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Abstract

A re-analysis of intraclass correlation (ICC) theory is presented together with Monte Carlo

simulations of ICC probability distributions. A partly revised and simplified theory of the sin-

gle-score ICC is obtained, together with an alternative and simple recipe for its use in reli-

ability studies. Our main, practical conclusion is that in the analysis of a reliability study it is

neither necessary nor convenient to start from an initial choice of a specified statistical

model. Rather, one may impartially use all three single-score ICC formulas. A near equality

of the three ICC values indicates the absence of bias (systematic error), in which case the

classical (one-way random) ICC may be used. A consistency ICC larger than absolute

agreement ICC indicates the presence of non-negligible bias; if so, classical ICC is invalid

and misleading. An F-test may be used to confirm whether biases are present. From the

resulting model (without or with bias) variances and confidence intervals may then be calcu-

lated. In presence of bias, both absolute agreement ICC and consistency ICC should be

reported, since they give different and complementary information about the reliability of the

method. A clinical example with data from the literature is given.

1. Introduction

The intra-class correlation coefficient (ICC) is a number, usually found to have a value

between 0 and 1. It is a well-known statistical tool, applied for example in medical, psychologi-

cal, biological and genetic research. It refers to correlations within a class of data (for example

correlations within repeated measurements of weight), rather than to correlations between

two different classes of data (for example the correlation between weight and length). There

are several different versions of the ICC; the choice of the proper version depends on the

experimental situation.

The ICC is recommended as one measure (among others) of the reliability of an experi-

mental method [1]. It is sensitive for example to the extent to which subjects (individuals)

keep their ranking order in repeated measurements. Moreover, it may indicate the ability of an

experimental method to detect and measure systematic differences between subjects. This abil-

ity is limited since those differences may be more or less masked by individual variations of
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random nature within subjects and by errors (uncertainties) of random nature and biases (sys-

tematic errors) in the method of measurement. For the method to be reliable and useful, such

unwanted variations have to be sufficiently small. The ICC serves as a quantitative estimate of

this aspect of reliability.

Very generally speaking, the ICC is calculated as a ratio ICC = (variance of interest) / (total

variance) = (variance of interest) / (variance of interest + unwanted variance). If the unwanted

variance is equal to or larger than the variance of interest (for example, the variance between

subjects) the reliability of the method is evidently poor; as can be seen, the ICC has then a

value below 0.5. On the other hand, ICC values above 0.8 or 0.9 are often regarded as a sign of

good or excellent reliability [2]. However, whether an ICC value is good enough should

depend on the intended use of the method.

The ICC concept was originally presented by Fisher [3]. Present studies of reliability in for

example medical (clinical) research usually refer, directly or indirectly, to the theory developed

by Bartko [4], Shrout and Fleiss [5] and McGraw and Wong [6] (see, e.g., references [7–16] for

recent work). It may be noted that this theory is based on the analysis of variance (ANOVA),

assuming normal (Gaussian) distributions. Other approaches to the calculation of variances

and ICC exist, using for example maximum likelihood methods [17,18] and addressing the cal-

culation of ICC also for non-Gaussian data [18]. However, we will here restrict ourselves to the

ANOVA-based approach which, as mentioned, is the one usually applied in medical research.

Despite its widespread use, the meaning and proper application of the ICC may present a

problem to the non-statistician researcher. The recipes for choosing the appropriately specified

statistical model and ICC formula are not always easily interpreted, i.e. applied to the experi-

mental situation at hand. Indeed, it seems possible that ICC statistical software may appear to

the non-statistician user as a "black box", where the user’s task essentially is to decipher the ver-

bal instructions for how to make the choices that lead to the hopefully correctly specified statis-

tical model and the corresponding ICC formula.

Our purpose with this article is to present a revised and simplified theory of the single-score

ICC and an alternative recipe for its use. The main application that we have in mind is reliabil-

ity studies in medical (clinical) research.

For this purpose we have performed a re-analysis of the theory presented by refs. [4–6]

complemented by demonstrations using Monte Carlo simulation. We limit the present discus-

sion to single-score ICC; i.e., each measured value used in the analysis represents a single mea-

surement, not the average of two or more measurements. In the notation used by McGraw

and Wong [6] this results in three distinct ICC formulas, named ICC(1) (the original ICC

without bias, introduced by Fisher [3]), ICC(A,1) (absolute agreement ICC in the presence of

bias) and ICC(C,1) (consistency ICC in the presence of bias). These three formulas are identi-

cal to the three formulas ICC(1,1), ICC(2,1) and ICC(3,1), so named and discussed by Shrout

and Fleiss [5]; however, the notation used by McGraw and Wong is clarifying by systematically

separating the absolute agreement (A) and consistency (C) versions of the ICC; therefore, we

have chosen to follow their notation.

We address that question which has been discussed in a considerable number of papers,

namely: which statistical model is the correct one? Which of these three ICC formulas should be

chosen? Previous discussions are in general directly or indirectly based on the verbal recommen-

dations presented by Shrout and Fleiss [5], quoting these recommendations more or less literally.

However, these recommendations are formulated with one rather special situation in mind,

namely raters judging targets (subjects) [5]. This formulation might not be easily and unam-

biguously translated to other experimental situations. In repeated clinical measurements,

biases associated with the measuring equipment or the arrangement of successive tests may be

more important than the identity of the person performing the measurement.
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Moreover, the approach presented by references [4–6] emphasizes the importance of a spec-

ified statistical model appropriate for the experimental design. This has led to the use of flow

charts [2,6] for helping the researcher to identify the appropriate model and the correct ICC for-

mula. Such a flow chart is for example implied in the well-known statistical package SPSS. On

basis of our re-analysis and Monte Carlo simulation we will however propose a different and sim-

pler procedure, where an initial choice of a specified model is not required for the analysis of

experimental data. A similar recommendation has previously been given by Weir [19].

The remainder of the article is organized as follows. In Section 2 we revisit the ICC theory

described by refs. [4–6]. Aiming at transparency we present a thorough discussion and re-anal-

ysis of basic derivations and concepts, i.e. the one-way random, the two-way random and the

two-way mixed statistical model.

In Section 3, we briefly describe the principles of the present simulation procedures. In Sec-

tion 4 we perform simulations of the probability distributions of the ICC values generated by

the three statistical models, with the purpose of presenting a general and graphical overview of

the properties of the single-score ICC.

In Section 5 we present an alternative recipe for the practical evaluation of ICC in a reliabil-

ity study. Section 6 is concerned with the strategy of analysis and with a demonstration of the

equivalence of the two-way random and two-way mixed models in reliability studies. Section 7

summarizes briefly our main conclusion as regards the practical calculation of ICC and of how

it may be reported.

Symbols and abbreviations frequently used in this article are shown in Table 1.

2. Method, Part I: Theory

2.1. Matrix of measured data

The intra-class correlation has been used to characterize a wide range of different experimental

data. It has been applied for example to directly measured physical data, such as muscular

strength [20] and force [21]; to rated time of physical activity [22] and to reported subjective

data such as sum scores of pain and anxiety symptoms [23]. We will refer to all such data as

the result of measurements. One important restriction is that the result of a measurement is a

quantity which can be represented in a meaningful way by a real number, i.e. by numerical

data rather than categorical data [24]. A general description which covers most experimental

situations of interest, provided that the ICC is applicable, should then be the following.

From a population P, a number n of subjects (i = 1,2,. . .,n) have been randomly selected.

On these subjects some kind of measurement of a specific quantity x (for example, blood pres-

sure) is performed. On each subject, the measurement is made k times (j = 1,2,. . .,k). The result

obtained for subject (i) in measurement (j) is a real number xij (a blood pressure value). The

complete experimental result for all the subjects and all the measurements may thus be written

[4] as a matrix with n rows and k columns, i.e., a rectangular arrangement of numbers xij such

as shown in Table 2. The "subjects" are almost always assumed to be individuals (in the litera-

ture sometimes referred to as, e.g., "targets" or "people"), and the "measurements" are often

referred to as for example "conditions" or "raters", depending on the experimental or clinical

situation.

