(Additional file 2: Table S8). lobSTR, HipSTR, and
RepeatSeq, on the other hand, correctly genotyped ~
30–75% of normal alleles; however, these tools were
generally inconsistent in genotyping normal alleles of
the C9orf72, FMR1, FMR2, FXN, and/or HTT loci. Of
the known FMR1 intermediate and premutation alleles
(n = 21), EH_v2 and EH_v3 correctly identified 18 and
16 alleles, respectively, followed by TREDPARSE (eight
alleles) and GangSTR (six alleles) (Additional file 2:
Table S9). lobSTR, HipSTR, and RepeatSeq either
under-sized all known intermediate/premutation alleles
or did not genotype them. We observed a similar trend
among genotyped normal and intermediate/premutation
alleles in BWA data, except that GangSTR did not cor-
rectly identify any intermediate/premutation alleles. As
they only rely on spanning reads, lobSTR, HipSTR, and
RepeatSeq did not detect any full-mutations in either
Isaac- or BWA-aligned WGS data.
The sensitivity of EH_v2, EH_v3, GangSTR, TREDPA

RSE, STRetch, and exSTRa run with default parameters to
detect full-mutations across the different analyzed STR
loci in Isaac- and BWA-aligned WGS is summarized in
Table 2. EH_v2, EH_v3, TREDPARSE, and STRetch ex-
hibited consistent performance, with a sensitivity of ~ 70%
in both Isaac and BWA alignments. GangSTR’s sensitivity
was better on Isaac (55%) compared to BWA (38%) align-
ments. In marked contrast, exSTRa detected more full-
mutations for BWA (88%) alignments compared to Isaac
(56%) (Additional file 3: Fig S1 for exSTRa’s plots on
Isaac- and BWA-aligned WGS). On Isaac-aligned data,
STRetch, EH_v2, and EH_v3 detected the most full-
mutations, followed by TREDPARSE, exSTRa, and
GangSTR. On BWA-aligned data, exSTRa detected the
most full-mutations, followed by STRetch, EH_v2, EH_v3,
TREDPARSE, and GangSTR. Notably, although exSTRa
and STRetch detected more full-mutations, they also had
the most false-positive calls.
All full-mutations missed by genotypers were under-

sized and classified incorrectly as premutation, inter-
mediate, or normal (Additional file 2: Table S10).
Among the analyzed STR loci, FMR1, FMR2, and homo-
zygous FXN full-mutations were particularly refractory
to detection.

Simulated versus real genomes
We next implemented the STR callers on FMR1 simula-
tions (13 BWA-aligned genomes simulated to harbor
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normal–full-mutation FMR1 alleles) with repeat counts
similar to those of the fragile X reference samples in the
EGA dataset to investigate whether GC-bias in experi-
mental WGS is reflected in simulated data as well (Add-
itional file 2: Table S11). All STR callers performed
significantly better on simulated WGS with premutation
and full-mutation FMR1 expansions compared to real
data. Upon investigating the read-support evidence from
EH, we found that simulated WGS with premutation
and full-mutation expansions had more IRRs in com-
parison to real WGS, demonstrating that simulated data
of GC-rich repeat expansions could artificially inflate the
accuracy and performance of STR callers. Subsequently,
we excluded simulated genomes from the analysis.

Decision tree classification
We first trained and tested the decision tree classifier on
the generated default parameter results of EH_v2, EH_
v3, GangSTR, TREDPARSE, STRetch, and exSTRa in
the EGA genomes. After removing the rows with miss-
ing values, the compiled STR calls of Isaac- and BWA-
aligned WGS datasets had 1178 and 1176 rows (one row
per sample per STR locus), respectively. We identified
EH_v2, GangSTR, and exSTRa as the best feature set in
Isaac data, tuned the hyper-parameters of the classifier
with selected features, and implemented the model with