We now wish to calculate an ICC value from this sample of n × k measured data. This sam-

ple ICC value is a quantity that characterizes this particular set of data, but, more interestingly,

it is also a statistical estimate of the intra-class correlation coefficient ρ which characterizes the

method of measurement more generally, i.e. when it is applied to any randomly selected sam-

ple of subjects from the population P. Thus, the ICC value may tell something about the reli-

ability of the method.
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2.2. Analysis of variance

Regardless of which ICC version is to be used, we first need to perform ANOVA (Analysis of Var-

iance) on the measured data matrix, calculating the various possible sums of squares (SS) and,

from them, the mean squares (MS). The experimental situation described in section 2.1 motivates

the use of the so-called repeated measures ANOVA [1]. We do not yet have to consider which of

these MS we actually will need when calculating the desired ICC; the SS and MS are all easily cal-

culated anyhow, and for clearness we list their definitions in Appendix 1 (S1 Appendix), as well as

the most important relations among them. In so doing we also define the presently used notation.

We prefer a four-letter notation (MSWS = Mean Square Within Subjects; MSBS = Mean Square

Between Subjects; MSBM = Mean Square Between Measurements; MSWM = Mean Square

Within Measurements) except for MSE (= Mean Square, Error) and MST (= Mean Square, Total).

This notation seems to be more unambiguous and also easier to interpret and memorize than the

somewhat varying three-letter notations that are more commonly used.

From now on we assume that all the required mean squares have been calculated from a

measured data matrix such as indicated in Table 2.

2.3. Model 1, leading to formula ICC(1)

2.3.1. Statistical model and population ICC. It cannot be too much emphasized that

what underlies each ICC formula is a specific mathematical model of the experimental

Table 1. Symbols and abbreviations.

Model 1 = one-way random model (no bias)

Model 2 = two-way random model (random bias)

Model 3 = two-way mixed model (fixed bias)

n = number of subjects (targets)

k = number of measurements (conditions, raters)

i = subject index (i = 1,. . ., n)

j = measurement index (j = 1,. . ., k)

N = number of simulated matrices

< . . .> = average value obtained in simulation

μ = population mean of subject’s scores

ri = deviation from mean for subject i
cj = bias in measurement j
vij = "noise" = error in measurement j for subject i, Model 1

eij = error in measurement j for subject i, Model 2 and Model 3

rcij = interaction in measurement j for subject i, Model 2 and Model 3

vij = "noise" = eij + rcij (Model 2 and Model 3)

σr
2 = variance of ri

σc
2 = variance of cj

σe
2 = variance of eij

σrc
2 = variance of rcij

σv
2 = variance of vij (= σrc

2 + σe
2 in Model 2 and Model 3)

ρ1 = population ICC, Model 1

ρ2A = absolute agreement population ICC, Model 2

ρ2C = consistency population ICC, Model 2

ρ3A = absolute agreement population ICC, Model 3

ρ3C = consistency population ICC, Model 3

MST = mean square total

MSWS = mean square within subjects

MSBS = mean square between subjects

MSWM = mean square within measurements

MSBM = mean square between measurements

MSE = mean square error

F = MSBM/MSE = F-value

ICC(1)� ICC(1,1) = sample ICC formula, Model 1

ICC(A,1)� ICC(2,1) = sample ICC formula, absolute agreement, Model 2 and 3

ICC(C,1) � ICC(3,1) = sample ICC formula, consistency, Model 2 and 3

https://doi.org/10.1371/journal.pone.0219854.t001
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situation. For an ICC formula to be valid and appropriate, it is required that this model is a

reasonably realistic description of the actual situation.

The first model to be discussed here is sometimes referred to as the Case 1 model [5,6],

sometimes as the one-way random effect model [6], or, more briefly, the one-way model. The

name refers to the fact that a random sampling of subjects is assumed. It is also sometimes

known as a linear or linear mixed-effects model (LMM) [18]. It was presented already in the

early half of the twentieth century by Fisher [3] and leads directly to the classical ICC formula

sometimes known as ICC(1,1) [5] or as ICC(1) [6]. We will simply refer to it as Model 1.

We may here dwell for a moment on terminology. Model 2, to be discussed later, is referred

to as a two-way random effects model, meaning that a random sampling of measurement

biases are introduced as well. (Note: this should not be confused with one-way and two-way

ANOVA.) Model 3, finally, is described as a two-way mixed model [6], meaning that a random

sampling of subjects is again assumed, while the biases are assumed to be fixed.

In statistical theory it is often assumed that a measured value may be regarded as the sum of

a "true score" and an "error". In Model 1 it is specifically assumed that each experimental value

xij in the matrix of measured data indicated in Table 2 may be regarded as a sum of three con-

tributions:

xij ¼ mþ ri þ vij ð1Þ

In Eq (1), μ is a constant, namely the mean value of x for the whole population P, while μ +

ri is the "true score" for subject i, i.e. that value which would be obtained for subject i if there

was no error in the measurement. When a subject (i) is selected from the population P, it is

assumed that the ri value is sampled (randomly picked) from a normal distribution with mean

value = 0 and standard deviation σr. In other words, it is assumed that the "true scores" are dis-

tributed among the individuals in the population P in accordance with a normal distribution

with mean value μ and standard deviation σr.

The third term vij is often called "error". A non-zero value may indeed be due to an error in

the measurement, but it may also be, for example, a physiologically caused variation of the x
value from its "true score" μ + ri at the time of the measurement. For each xij value, a separate

vij value is assumed to be sampled from a normal distribution with a mean value = 0 and a

standard deviation σv. This means that the error contributions vij to different matrix elements

xij are independent of each other; it also means that the average value of xij over a large number

of measurements will be μ + ri. The term vij is conventionally written wij [5,6]; the reason for

using vij in the present context will be obvious when Model 2 is discussed in the context of Eq

(8). It may be noted that Eq (1), specifies exactly how to simulate the ICC(1) intraclass correla-

tion coefficient; the details of this are described in Section 3.

Table 2. Experimental data matrix with n rows and k columns.

Subject Measurement 1 Measurement 2 . . . Measurement k Mean

1 x11 x12 . . . x1k S1

2 x21 x22 . . . x2k S2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

n xn1 xn2 . . . xnk Sn

Mean M1 M2 . . . Mk �x

Each row contains the data from one particular subject (target), while each column contains the data from one particular measurement (rater, condition). From the

measured data xij we calculate the mean value Si for each row, the mean value Mj for each column and the total mean value �x of all xij.

https://doi.org/10.1371/journal.pone.0219854.t002
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By means of a simple example we can, following Fisher [3], see that the concept of an intra-

class correlation, i.e., a correlation within the measured data xij, now arises naturally. Assume,

for example, that k = 2 measurements have been made on each of n subjects. In a diagram with

values from the first measurement (xi1, i = 1,2, . . .n) on the horizontal axis and values from the

second measurement (xi2, i = 1,2, . . .n) on the vertical axis, the two measurements on each sub-

ject will be represented by one point in the diagram. Obviously, the result (a scatter plot with n
points) is analogous to a correlation such as described by the more well-known interclass

(Pearson) correlation coefficient r. If the average magnitude (� σv) of the error vij is small

compared to the average magnitude (� σr) of the differences between different true scores μ +

ri for the individuals, the points will be well spread out along and near the line of equality; this

is a case of high intraclass correlation. With a larger number of measurements (k> 2) a high

intraclass correlation (without bias) means that the points will be spread out along the line of

equality in a k-dimensional space.

Accordingly, Fisher [3] introduced an intraclass correlation coefficient formula analogous

in form to the interclass (Pearson) correlation coefficient r. However, if the number of subjects

n is very large (properly speaking, infinite), then it turns out that the Model 1 intraclass corre-

lation coefficient is simply given by [3]

r1 ¼
sr

2

sr
2 þ sv

2
ð2Þ

i.e. the variance of the true score among the subjects in the population P, divided by the total

variance.

This coefficient ρ1 may be regarded as the intraclass coefficient of the method when applied

to the entire (and presumably very large) population P; consequently, it is sometimes referred

to as the population ICC [6]. As is obvious from Eq (2), ρ1 may have values ranging from arbi-

trarily near 0 (low or non-existent reliability, σv >> σr) to arbitrarily near 1 (high reliability; σv

<< σr).

2.3.2. Expected mean square relations. The ICC(1) formula. We wish to estimate the

standard deviations σv, σr and thus also the population intraclass coefficient ρ1 from a limited

sample of subjects randomly selected from the population P, i.e. from a single experimental

matrix such as indicated in Table 2. For this we need the ANOVA relations giving the so-called

expected mean squares (EMS).

The EMS relations are of key importance for understanding the intraclass correlation for-

mulas, but in medical and psychological articles as well as in medical statistics textbooks they

are seldom quoted, then only partly, without any derivation and even without giving any refer-

ences [1,5,6]. For this reason, and also since we will use them extensively, we have included a

simple but comprehensive derivation of the EMS relations in Appendix 2 (S2 Appendix), for

Model 1, Model 2 and the presently considered modified version of Model 3.

Using the EMS relations for Model 1 (see S2 Appendix) we obtain statistical estimates of

the variances σr
2 and σv

2 from a sample of n × k experimental data xij such as indicated in

Table 2. For example, it is found that the mean square quantity MSBS (Mean Square Between

Subjects) is in fact a statistical estimate of k�σr
2 + σv

2, while MSWS (Mean Square Within Sub-

jects) is an estimate of σv
2. In other words, an approximate equality is expected, so we may

write these two EMS relations as

MSBS � k � sr
2 þ sv

2

MSWS � sv
2

ð3Þ

The derivation of the EMS relations (S2 Appendix) as well as the simulations described in
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Section 4 demonstrate that the exact meaning of Eq (3) is that if the entire experiment (n sub-

jects, each subjected to k measurements) is repeated an infinite number of times, then the

resulting average values of MSBS and MSWS, denoted <MSBS> and<MSWS>, will be

exactly equal to the right members in Eq (3), i.e.

< MSBS >¼ k � sr
2 þ sv

2

< MSWS >¼ sv
2

ð4Þ

We cannot perform the experiment an infinite number of times, but when values of MSBS and

MSWS are calculated from one single experimental data matrix, they are most probably found

near these average values. Thus, Eq (3) is justified. Solving Eq (3) algebraically for the σ:s we

have

sr
2 �

MSBS � MSWS
k

sv
2 � MSWS

ð5Þ

Evidently, Eq (5) provides us with the desired estimates of the variances σr
2 and σv

2. Moreover,

using Eq (5) in Eq (2), we get

r1 ¼
sr

2

sr
2 þ sv

2
�

MSBS � MSWS
MSBSþ ðk � 1Þ �MSWS

� ICCð1Þ ð6Þ

In the last two members of Eq (6) we have obtained the well-known standard form of the

sample ICC formula ICC(1), written in terms of the mean squares MSBS and MSWS. Thus,

the sample value ICC(1), calculated from the MSBS and MSWS values, may be regarded as an

estimate of the population intra-class correlation ρ1 defined by Eq (2).

We may note one detail previously discussed e.g. by Lahey et al. [25]. The expression for

ICC(1) in terms of the mean squares MSBS and MSWS may become negative, namely if

MSBS<MSWS. Now, according to Eq (2), ρ1 cannot be negative, and if MSBS and MSWS are

good estimates, then we should, as seen from Eq (3), expect MSBS>MSWS. Consequently, a

negative ICC(1) is simply a bad (unfortunate) estimate. This may occur by chance, especially if

the sample size (number of subjects n) is small.

2.4. Model 2, leading to formulas ICC(A,1) and ICC(C,1)

2.4.1. Statistical model and population ICC. Conventionally, Model 2 (the two-way ran-

dom model) is specified by the following statistical model [4–6]. Each value xij in the experi-

mental data matrix is assumed to be the sum of five terms:

xij ¼ mþ ri þ cj þ rcij þ eij ð7Þ

The symbols μ and ri have the same meaning as in Model 1. Thus, the ri term is sampled

from a normal distribution with mean = 0 and standard deviation σr. However, one new term

cj is added. Moreover, the term vij that describes the random fluctuations in each measurement

has been replaced by the sum of two different contributions rcij and eij.

The term cj represents a systematic error (bias), common to all measurements labeled (j);
i.e. it affects column (j) in the data matrix. For example, these measurements may have been

performed by a rater, who, for some reason, has a tendency to obtain somewhat higher xij val-

ues. Following Bartko [26], who named cj an "additive bias", we will refer to the cj terms simply

as "bias terms". In Model 2 it is assumed that these bias terms are random, in the sense that

each cj value is sampled from a normal distribution with a mean value = 0 and standard
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deviation σc; thus, if the entire experiment is repeated with k measurements on each of n new

subjects, then the biases cj will in general not be the same. For example, raters may have been

replaced by new raters with other biases.

The term rcij is a so-called interaction term; it takes into account that the effect of bias may

not be the same for all subjects. In Model 2 it is assumed that for each xij, the value of rcij is to

be sampled from a normal distribution with mean = 0 and standard deviation σrc. The term eij,

finally, is a residual (error) term. It is, for each xij separately, sampled from a normal distribu-

tion with mean = 0 and standard deviation σe.

We wish to stress the fact that these verbal descriptions of the various terms should be

regarded as a statistical interpretation of the model given by Eq (7). What defines the model

from a purely mathematical point of view is the algebraic form of Eq (7) and the precise speci-

fications of how the various terms are to be sampled from various normal distributions.

Therefore, we may use the well-known mathematical fact that if a value rcij is sampled from

a normal distribution with mean = 0 and variance σrc
2, and another value eij is sampled from

another normal distribution with mean = 0 and variance σe
2, and they are added as in Eq (7),

then the result is equivalent to sampling one single value vij from a normal distribution with

mean = 0 and variance σv
2 = σrc

2 + σe
2. Consequently, we may, with the above sampling pre-

scriptions, quite generally write the statistical model Eq (7) more simply as

xij ¼ mþ ri þ cj þ vij ð8Þ

where vij is sampled from a normal distribution with mean = 0 and standard deviation σv. The

rcij and eij terms have been merged into one single term vij. The meaning of the vij term is

mathematically precisely the same in Model 1 and Model 2, namely a term whose value is sam-

pled from a normal distribution with a standard deviation σv. Comparison of Eq (8) and Eq (1)

then shows that the only thing that differs Model 2 from Model 1 is the presence of the bias

terms cj.

The population intraclass correlation coefficient corresponding to the model given by Eq

(8) is again given by the variance of interest divided by the total variance, i.e. [4]

r2A ¼
sr

2

sr
2 þ sc

2 þ sv
2

ð9Þ

This population intraclass coefficent is said to describe the "absolute agreement" between

different measurements [6]; hence the "A", which here appears as an index in ρ2A. The meaning

of this will be more apparent when Eq (9) is compared with the "consistency" intraclass corre-

lation defined below.

In order to obtain a statistical estimate of ρ2A, the EMS relations for Model 2 are needed.

They are (see S2 Appendix)

MSBS � k � sr
2 þ sv

2

MSBM � n � sc
2 þ sv

2

MSWS � sc
2 þ sv

2

MSWM � sr
2 þ sv

2

MSE � sv
2

ð10Þ

where we have, for completeness and later convenience, included the expected mean square

MSWM (Mean Square Within Measurements).