the best hyper-parameters and features on test data.
Additional file 3: Fig S2 shows the decision tree with
EH_v2, which performed the best (had the lowest Gini
impurity) in classifying alleles, assigned to the root node
(node #0). In the test data, the decision tree model had
precision, recall, and F1-score of 100, 83, and 91%, re-
spectively, to detect full-mutations; for non-full-
mutations, the precision, recall, and F1-score were 99,
100, and 99%, respectively (Additional file 3: Fig S3a).
The ROC and precision-recall plots are shown in
Additional file 3: Fig S3b and the confusion matrix
showing the classification of full-mutations and non-full-
mutations in the test dataset is shown in Additional file
3: Fig S3c.
In BWA-aligned data, the best model included EH_v3,

STRetch, exSTRa, GangSTR, and TREDPARSE. EH_v3
at the root node correctly classified 45 out of 62 full-
mutations and 873 out of 878 non-full-mutations in the
training dataset, with exSTRa and GangSTR recovering
one of the full-mutations missed by EH_v3 (Additional
file 3: Fig S4). The precision, recall, and F1-score to de-
tect full-mutations and non-full-mutations in the test
data were 100, 89, and 94% and 99, 100, and 100%, re-
spectively (Additional file 3: Fig S5a). The ROC and
precision-recall curves and confusion matrix are shown
in Additional file 3: Fig S5b and S5c.

Table 2 Full-mutation samples detected in the EGA and simulated genomes using the default implementation of STR analysis tools

Gene AR
(n = 1)

ATN1
(n = 2)

ATXN1
(n = 3)

ATXN3
(n = 1)

C9orf72
(n = 3)

DMPK
(n = 17)

FMR1
(n = 18)

FMR2
(n = 3)

FXN
(n = 25)

HTT
(n = 13)

FPs Total FM
detected

Sensitivity

FM
threshold
(rpts)

37 47 38 59 60 50 200 200 65 39

Allelic
classification

FM FM FM FM FM FM FM FM NL/FM or
FM/FM

NL/FM or
FM/FM

Isaac

EH_v2 1 2 2 1 3 17 1 0 25 13 6 65 0.75581395

EH_v3 1 2 3 0 3 17 0 0 25 13 5 64 0.74418605

GangSTR 0 2 2 0 0 16 0 0 16 11 8 47 0.54651163

TRED 1 2 1 0 3 17 0 0 25 13 3 62 0.72093023

STRetch 1 2 3 1 3 17 2 3 20 13 26 65 0.75581395

exSTRa 1 2 3 0 3 17 1 3 5 13 33 48 0.55813953

BWA

EH_v2 1 2 2 1 3 17 0 0 25 13 6 64 0.74418605

EH_v3 1 2 3 0 3 17 0 0 25 13 5 64 0.74418605

GangSTR 1 2 2 1 1 16 0 0 0 10 8 33 0.38372093

TRED 1 2 1 0 3 17 0 0 25 13 10 62 0.72093023

STRetch 1 2 3 1 3 17 2 3 20 13 26 65 0.75581395

exSTRa 1 2 3 1 3 16 9 3 25 13 35 76 0.88372093

The analyzed dataset had 86 samples with at least one known full-mutation allele. The number of true-positives detected by the tools, sensitivity, and the number
of false positives identified in our default analysis of the Isaac- (top panel) and BWA-aligned (bottom panel) genomes are shown. NL normal, FM full-mutation, FPs
false-positives, rpts repeats, EH_v2 ExpansionHunter version 2, EH_v3 ExpansionHunter version 3, TRED TREDPARSE
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In Isaac and BWA analyses, three and five of the
six features (i.e., STR tools) contributed to the per-
formance of the model, led by EH_v2 and EH_v3, re-
spectively (Additional file 3: Fig S3d and S5d). The
sensitivity for detecting full-mutations in BWA-
aligned data was slightly higher compared to the Isaac
analysis. Overall, the decision tree classifier on Isaac
and BWA test data using the default analysis missed
~ 10 to 20% of full-mutations. To improve the detec-
tion sensitivity, we evaluated some parameters that
we believed might help capture more of the true full-
mutations.