Also for convenience we will henceforward refer to the vij terms as "noise" terms; regardless

of their origin, they are (roughly) analogous to what is known in signal theory as “noise”, i.e.
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an in general unwanted random variation that tends to drown the signal (the true scores). For

example, a high ICC(1) value corresponds to a high signal-to-noise ratio.

The complete set of EMS relations for Model 1 (including, as a detail, Eq (3)) are obtained

from Eq (10) simply by putting σc
2 = 0. This is also seen in Fig 1, where all models, EMS rela-

tions and ICC formulas discussed here are summarized.

2.4.2. Model 2: The absolute agreement formula ICC(A,1). The equation system Eq (10)

is over-determined, having five equations but only three unknowns (σr, σc and σv); two of the

equations can be derived from the others. Solving Eq (10) for the σ:s we obtain (for example)

the expressions

sr
2 �

MSBS � MSE
k

sc
2 �

MSBM � MSE
n

sv
2 � MSE

ð11Þ

Eq (11) provides us with a statistical estimate of the variances σr
2, σc

2 and σv
2. Using Eq (11) in

Fig 1. Survey of models, mean square relations and ICC formulas.

https://doi.org/10.1371/journal.pone.0219854.g001
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Eq (9) we obtain

r2A ¼
sr

2

sr
2 þ sc

2 þ sv
2

�
MSBS � MSE

MSBSþ ðk � 1Þ �MSEþ ðk=nÞ � ðMSBM � MSEÞ
� ICCðA; 1Þ

ð12Þ

i.e., the well-known sample ICC formula called ICC(A,1) [6], which is thus a statistical estimate

of the population intraclass coefficient ρ2A. The formula ICC(A,1) gives an estimate of the reli-

ability of the method if an absolute agreement between different measurements is desired [6].

Unlike the ICC(1) formula, it takes account also of the additional variance due to the randomly

varying bias terms. We note that in the limit of vanishingly small bias terms, i.e. when σc
2! 0,

MSBM, MSWS and MSE tend to be equal since all three are then estimates of the same variance

σv
2. Model 2 then reduces to Model 1 and the formula ICC(A,1) will tend to give the same

result as the formula ICC(1).

2.4.3 Model 2: The consistency formula ICC(C,1). There are situations where a bias in

the measurements, represented by the term cj, might be considered as acceptable. If a consis-

tent ranking order of the subjects and a knowledge of the differences between them in each

measurement is regarded as sufficient, we may choose to modify the expression Eq (9). Thus, a

new population intraclass correlation coefficient is introduced, defined by [5]

r2C ¼
sr

2

sr
2 þ sv

2
ð13Þ

The only difference from Eq (9) is that the variance σc
2 due to the bias in the measurements

has been omitted. One may note the similarity to Model 1 (see Fig 1 or Eq (2)). The coefficient

defined by Eq (13) is usually said to measure the consistency among the measurements [6], i.e.

the extent to which the subjects maintain their ranking order and internal differences. It

should be kept in mind that Model 2, given by Eq (8), is still assumed. Thus, even though the

same model is used and the same measured data matrix is analyzed, the question asked (con-

sistency rather than agreement) is different. Since one term in the denominator is missing,

compared to Eq (9), we expect a higher ICC with Eq (13). This is reasonable from the intutitive

point of view that if we are satisfied with just consistency, rather than absolute agreement, then

the method might also be regarded as more satisfactory, i.e reliable, although in a restricted

sense. It has been pointed out that Eq (13) is not properly an intra-class correlation coefficient,

since the variance in the denominator is not the total one [26]. Still, it has been argued that it

may be useful as a measure of consistency [5].

In any case, using the variance estimates Eq (11) in Eq (13) we get

r2C ¼
sr

2

sr
2 þ sv

2
�

MSBS � MSE
MSBSþ ðk � 1Þ �MSE

� ICCðC; 1Þ ð14Þ

which is the standard formula for estimating consistency ICC, assuming Model 2 [6]. One

advantage with this formula (and with ICC(A,1)) is that, unlike ICC(1), it is valid whether or

not bias is present. We may note that if Model 1 is valid, then MSWS in the ICC(1) formula Eq

(6) may be replaced by MSE, since MSWS and MSE are then equally valid estimates of σv
2 (Fig

1). We then obtain, of course, the ICC(C,1) formula.

2.4.4. The lack of meaning of ICC(1) in the presence of bias. Suppose that a non-negligi-

ble bias is present, i.e. that Model 2 is appropriate. We may of course still calculate ICC(1)

from an experimental matrix such as in Table 2, but what is the meaning of this ICC(1) value?
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To see this, we apply Eq (10), i.e. the EMS relations in the presence of bias, to the ICC(1)

formula Eq (6). This gives

ICCð1Þ �
MSBS � MSWS

MSBSþ ðk � 1Þ �MSWS
�

k � sr
2 þ sv

2 � ðsc
2 þ sv

2Þ

k � sr
2 þ sv

2 þ ðk � 1Þ � ðsc
2 þ sv

2Þ
¼

k � sr
2 � sc

2

k � ðsr
2 þ sc

2 þ sv
2Þ � sc

2
¼

sr
2 � sc

2=k
ðsr

2 þ sc
2 þ sv

2Þ � sc
2=k

ð15Þ

Due to the presence of the two terms σc
2/k this is not equal to ρ2A as defined by Eq (9), nor is it

equal to ρ1 as defined by Eq (2). Thus, Eq (15) shows that the formula ICC(1), applied in the

presence of bias, is not a correct estimate of any of the two population intraclass coefficients.

In the presence of non-negligible bias, the ICC(1) formula should therefore not be used.

2.4.5. The choice between Model 1 and Model 2. In a reliability study the method to be

tested is normally designed with the intent that biases should not be present or at least negligi-

ble. However, the purpose of a reliability study is partly to check whether this is true. In prac-

tice the experimentalist can never be certain that bias effects are entirely absent.

When biases are absent, i.e. when Model 1 is valid, the ICC(A,1), ICC(C,1) and ICC(1) for-

mulas are all estimates of the same population ICC, namely ρ1. We may therefore expect them

to give at least nearly the same ICC value. Indeed, simulations (to be described below) indicate

that the three ICC values will be approximately equal whenever Model 1 is valid. The simula-

tions also indicate that if the ICC value is high (say, about 0.8 or higher), then the three ICC

values will in fact be closely equal to each other.

On the other hand, when bias effects are present (Model 2) we may expect ICC(C,1) to be

somewhat larger than ICC(A,1) (for the simple reason that σc
2 has been omitted from the

denominator in the population ICC formula). Therefore, an ICC(C,1) value that is nearly

equal to ICC(A,1) may be regarded as a qualitative sign that bias effects should be small or

absent, while an ICC(C,1) value substantially larger than ICC(A,1) suggests the presence of

non-negligible bias.

This is a convenient method of qualitative inspection. To confirm the presence of bias, a

well-known statistical method is to use the F-value

F ¼
MSBM
MSE

ð16Þ

The average expected F-value is (see Fig 1)

F ¼
MSBM
MSE

�
n � sc

2 þ sv
2

sv
2

¼ 1þ n �
sc

sv

� �2

ð17Þ

In the presence of non-negligible bias (i.e., if σc is comparable to or larger than σv) the F-

value is thus expected to be larger than unity, possibly much larger (if n is large). If the proba-

bility under the null hypothesis (absence of bias) of finding an F value as high as the one calcu-

lated from the experimental matrix is very small, we may reject the null hypothesis, i.e.

conclude that bias effects are probably present.

As seen from Eq (17), the sensitivity of this test depends on the strength of the biases and

also, strongly, on the number of subjects n. If the biases are weak, i.e. σc << σv, or if n is small,

then the expected F value will be low and the F-test may fail to "detect" the presence of bias. On

the other hand it should be noted that with a large n, the F-test might be significant even
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though biases are small. To clarify this in a practical case, the magnitude of the bias, i.e. the

standard deviation σc (as compared to σr and σv) can be estimated by means of Eq (11).