Tested parameters
First, we tested the effect of including OTS in the de-
tection of full-mutations. While GangSTR’s region
files included OTS for all analyzed loci, the author-
supplied JSON files of EH did not include OTS for
DMPK and FXN loci, which are known to harbor ex-
pansions exceeding fragment lengths. In our initial
EH run without OTS, we noted reduced sensitivity in
the detection of FXN full-mutations (Additional file 2:
Table S12). Therefore, we added OTS for analyzing
these loci with EH_v2. There was no improvement in
sensitivity, highlighting the general limitation of the
genotypers in reliably detecting homozygous FXN
full-mutation expansions.
Second, because GC-rich expansions such as those at

the FMR1 locus tend to be under-sized owing to re-
duced coverage even in PCR-free Illumina WGS datasets
[10], we used an intermediate repeat length threshold
(54 repeats) for FMR1 instead of their full-mutation
threshold (200 repeats). With this tweak, EH_v2 and
EH_v3 detected all FMR1 full-mutations in Isaac- as well
as BWA-aligned data (Table 3). TREDPARSE detected
83–89% of FMR1 full-mutations, while GangSTR de-
tected 16–22% of them. The identified false positives in
this analysis include the known FMR1 premutations and

a few borderline FMR1 intermediate alleles that are
closer to the threshold.
Lastly, we hypothesized that adding data from a

control cohort to exSTRa’s analysis would further im-
prove its full-mutation detection sensitivity. In Isaac
alignments, exSTRa’s sensitivity improved moderately
for detecting FXN full-mutations, but no improvements
were observed in full-mutation detection at other loci
(Additional file 3: Fig S6a). In BWA alignments,
exSTRa yielded better sensitivity with controls and
detected all homozygous FXN full-mutation expansions,
as well as all FMR1 full-mutations (Additional file 3:
Fig S6b).
Of these parameters, using the intermediate thresh-

old for FMR1 genotype analysis and performing
exSTRa’s analysis with controls were useful in detect-
ing refractory STR expansions. We provided these im-
proved results to the classifier. In Isaac data, feature
selection and hyperparameter tuning helped identify
TREDPARSE, STRetch, and EH_v3 as the best feature
subset (Additional file 3: Fig S7). In BWA data, the
best feature subset included STRetch, EH_v3, and
exSTRa (Fig. 1a). The classifier’s precision, recall, and
F1-score in Isaac- and BWA-aligned test datasets
were 90, 100, and 95% and 82, 100, and 90% to
detect full-mutations and 100, 99, and 100% and 100,
98, and 99% to detect non-full-mutations, respectively
(Additional file 3: Fig S8a, and Fig. 1b). The ROC
and precision-recall curves are shown in Additional
file 3: Fig S8b and Fig. 1c, and the confusion matrix
in Additional file 3: Fig S8c and Fig. 1d. The feature
importances of the three selected STR analysis tools
for Isaac- and BWA-aligned WGS are shown in Add-
itional file 3: Figure S8d and Fig. 1e. Among the STR
tools, TREDPARSE and STRetch ranked first in Isaac
and BWA alignments, respectively. This model with
the optimized parameters performed better than the
default analysis, detecting all full-mutations in both
Isaac and BWA test data.

Table 3 FMR1 and FMR2 full-mutations detected by ExpansionHunter, GangSTR, and TREDPARSE with lowered repeat length
threshold

Aligner Isaac BWA

Locus FMR1 (n = 18) FMR2 (n = 3) FMR1 (n = 18) FMR2 (n = 3)

FM threshold 54 repeats 60 repeats 54 repeats 60 repeats

Allelic classification FM IM NL FP FM NL FP FM IM NL FP FM NL FP

EH_v2 18 . . 20 3 . 0 18 . . 16 3 . 0

EH_v3 18 . . 22 3 . 0 18 . . 22 3 . 0

GangSTR 4 . 14 7 0 3 0 3 . 15 0 0 3 0

TREDPARSE 15 1 2 8 0 3 0 16 . 2 13 0 3 0

The number of full-mutations (FMs) misclassified as normal (NL; < 45 repeats for FMR1 and < 31 repeats for FMR2) or intermediate (IM; 45–54 repeats for FMR1)
allele are shown. The true number (n) of known FM alleles in the FMR1 and FMR2 genes is indicated in parenthesis. False-positive (FP) calls made by the tools are
also reported
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Analysis of known disease STRs in clinical NGS data
The decision rules that emerged from the modified ana-
lyses suggest the best approach to categorizing full-
mutations in BWA data is to use STRetch, EH_v3, and
exSTRa (see Fig. 1). Applying this pipeline on our BWA-
aligned patient ES and WGS data, we identified 21 sam-
ples of interest, 10 with full-mutation expansions of the
AR, ATXN1, ATXN8, DMPK, FXN, or HTT locus, two
with borderline ATXN2 alleles, and seven with inter-
mediate or premutation alleles in the FMR1 locus (sum-
marized in Table 4). Additional file 2: Table S13 shows

the EH_v3, STRetch, and exSTRa results of the identi-
fied STR candidates.
We found that all probands with an identified STR

candidate inherited the allele from a parent (Additional
file 2: Table S13). The inherited expansions either
remained unchanged, decreased by one or a few repeat
units, or increased by 1 to ~ 15 repeats during intergen-
erational transmission.
All individuals who tested negative in their clinical

molecular assessments for FMR1, FXN, SCA, or DMPK
full-mutation expansions were also categorized as non-

Fig. 1 Decision tree model and its performance metrics on modified analysis of BWA-aligned EGA genomes. a Decision tree generated on the
training dataset (n = 940). Node #0 at the top of the tree is the root node. Each node lists an STR tool (feature). The “samples” number represents
the total number of genotype calls in a particular node, and “value” shows the number of expanded (or full-mutation, FM) and non-expanded
(non-FM) genotypes. Gini index shows the impurity at each node. The terminal nodes or leaves with a Gini value of 0 have genotypes belonging
entirely to either the expanded or non-expanded class. EHv3, ExpansionHunter version 3; wCtrls, analysis performed with controls. b Classification
report summarizing the performance metrics of the model on test data (n = 236). Macro and weighted average (avg) show the unweighted and
weighted mean of performance metrics calculated for Expanded and Not_Expanded class labels, respectively. c Receiver operating characteristics
and precision-recall curves. d Confusion matrix showing the number of predicted and true labels on x- and y-axis, respectively. e Feature
importance plot showing the STR tool on x-axis and the tool’s normalized (Gini) importance on y-axis
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expanded by our bioinformatics workflow (data not
shown). In the ES data of a proband (2010-P) and his
mother (2010-M) who had DM1 with DMPK full-
mutation (> 50 repeats) findings upon prior molecular
assessment, EH_v3 and exSTRa identified the full-
mutation expansion. However, the repeat length

estimated by EH_v3 in 2010-P and 2010-M was ~ 50 re-
peats, which is significantly lower than the molecular
findings of 150 repeats in 2010-P and 430 repeats in
2010-M (Additional file 2: Table S13).
Based on the repeat lengths estimated by EH_v3,

we categorized the identified full-mutations as

Table 4 Short tandem repeat candidates identified in our patient cohort
Sample
ID

Gene Inheritance Sequencing Pathogenic
SNV/indel/SV
finding

Phenotype STR
finding

Molecular
validation

1901-P AR Inherited WGS No Short stature, delayed gross motor, speech and language development,
spasticity, cerebral palsy, and hypertonia

FM (full-
penetrance)

FM (reduced/
full-penetrance)

1901-F AR . WGS . . FM (full-
penetrance)

FM (reduced/
full-penetrance)

532-M ATXN1 . WGS . . FM (full-
penetrance)

n.a.