2.4.6. Further comments on Model 2. McGraw and Wong [6] introduce a modified ver-

sion of Model 2, called Case 2A, where the interaction term rcij is absent from Eq (7). With our

description this makes no difference–the interaction term is included in the noise term–and

the model is still equivalent to Eq (8). It thus leads again to the same formulas ICC(A,1) and

ICC(C,1).

It may also be worthwhile to note that the sample ICC formulas can be written differently.

For example, using the relations in S1 Appendix one can easily show that

ICCðA; 1Þ ¼
MSWM � MSE

MSWM � MSEþMSWS
ð18Þ

This is not an independent estimate of ρ2A; Eq (18) is mathematically equivalent to the stan-

dard expression for ICC(A,1) shown in Eq (12). Thus, for a given matrix, it will give precisely

the same value.

2.5. Model 3, leading to formula ICC(A,1) and formula ICC(C,1)

2.5.1. Fixed biases. Model 3 is, as mentioned, described as a two-way mixed model [6],

meaning that a random sampling of subjects is again assumed, while the biases are assumed to

be fixed. We will introduce a theoretical modification that makes our Model 3 slightly different

from the ICC(3,1) case of Shrout and Fleiss [5] as well as the Case 3 model described by

McGraw and Wong [6]. However, we still obtain precisely the same ICC formulas. We should

add that we will finally argue (in Section 6) that in a reliability study there is actually no differ-

ence between Model 2 and Model 3.

Formally, the conventional Model 3 looks at first sight just like Eq (7), i.e.

xij ¼ mþ ri þ cj þ rcij þ eij ð19Þ

The μ, ri and eij are defined as before, and ri and eij are sampled as before from normal dis-

tributions with mean values = 0 and standard deviations σr and σe. However, the bias terms cj

and the interaction terms rcij are different.

In Model 3, the terms cj in Eq (19) are assumed to be fixed rather than sampled from a nor-

mal distribution. The meaning of this is perhaps confusing. As mentioned, it will be argued

that in the analysis of a reliability study there is no difference between Model 2 and Model 3,

i.e. there is no difference between fixed and random biases. This may be intuitively understood

from the fact when a matrix such as indicated in Table 2 is generated using Eq (19), it does not

matter for the subsequent calculation of an ICC value whether the constants cj (j = 1, 2, . . . k)

are randomly sampled from a normal distribution or chosen in some other way.

It may however be meaningful to speak about fixed bias terms cj if they remain the same

when the measurements are continued with new subjects. An example, given by Shrout and

Fleiss [5] and commonly referred to in the literature, is the situation where raters are judging

subjects and where "the selected raters are the only raters of interest" [5]. In practice, this

should mean that the same raters (j = 1,2, . . ., k) are used in subsequent measurements.

Turning to the value of the interaction term rcij, it is assumed to be sampled from a normal

distribution with mean = 0 and standard deviation σrc. This would seem to be equivalent to

Model 2. However, in the conventional approach [5,6] to Model 3 there is a restriction on cj as

well as rcij, which is discussed in the next section.

2.5.2 Model 3, conventional approach: fixed biases restricted to sum = zero. In the

Case 3 model described by Shrout and Fleiss [5] and McGraw and Wong [6], the cj are,
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unfortunately without any explicit motivation or any reference to literature, subjected to the

restriction

X

j

cj ¼ 0 ð20Þ

Thus, if k = 3, say, and c1 = 1, c2 = 1, then, necessarily c3 = -2. Likewise, the rcij are assumed to

be sampled from a normal distribution with a standard deviation σrc, however with a similar

restriction

X

j

rcij ¼ 0 ð21Þ

Eq (21) means that for each subject (i) the interaction terms, although varying from subject to

subject, are required to add up to zero. This leads to a mathematical complication referred to

as anti-correlation [5]. Bartko [4], however, apparently introduces Model 3 without these

restrictions. We feel that the restrictions Eq (20) and Eq (21) should be critically discussed.

First, we note that their effect is to guarantee that the average value of xij obtained with a

finite number of measurements (e.g., k = 3) but a very large (n!1) number of subjects will,

according to Eq (19), be equal to the population mean value μ. (The mean values of ri and eij,

each being sampled from a normal distribution with mean value = 0, will tend to zero). Model

1 and Model 2 do have this property, as may be seen from Eq (1) and Eq (8); in the case of

Model 2 this is so because the cj values are sampled from a normal distribution with the mean

value = 0.

However, we find that the restrictions Eq (20) and Eq (21) are artificial from an experimental

point of view. If, for example, a limited number k of raters are selected (randomly or not) from

a population of raters, their cj values will in general not add up to zero. (This is obvious when

performing a simulation based on Model 2.) Thus, in the presence of fixed biases, the average

value of xij should differ systematically from the population average μ of the true scores. The

departure is due to the biased method of measurement and cannot be eliminated by increasing

the number of subjects. The same argument may be applied to the rcij term; in a single matrix

with a finite number of subjects and measurements, the interaction terms rcij should, just like

eij, in general not add up to zero; as is again obvious when looking back at Model 2.

Eq (20) may be questioned also from a mathematical point of view. Suppose that the bias

terms cj are modified by adding to each of them the same arbitrary constant C; the new bias

terms are thus cj + C. This will make the matrix elements xij different (xij! xij + C). However,

using the definitions and relations in S1 Appendix it can be shown that the sums of squares

(SST, SSBS, etc.) are not changed by this modification. It follows that also the mean squares

and thus the estimated variances and sample ICC values calculated from the matrix will be pre-

cisely the same as before.

Now, let cj be arbitrary bias terms. In general, they may not satisfy Eq (20). We obtain bias

terms satisfying Eq (20) by adding to each cj a common constant, namely � �c, where �c is their

average value. However, it is clear from the above observation that this will not change the

mean squares or the ICC values calculated from the matrix.

Conversely, assume that the bias terms originally do satisfy Eq (20). Suppose we modify

them by adding to each of them the same but arbitrary constant C 6¼ 0. Then Eq (20) will no

longer be satisfied, but the mean squares and ICC values will remain precisely the same.

We conclude that the restriction Eq (20) may be omitted without changing the results of

Model 3 as regards mean squares and intraclass correlations. What matters is the distribution

of the cj values relative to their average value �c.
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2.5.3. Model 3, present approach: No restriction. In the presently discussed version of

the two-way mixed model (Model 3), we will therefore not apply the restrictions Eq (20) and

Eq (21). This means a considerable simplification of the theory. It will still lead to the same

ICC formulas as those described for Model 3 by McGraw and Wong [6], i.e., to ICC(A,1) and

ICC(C,1).

In the absence of the restriction Eq (21), and thus in the absence of anti-correlation, we

may again replace rcij and eij in Eq (19) by a single “noise” term vij sampled from a normal dis-

tribution with standard deviation σv. Thus, Model 3 becomes simply

xij ¼ mþ ri þ cj þ vij ð22Þ

where, however, the cj now are fixed. The absolute agreement population ICC with Model 3 is

therefore similar to Eq (9), i.e. to that obtained with Model 2, except that (according to the

conventional approach) the Model 2 bias term variance σc
2 is replaced (see S2 Appendix) by

yc
2 ¼

X

j

ðcj � �cÞ2

ðk � 1Þ
ð23Þ

i.e. the variance of the fixed bias terms cj about their average �c. The absolute agreement popula-

tion ICC with Model 3 is thus

r3A ¼
sr

2

sr
2 þ yc

2 þ sv
2

ð24Þ

Eq (24) is identical to the population ICC named "Case 3A, absolute agreement" by McGraw

and Wong [6]. From S2 Appendix we find the EMS relations for Model 3 to be

MSBS � k � sr
2 þ sv

2

MSBM � nyc
2 þ sv

2

MSWS � yc
2 þ sv

2

MSWM � sr
2 þ sv

2

MSE � sv
2

ð25Þ

Solving Eq (25) for σr
2, σc

2 and σv
2 we get the variance estimates

sr
2 �

MSBS � MSE
k

yc
2 �

MSBM � MSE
n

sv
2 � MSE

ð26Þ

Using Eq (26) in Eq (24) we obtain precisely the same ICC(A,1) formula as the one we

obtained with Model 2, i.e., Eq (12). This result was also reached by McGraw and Wong [6]. It

is not surprising, in view of the fact that in going from Model 2 to Model 3, we have replaced

σc
2 by θc

2 in the EMS relations Eq (25) as well as in the definition of the absolute agreement

ICC, Eq (24).