821-P ATXN2 Inherited ES No Mild intellectual disabilities, systemic hypertension, cutis aplasia,
congenital heart defect, and limb anomalies

Borderlinea n.a.

821-M ATXN2 . ES . . Borderlinea n.a.

1099-P ATXN8 Inherited ES No Hearing loss, cataract, myopia, visceral (kidney and spleen) cysts,
proteinuria, and dysmorphic facial features

FM (higher
penetrance)

n.a.

1099-M ATXN8 . ES . . FM (higher
penetrance)

n.a.

235-P ATXN8 Inherited WGS No Mild to moderate intellectual disability, and psychosis FM (higher
penetrance)

n.a.

235-M ATXN8 . WGS . . FM (higher
penetrance)

n.a.

2010-P DMPK Inherited ES Definite Myotonic dystrophy type 1, inguinal hernias, joint hypermobility,
strabismus, mild intellectual disability, and dysmorphic facial features

FM (full-
penetrance)

FM (full-
penetrance)

2010-M DMPK . ES . Myotonic dystrophy type 1 FM (full-
penetrance)

FM (full-
penetrance)

148-M FMR1 . WGS . . PM n.a. (proband is
negative for
FMR1 FM)

800-F FMR1 . WGS . . IM n.a.

480-P FMR1 Inherited WGS Probable Moderate intellectual disability, language delay, autism, borderline
macrocephaly, low set ears, down slanting palpebral fissures, high
palate, and soft skin

PM n.a.

712-M FMR1 . WGS . . PM n.a. (proband is
negative for
FMR1 FM)

925-P FMR1 Inherited WGS No Intellectual disability, developmental delay including speech delay,
dysmorphic features, and behavioral challenges

PM Negative for FM

925-S FMR1 Inherited WGS No Intellectual disability, autism, developmental delay, and dysmorphic
features

IM n.a.

925-M FMR1 . WGS . . PM n.a.

1987-F FXN . WGS . . NL/FM Heterozygous
NL/FM carrier

1530-P HTT Inherited WGS Uncertain Global developmental delay, seizures, gliosis, developmental regression,
encephalomalacia, hirsutism, nystagmus, optic atrophy, cyanosis,
abnormal muscle tone, scoliosis, hearing impairment, and otitis media

FM
(reduced
penetrance)

FM (reduced
penetrance)

1530-F HTT . WGS . . FM
(reduced
penetrance)

FM (reduced
penetrance)

Probands with an identified STR candidate are given a “-P” suffix in the “Sample ID” column; sibling of the proband, “-S”; mother, “-M”; and father, “-F”. The genes
harboring the STR candidate identified by our bioinformatics workflow and the inheritance pattern deciphered by comparing the proband’s STR call with that of
the parents are reported. The “Sequencing” column shows the technology used: whole-genome sequencing (WGS) or exome sequencing (ES). The “Pathogenic
SNV/indel/SV Finding” column indicates whether the proband has had a definite, probable, certain, or no diagnosis of a single-nucleotide variant (SNV), indel, or
structural variant (SV). Phenotypic presentations reported in the probands, STR finding from our bioinformatics analysis, and the results from the molecular
validation (if available) are also presented. NL normal, IM intermediate, PM premutation, FM full-mutation, n.a. not available
aReduced-penetrance alleles have 33–34 repeats and full-penetrance alleles have ≥ 37 repeats
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reduced- or full-penetrance (Table 4; the different re-
peat size ranges associated with reduced- and full-
penetrance of the STR expansion disorders are sum-
marized in Additional file 2: Table S5). Six of the
full-mutations we identified in the probands and par-
ents were in the fully penetrant or higher penetrance
repeat size range, while two were in the reduced-
penetrance range.
We performed PCR-based molecular tests to verify the

expansion status of a subset of the identified full-
mutations (molecular findings summarized in the last
column of Table 4 and Additional file 2: Table S13). The
HTT full-mutations identified by EH_v3 (37 repeats),
STRetch, and exSTRa in a proband (1530-P) and his
father (1530-F) were concordant with the molecular re-
sults (37 ± 1 repeats). The AR full-mutations in a father
(1901-F) and proband (1905-P) identified by EH_v3 (38
repeats) and STRetch were consistent with the PCR re-
sults (37 ± 1 repeats). In addition, the FXN candidate in
a father (1987-F) identified by EH_v3 (69 repeats) was
verified as full-mutation by PCR (87 ± 1 repeats). How-
ever, the clinical PCR test could not determine the exact
repeat length of this allele due to the presence of se-
quence interruptions. In two samples (1099-P and 1099-
M), EH_v3 did not return genotype calls for the ATXN8
locus, which appears to be expanded as per STRetch and
exSTRa. Modifying the ATXN8 locus in the EH_v3 cata-
log to {“VariantType”: “Repeat”, “LocusId”: “ATXN8”,
“LocusStructure”: “(CTG)*”, “ReferenceRegion”: “13:
70713516-70713560”} helped with successful genotyping
and identification of full-mutation with > 200 CTG re-
peats in both samples.
A TBP full-mutation identified by EH_v3 (54 repeats),

but not supported by either STRetch or exSTRa, could
not be verified by PCR (37 ± 1 repeats) (data not
shown). Closer inspection of EH’s TBP genotype using
GraphAlignmentViewer [31] revealed the lack of reads
supporting the genotype call made in 1992-M.
Visualization of candidate STRs, particularly those that
were detected only by EH but not supported by either
STRetch or exSTRa, may help reduce the number of
false positives and confirmatory molecular tests
required.
Lastly, we investigated the genotype calls of disease

STRs made by EH_v2, EH_v3, and GangSTR in our pa-
tient ES and WGS datasets to see if the normal allele
frequency distribution at these loci agreed with the re-
ported population frequencies of normal alleles (Add-
itional file 3: Fig S9 and S10, and Additional file 2: Table
S14). In general, the repeat length distribution pattern of
the STR alleles for most loci was consistent across the
ES (Additional file 3: Fig S9) and WGS (Additional file
3: Fig S10) data, except for the FMR1 and FMR2 loci,
which were characterized inconsistently in ES data. EH_

v3 genotyped fewer ATXN8 alleles and had a different
repeat length distribution profile for the ATXN7 and
HTT loci in ES data. For the CSTB locus, more 1-repeat
genotype calls were made by the tools in ES data, while
we found none in WGS data.
More than half of the individuals in our clinical cohort

are of European ancestry, so we compared the frequency
of the three most common alleles ascertained in WGS
data to the common normal allele in the Caucasian
population reported in the literature (Additional file 2:
Table S14). Except for a few loci, the repeat lengths of
most common alleles determined by the tools were gen-
erally in good agreement with the reported repeat length
of the common normal alleles in the Caucasian
population.

Discussion
The contribution of STR expansions to disease is just
beginning to be understood. About 40 neurological dis-
orders have been found to be caused by STR expansion
mutations [2], with some recent studies reporting the
identification of additional pathogenic STR expansion
loci through NGS or the more advanced third-
generation long-read sequencing technologies [32–36].
While repeat expansion disorders typically have a de-
layed age of onset, pre-symptomatic individuals have
been reported to exhibit subtle cognitive, behavioral, or
structural changes in the brain [37, 38]. Pre-
symptomatic detection can help elucidate the patho-
physiology and progression of the disease [39] and
promote the development and timely implementation of
disease-modifying interventions [40].
The challenges in detecting and characterizing repeat

lengths of STR expansions in short-read NGS data are
well recognized [41]. However, recent algorithmic im-
provements facilitate the detection of STR expansions
that exceed read and/or fragment lengths, providing the
opportunity to analyze a larger number of known disease
STR loci simultaneously through ES or WGS [1, 10–14].
The analysis of STRs in clinical NGS data using these
improved bioinformatics methods may help detect
pathogenic full-mutation expansions and identify
individuals with at-risk premutation, intermediate, or
mutable normal alleles that may expand into an full-
mutation in subsequent generations.
Of the available STR analysis tools, EH, GangSTR, and