We now turn to the consistency version of the population intraclass correlation coefficient,

which with Model 3 is defined in the same way as for Model 2, i.e. as

r3C ¼
sr

2

sr
2 þ sv

2
ð27Þ
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Remembering that σv
2 = σe

2 + σrc
2, Eq (27) is identical to the population ICC referred to as

"Case 3A, consistency" by McGraw and Wong [6]. In fact, Eq (27) is identical to Eq (13), and

using Eq (25) it gives again the ICC(C,1) formula of Eq (14), also in agreement with McGraw

and Wong [6]. This result is also reached by Bartko [4], with the added assumption that the

interaction term is negligibly small. This assumption has not been used here.

Thus, if a choice is to be made between the two-way random and the two-way mixed mod-

els one should be aware that both models lead to precisely the same sample ICC formulas. The

same absolute agreement ICC and consistency ICC values will be obtained for a given data

matrix, regardless of which model is regarded as appropriate. One may therefore reasonably

wonder whether there really is any difference between Model 2 and Model 3. As mentioned,

we will return to this question in Section 6. We will also demonstrate fixed bias results by

Monte Carlo simulation in Section 4. A flow diagram summarizing the connection between

models and the resulting formulas is shown in Fig 2.

One choice which definitely does make a difference in the value of the ICC (unless bias are

very small or absent) is the choice between the absolute agreement formula ICC(A,1) and the

consistency formula ICC(C,1) (Fig 2). That choice may seem to depend only on whether abso-

lute agreement is desired or if consistency is sufficient. However, there is one further aspect

that should be noted.

If the biases, i.e. the numbers cj, are fixed in continued measurements, then a reasonable

experimentalist approach should be either to try to correct the measured values xij for these

biases, or to eliminate (remove) the sources of bias. Let the corrected xij value be called yij.

Then, according to Eq (22), the corrected values are given by

yij ¼ xij � cj ¼ mþ ri þ vij ð28Þ

But from this equation it is clearly seen that the corrected values yij may in fact be generated by

Model 1, i.e. without bias. The appropriate population intraclass correlation coefficient for the

corrected values should therefore be given by Eq (27), i.e. that coefficient which is estimated by

Fig 2. Relation between ICC models and ICC formulas. Three statistical models used in the intraclass correlation theory

are indicated: Model 1 (one-way model); Model 2 (two-way random model); and Model 3 (two-way mixed model). The

figure shows the relation between these models and the three well-known sample ICC formulas, i.e. ICC(1), ICC(A,1) and

ICC(C,1).

https://doi.org/10.1371/journal.pone.0219854.g002
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ICC(C,1). Consequently, one may regard ICC(C,1) as an estimate of the population intraclass

correlation coefficient that would be obtained if the bias terms could be eliminated or cor-

rected for. This, which applies to Model 2 as well as Model 3, seems to be a somewhat stronger

statement than saying merely that ICC(C,1) is a measure of consistency. It will be clearly dem-

onstrated also by the simulations discussed below. In fact, it was proposed by Alexander

already in 1947 [17].

2.6. Models specified from experimental design

Much discussion has been devoted to the question of which model (Model 1, 2 or 3) should be

specified, i.e. correctly associated with a given experimental design [2,4,5,6,19,25,26,27]. We

wish to show that a simple argument based on the algebraic formulas that define the models

may be helpful. Neverthless, we also wish to point out that it will later be shown that such a

specification of a model should be considered to be only preliminary and may have to be

reconsidered in the light of experimental data.

In this discussion it will be convenient to differ between biases associated with raters and

biases associated with the measurement procedure (for example, effects of learning or fatigue

in a series of measurements on the same subject). We will indicate rater biases with a single

prime, for example c'j, while procedure biases are indicated by a double prime, for example c''j.
With a linear model such as assumed in Eq (1) and Eq (8), the total bias will be the sum of the

two kinds of biases, i.e. cj = c'j + c''j.
Example 1: one rater each column. Each of n subjects is judged (measured) once by each of

k raters. (This design may be used e.g. in an inter-rater reliability study.) There might be non-

zero rater biases c'j as well as procedure biases c''j. A measured value should be the sum of all

terms, i.e.

xij ¼ mþ ri þ c0j þ c@j þ vij ¼ mþ ri þ cj þ vij ð29Þ

We can see that Eq (29) has the form of Eq (8). This means that Model 2 or 3 are expected to

be appropriate, depending on whether cj is regarded as random or fixed. We note that with

this design, rater biases cannot be separated from procedure biases. If both biases are absent

(c'j = c''j = 0) we get, of course, Eq (1); then Model 1 is appropriate.

Example 2: one single rater. Each of n subjects is judged (measured) k times. There is only

one rater, with a single bias we may call c’; this rater performs all the measurements. This

design might be used e.g. in an intra-rater reliability study; it is also common in medical reli-

ability studies where the identity of the rater is not regarded as important. We first assume that

there are no procedure biases, i.e. cj'' = 0. Then

xij ¼ mþ ri þ c0 þ vij ¼ ðmþ c0Þ þ ri þ vij ¼ m
0 þ ri þ vij ð30Þ

Only the apparent population mean value is affected, being shifted from μ to μ' = μ + c'. Eq

(30) has the form of Eq (1), i.e. Model 1 is expected to be appropriate. On the other hand, if

there are procedure biases, i.e. if not all the cj'' are zero, then a term cj'' should be added to Eq

(30). We then recognize Eq (8), i.e. Model 2 or 3 should be appropriate.

Example 3: one rater for each subject. Each subject is measured k times by the same rater,

but different subjects have different raters (for example from different clinics). Thus, there are

n raters, and the rater biases are indexed as c'i, i = 1, 2, . . . n according to which subject they

are measuring. Assume there are no procedure biases. This gives

xij ¼ mþ ri þ c0i þ vij ¼ mþ r0 i þ vij ð31Þ

where r'i = ri + ci. We recognize Eq (1), so Model 1 is expected to be appropriate, but we should
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observe from Eq (31) that what is estimated is a population ICC given by

r ¼
s0r

2

s0r
2 þ sv

2
ð32Þ

where σ'r2 = σr
2 + σc

2, i.e. the sum of the variance of the subject’s true scores and the variance

of the raters; these two variances cannot be separated with such an experimental design.

Now suppose that procedure biases c''j are present. Adding this term to Eq (31) shows that

Model 2 or 3 are then expected to be appropriate.

Example 4: A different rater for each subject and each measurement. This should be a very

unusual design, but it may be shown to illustrate the principle of the argument. Each of the n × k
measurements is made by a different rater with a bias c'ij sampled from a normal distribution with

variance σc
2; thus, there are n × k raters. Assume that there are no procedure biases. This gives

xij ¼ mþ ri þ c0 ij þ vij ¼ mþ ri þ v0ij ð33Þ

where v'ij = c'ij + vij is sampled from a normal distribution with variance σ'v2 = σc
2 + σv

2. Eq (33)

has the form of Eq (1), which shows that Model 1 is expected to be appropriate, but it should be

observed that the noise term includes the random variation of rater bias. The random variation of

rater biases cannot be separated from noise.