TREDPARSE are particularly valuable because they le-
verage evidence beyond reads that span an STR, enab-
ling the genotyping of larger repeat expansions than is
possible with spanning-read-only methods (lobSTR,
HipSTR, and RepeatSeq). In this study, we have shown
that EH, GangSTR, and TREDPARSE are also more reli-
able in genotyping STRs within read length compared to
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lobSTR, HipSTR, and RepeatSeq. STRetch and exSTRa
can detect STR expansions but they do not reliably
genotype them (STRetch) or do not genotype them at all
(exSTRa). GangSTR and STRetch may also be useful in
scanning the entire genome or exome for novel disease-
causing STR expansions because they are not limited to
the analysis of a prespecified catalog of known disease
STRs, as other tools are.
We have shown through a systematic analysis that the

choice of aligner could impact the performance of the
STR analysis tools. The differences in the number of un-
mapped reads and reads with zero mapping quality may
explain some of these performance inconsistencies we
noted comparing the STR outputs from Isaac- and
BWA-aligned data (Additional file 3: Fig S11). Selecting
methods that function optimally with a given aligner ap-
pears to be a critical first step in designing a clinical bio-
informatics workflow to screen STR expansions in NGS
data.
In-line with earlier studies [10, 12], we found the

characterization of FMR1 full-mutations to be challen-
ging. Homozygous FXN full-mutations were also refrac-
tory to detection because the genotypers typically
identified only one of two full-mutation alleles. With our
modified analysis, some of the tools detected more full-
mutations at these loci. Notably, exSTRa performed bet-
ter with an external control cohort, detecting all FXN
and FMR1 full-mutations in BWA data. Also, reducing
the repeat length thresholds from full-mutation to inter-
mediate size range enabled the detection of FMR1 full-
mutations with EH_v2, EH_v3, and TREDPARSE. With
this reduced cut-off, the tools may also detect some
intermediate and premutation carriers who, although are
not affected, may be at risk of having children with fra-
gile X syndrome if their intermediate/premutation allele
is highly unstable and/or susceptible to late-onset condi-
tions [42]. Early detection and genetic counseling of
these at-risk individuals may, therefore, help intermedi-
ate/premutation allele carriers make informed repro-
ductive decisions [42].
Our decision tree analyses favored using an ensemble

approach that combined three of the most important
STR methods (TREDPARSE, EH_v3, and STRetch for
Isaac-aligned datasets, and STRetch, EH_v3, and exSTRa
for BWA-aligned datasets). Comparing the best ensem-
ble model with the stand-alone performance of the im-
portant tools revealed the advantage of adopting the
ensemble approach (Additional file 2: Table S15). In
BWA data, although exSTRa and EH_v3 alone had the
same 100% recall as the ensemble model, the precision
of individual tools was 4–24% lower compared to the
ensemble model, showing that the latter has the poten-
tial to reduce or eliminate false positives while maintain-
ing high sensitivity. This is consistent with our clinical

cohort analysis wherein a full-mutation in TBP locus
identified only by EH_v3 could not be verified by PCR;
however, seven full-mutations identified by EH_v3 to-
gether with STRetch and/or exSTRa were confirmed by
clinical PCR tests (Additional file 2: Table S13).
Our ensemble pipeline of EH_v3, STRetch, and

exSTRa takes ~ 2.5 h per genome. Most methods, in-
cluding EH_v3 and exSTRa, can perform targeted dis-
ease STR analysis on a single CPU within a matter of
few seconds to minutes (Additional file 2: Table S16).
STRetch took 2 h:24 min per genome on 16 CPUs as it
profiles a larger catalog of STRs (~ 300 k) genome-wide
and performs statistical analysis to detect outliers.
For DMPK assessment with EH (the default catalog file

of which does not include OTS), we recommend includ-
ing OTS as this results in a significant improvement in
the repeat length estimation, particularly in WGS data.
Although the threshold for defining pathogenic DMPK
full-mutations that cause DM1 is only 50 repeats and
EH and other tools detect DMPK full-mutations with
100% sensitivity, the different clinical forms of DM1
(mild, classic, and congenital), associated with varying
severity and age of onset of symptoms are caused by
DMPK full-mutations in the ranges of 50–~ 150, ~ 100–
~ 1000, and > 1000 repeat units, respectively [43]. We
show that with OTS, EH performs better at sizing
DMPK full-mutations that ranged from ~ 130 to over
2000 repeats in the EGA WGS data and yields estimates
that correlate better with full-mutation repeat lengths in
these individuals (Additional file 3: Fig S12).
Although the methods we tested perform well in de-

tecting and sizing full-mutations, for some disease STR
loci, the difference between a non-full-mutation and a
full-mutation, or between a reduced-penetrance and
full-penetrance full-mutation is only a few repeat units,
making it difficult to discriminate between these border-
line alleles and their clinical significance. This limitation
is also inherent to PCR-based tests as DNA polymerase
slippage during STR amplification may result in under-
or over-estimation of STR size by one or two repeat
units [44].
Using our approach, we were able to confirm the pres-

ence of a clinically validated DMPK full-mutation in the
ES data of a proband and his mother with DM1, inher-
ited HTT and AR full-mutations in two families, and also
the presence of an FXN normal/full-mutation in a father
using clinical PCR and capillary electrophoresis. Import-
antly, none of the 67 individuals who previously had a
negative clinical FMR1, FXN, SCA, or DMPK test result
were falsely identified as “expanded” by our computa-
tional workflow.
Our analysis demonstrates that combining genotyping

and statistical STR analysis tools yields optimal results.
Of the currently available genotypers that can detect
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pathogenic expansions, only GangSTR works on STRs
genome-wide. To identify expansions at novel loci, there
is a need to expand the utility of existing genotypers or
develop complementary genotyping approaches to inter-
rogate candidates beyond the limited catalog of known
disease STRs. The STR methods we used to analyze our
clinical ES and WGS data were selected based on
decision tree classification analysis on WGS. The main
limitation with ES is its inconsistency in coverage and
GC-bias, but we found that as long as there are sufficient
reads mapping to the locus, the tools that work on WGS
also perform reasonably well on ES data.

Conclusions
Clinical NGS datasets are typically screened for patho-
genic SNVs, small indels, and SVs to diagnose the
underlying cause of genetic disorders. However, STRs
are often not analyzed due to the lack of a reliable and
well-optimized computational pipeline. We aimed to
demonstrate the utility of STR analysis methods as a
first-tier screen for pathogenic expansions in clinical
NGS data and to promote the rapid integration of STR
callers into routine clinical genomic analyses. Through a
thorough evaluation of eight existing STR callers
(lobSTR, HipSTR, RepeatSeq, TREDPARSE, EH,
GangSTR, STRetch, and exSTRa), we have outlined im-
portant factors, such as the choice of sequence aligners
and parameter tweaks of STR callers, which can improve
the sensitivity to detect pathogenic expansions. Using
decision tree classification, we illustrated the best
aligner-specific pipeline to detect STR expansions with
optimal sensitivity and specificity. To demonstrate the
utility of this pipeline, we screened the ES and WGS
data of 301 patient-parent trios/quads and identified
samples with full-mutation, borderline, and intermedi-
ate/premutation alleles. Clinical PCR confirmation of a
subset of identified full-mutation expansions showed ab-
solute concordance between molecular and bioinformat-
ics findings. Our results show that the incorporation of
our recommended pipeline of tools to analyze clinical ES
and WGS data can reliably identify pathogenic STR ex-
pansions, which could promote cascade testing in af-
fected families and improve the diagnostics, treatment,
and management of repeat expansion disorders.
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