2.7. What ICC value is high enough?

Qualitative interpretations of ICC values are often recommended, for example (under certain

restrictions [2]) “poor” (ICC < 0.5), "moderate" (0.5–0.75), “good” (0.75–0.9) and "excellent"

(ICC > 0.9). However, there are also quantitative ways of considering an ICC value obtained

from a reliability study. We take Model 1 as an example. The population ICC given by Eq (2)

may be written.

r1 ¼
1

1þ ðsv=srÞ
2

ð34Þ

Suppose that it is required that the typical error or uncertainty in the method of measurement

should be less than 10% of the spread among the true scores, i.e., σv< 0.1σr. (One example could

be the measurement of body temperature, where a typical range of interest might be a few degrees,

while the measurement of the temperature may have an uncertainty of about 0.1˚C.) Inserting σv

< 0.1σr into Eq (34) we find that the population ICC should then be about 1/(1 + 0.01)� 0.99 or

larger. The required ICC value is thus very close to unity. However, it may be questioned if an

ICC value that close to unity is informative; rather, one should consider the ratio σv /σr.

Suppose instead that we assume that ρ1> 0.8 is high enough. Using this in the above equation

gives σv/σr< 0.5. This means that the error σv might be as much as 50% of the spread σr among

the true scores. Such a large error might be acceptable in some contexts but not in others; conse-

quently, we may have to reconsider our assumption. A higher ICC value might be required.

Considerations such as these might be of assistance when judging if an ICC value is high

enough in a given clinical context.

3. Method Part II: Simulation

3.1. Simulation of ICC probability distributions from Model 1

Monte Carlo simulation is well-known in statistical research [28–31]. Still, a brief comment on

the difference between for example a clinical reliability test and the present simulation is

motivated.
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In a typical clinical or research reliability test, the researcher starts by planning an experi-

ment according to a specific design. Subjects willing to take part in the study have been found,

inclusion and exclusion criteria have been applied and ethical permissions have been secured.

Finally, measurements have been made, resulting in an experimental data matrix of size n × k
(Table 2) from which the researcher, using ANOVA and a specified statistical model corre-

sponding to the design, may derive a standard error of measurement (σv), an ICC value and a

confidence interval for the population ICC.

In the simulation we do essentially the reverse. We start from a specified statistical model

(Model 1, 2 or 3). Using this model, we let a computer simulate (create) "experimental" data

which then are analyzed. For the simplest model, Model 1, we begin by choosing explicit

numerical values for the population mean value μ, the population standard deviations σr and

σv, the number of subjects n and the number of measurements k. In order to study essentially

all possible results of this model, a large number N of "experimental" data matrices are simu-

lated, each of size n × k. In the present simulations N = 10000 for each case of interest; this pro-

vides sufficient statistical accuracy for our purposes.

The simulation of each "experimental" data matrix is for Model 1 performed in accordance

with Eq (1). Thus, each matrix element xij is explicitly calculated to be the sum of a population

mean value μ, a signal term ri and a noise term vij. The values ri are randomly sampled from a

normal distribution with mean value zero and the chosen standard deviation σr, while the val-

ues vij are randomly sampled from a normal distribution with mean value zero and the chosen

standard deviation σv. (The element of randomness in the simulation is the reason for the tra-

ditional name “Monte Carlo simulation”.) For transparency and completeness, the method

presently used for this random sampling is briefly indicated in Appendix 3 (S3 Appendix).

Each simulated "experimental" matrix will be a little different because of the random nature

of the ri and the vij numbers. When finished, it is (within the simulation program) subjected to

ANOVA. An ICC(1) value and an F value are calculated and stored; for comparison, ICC(A,1)

and ICC(C,1) values are calculated and stored as well. Thus, in one single simulation with

N = 10000 we get, for example, a set of 10000 simulated ICC(1) values. This set may be

regarded as a probability distribution of the ICC(1) values generated by the specified model.

From the ICC(1) distribution the average ICC(1) value is calculated and its 95% central range

limits (see below) are estimated numerically. Apart from a minute for manually feeding the

input data (μ, σr, σv, n, k, and N in the case of Model 1), the simulation and analysis of

N = 10000 “experiments” takes typically one or a few seconds on an ordinary personal

computer.

The advantage of such simulations is that they may help us to understand how the ICC

“works”, we may get a survey of what to expect in an experiment, and we may better under-

stand how to make a proper choice of models, experimental designs and analysis.

3.2. Data obtained from a Model 1 ICC probability distribution

From the N = 10000 simulated mean squares, ICC values and F values various averages are cal-

culated. For example, let ICCJ (1) be the sample ICC(1) value obtained from the J:th simulated

matrix. The average ICC(1) value is then

< ICCð1Þ >¼
1

N

XN

J¼1

ICCJð1Þ ð35Þ

The same notation (< . . .>) is used for other averages over the N simulated matrices. Thus,

for example<MSBS> is, as mentioned, the average mean square between subjects. These aver-

ages are presented together with a standard deviation calculated in the usual manner. The
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standard deviations are only meant to give a rough idea of the spread of simulated data around

the average value.

The confidence limits of the population ICC are of greater interest. In order to estimate

these confidence limits, the 95% central range limits of the simulated ICC(1) distributions may

be used. With a large number N of simulated ICC(1) values, 2.5% are expected to be above the

upper central range limit, while 2.5% are expected to be below the lower central range limit. In

the present simulations, a simple numerical method has been used to estimate these limits:

with N = 10000, the upper 95% central range limit is estimated as being equal to the lowest

simulated ICC(1) value among the 250 highest ones, while the lower limit is estimated as being

equal to the highest ICC(1) value among the 250 lowest ones. The connection between these

sample ICC central range limits and the population ICC confidence interval will be demon-

strated in Section 4.

It is informative to study for example the average value <ICC(1)> and the central range

limits as functions of the input data. For a systematic survey of ICC(1) we note again that the

population intraclass coefficient for Model 1 may be written as in Eq (34), from which it is

obvious that ρ1 depends only on the ratio σ v /σ r. All cases of interest may therefore be simu-

lated and studied by varying this ratio within a reasonable interval, for example 0< (σ v /σ r)
2

< 2. (A value of (σ v /σ r)
2 larger than 2 is deemed not to be of interest since the expected aver-

age ICC(1) value would then be less than 0.33.)

It is also obvious from Eq (34) that, as regards the ICC value, the separate values of μ, σr and

σv do not matter. We may therefore, without any loss of generality, choose fixed values for μ
and σr, while varying σv, i.e. the ratio σ v /σ r. For convenience we have therefore throughout all

present simulations assumed μ = 100 and σr = 10. For example, a value of σv = 5 will then give

(σ v /σ r)
2 = 0.25 and ρ1 = 0.8.

3.3. Methods for simulation of Model 2 and Model 3

The methods are similar to that used for Model 1. In Model 2 each matrix element is calculated

by the formula Eq (8), i.e. as a sum of a population mean value μ, a signal term ri, a bias term cj

and a noise term vij. The sampling of the ri and vij terms are performed as for Model 1. The

terms cj are sampled from a normal distribution with standard deviation σc and mean value

zero. Input data for the simulation are thus N, n, k, μ and the standard deviations σr, σc and σv.

For each simulated matrix, mean squares (MS) and the ICC(A,1) and ICC(C,1) values are cal-

culated. For comparison, we also calculate ICC(1), even though it is not valid when biases are

present.

For a systematic survey of ICC(A,1) we may note that the population ICC for absolute

agreement may be written

r2A ¼
1

1þ ðsc=srÞ
2
þ ðsv=srÞ

2
ð36Þ

This depends on two ratios, namely σ c /σ r and σ v /σ r ; for the survey, these ratios may be

varied independently over suitable intervals.

In Model 3, each matrix element xij is calculated as a sum of a population mean value μ, a

signal term ri, a fixed bias term cj (i.e., equal for all the simulated matrices) and a noise term vij.

The signal term ri and the noise term vij are sampled from their respective normal distribu-

tions. Input data for the simulation are thus N, n, k, μ, the standard deviations σr and σv, and

the k fixed (but arbitrary) cj values. Again, we use N = 10 000, μ = 100 and σr = 10 throughout.

There is an infinite number of ways of choosing the fixed cj values. For our purposes it will be

sufficient to study only two cases.
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3.4. Fortran code

An interactive Fortran 77 code, SIMANOVA, was written to perform these simulations. It was

repeatedly rewritten in order to perform the various tasks given to it. The source code of a

rather general version is given in Appendix 4 (S4 Appendix). Output data for plotting are

given in a form suitable e.g. for Excel. Note that two random seeds have to be given to the ran-

dom generator, for example two four-digit integers.

4. Simulation studies

4.1. Simulation study of Model 1

Fig 3 shows results (part of the print-out, somewhat edited) of one specific Monte Carlo simu-

lation run using Model 1. Fig 3 (as well as Fig 4; see text below) may be reproduced by running

SIMANOVA with the input data shown, including the random seeds. As seen from Fig 3,

input data in this run were n = 20, k = 3, N = 10 000, μ = 100, σr = 10, and σv = 5, with the two

random seeds 4566 and 2345. A different choice of random seeds will give statistically the

same result, but not exactly the same numbers. As mentioned, the values μ = 100, σr = 10 and

N = 10000 are used throughout all simulations.

From Eq (34) the population intraclass correlation coefficient is ρ1 = 1/(1 + 52/102) = 0.8. In

a similar way, the expected average mean squares MSBS, MSWS, MSBM, MSWM and MSE are

calculated using the EMS relations (see Fig 1) from the variances σr = 10, and σv = 5; their val-

ues are shown in Fig 3. The simulated average mean square values (<MSBS>, etc.) are in

excellent agreement with the expected values, apart from very small statistical fluctuations due

to the finite (albeit large) value of N.

For each of the N matrices, all three sample ICC values ICC(1), ICC(A,1) and ICC(C,1) are

calculated. Not only do their average values<ICC(1)>, <ICC(A,1)> and<ICC(C,1)> agree

very closely, as should be expected with Model 1, but the values tend in fact to agree closely

also within each single simulated matrix. This is exemplified in Fig 3 by the result for the 10

first simulated matrices.

It may be noted that all three average ICC values are slightly different from the population

ICC value = 0.8. This is due to a simple numerical effect. The average ICC(1), for example, is

given by

< ICCð1Þ >¼<
MSBS � MSWS

MSBSþ ðk � 1Þ �MSWS
> ð37Þ

In general, this is not precisely equal to the alternative expression

AICCð1Þ ¼
< MSBS > � < MSWS >

< MSBS > þðk � 1Þ� < MSWS >
ð38Þ

(i.e., it does matter whether the average is taken before the division or after.) Since the average

simulated MS values in Eq (38) agree very well with the expected MS values, AICC(1) agrees

better with the population ICC, ρ1, than does<ICC(1)>. However, <ICC(1)> is by definition

the average ICC(1) value calculated from the ICC(1) distribution. Moreover, the difference

between the values calculated by Eq (37) and Eq (38) is in practice small compared to the

widths (95% central ranges) of the simulated ICC distributions. A similar argument applies to

ICC(A,1) and ICC(C,1). The simulated 95% central ranges are shown in Fig 3 for all three cal-

culated ICC versions.

For the same simulation run as shown in Fig 3, Fig 4 shows the simulated distributions of

the values of ICC(1), ICC(A,1) and ICC(C,1). The distributions are presented as histograms,
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Fig 3. Part of the computer printout from a SIMANOVA run using Model 1. Corresponding ICC distributions are shown in Fig 4. See text for

discussion.

https://doi.org/10.1371/journal.pone.0219854.g003
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for graphical clearness with points (symbols) rather than staples. The relative number Ni/N,

where Ni is the number of simulated ICC values found in the histogram channel (interval) i, is

plotted against the value of the ICC corresponding to the center of the channel. Thus, the sim-

ulated distributions may be regarded as estimates of the normalized probability distributions

of the ICC values for the given values of the model parameters. It can be seen that the three dis-

tributions obtained with Model 1 are nearly identical, apart from very small statistical varia-

tions. The distribution maxima are positioned near the population ICC = 0.8.

The effect of increasing the noise (interaction + error), i.e. increasing the standard deviation

σv while keeping everything else fixed, is shown in Fig 5. As follows from Eq (2), the population

intraclass coefficient ρ1 then decreases. In accordance with this, the ICC(1) distribution shifts

to a lower average value< ICC(1) > and is widened as well, increasing its 95% central range.

It is reasonable to expect that an increased number of subjects should lead to a better statis-

tical accuracy. Fig 6 shows the effect of increasing n for the case ICC(1) = 0.5. The average

value< ICC(1)> is not affected, but the ICC(1) distribution narrows, decreasing the 95% cen-

tral range. Thus, the probability increases that the sample ICC will be close to the population

ICC. A similar effect is obtained by increasing the number of measurements k, as shown by

Fig 7. However, the number of measurements is for practical reasons usually limited, so the

effect is less dramatic.

The 95% central range of ICC(1) is not the same thing as the confidence interval of ρ1, but

the latter can be deduced from the former. In Fig 8 the curves show the upper and lower limits

of the 95% central range of simulated ICC(1) distributions, for the cases k = 3 and n = 10, 20,

50 and 100, as functions of the population intraclass correlation coefficient ρ1 assumed in the

simulation. To find the confidence intervals, the diagram may be used as follows.

Fig 4. Probability distributions of ICC(1), ICC(A,1) and ICC(C,1) obtained with a simulation based on Model 1,

i.e. in the absence of bias. Input data and results from this simulation are shown in Fig 3. With Model 1, the simulated

distributions are seen to be identical apart from small differences due to finite statistics (finite N).

https://doi.org/10.1371/journal.pone.0219854.g004

Intraclass correlation – A discusssion and demonstration of basic features

PLOS ONE | https://doi.org/10.1371/journal.pone.0219854 July 22, 2019 22 / 35

https://doi.org/10.1371/journal.pone.0219854.g004
https://doi.org/10.1371/journal.pone.0219854


Suppose, for example, that a single experimental matrix with n = 10, gives the sample value

ICC(1) = 0.80. In Fig 8, the 95% lower and upper confidence limits of ρ1 are found where a

horizontal line at ICC(1) = 0.80 crosses the n = 10 upper and lower 95% central range limits,

i.e. (graphically) at ρ1� 0.55 and ρ1� 0.94. This is understood from the fact that, as can be

seen from Fig 8, the probability of getting a sample ICC(1) = 0.8 if ρ1 < 0.55 is less than 2.5%;

similarly, it is less than 2.5% if ρ1 > 0.94. With ICC(1) = 0.80 and n = 100, the confidence limits

are in the same way graphically found to be ρ1� 0.74 and ρ1� 0.85.

This graphical method of estimating the ICC(1) confidence interval agrees well with the

results obtained with the formulas given by McGraw and Wong [6] and the algorithms used in

SPSS for Model 1. In fact, it should be pointed out that Monte Carlo simulation is in principle

an exact method, apart from statistical "fuzziness". We will show that even in the presence of

bias the graphical presentation in Fig 8 can be used for the consistency intraclass correlation

coefficient ICC(C,1). However, it cannot be used for ICC(A,1). The graphical method (exem-

plified here only for k = 3) is not meant to replace confidence interval formulas [6] or, for

example, SPSS software, but it demonstrates the connection with the ICC probability distribu-

tions as well as the general features of the confidence interval. Thus, Fig 8 shows that the confi-

dence interval is centred approximately at the observed ICC value. Moreover, the confidence

interval narrows with an increasing n and also with a higher sample ICC value. For low n and

a low sample ICC value, it is however so wide that the population ICC may have almost any

value below an upper limit.

An interesting point is worth mentioning. Suppose, for example, that the population ICC is

ρ1 = 0.7 and that n = 10. Reading vertically, the 95% central range of the sample ICC probabil-

ity distribution is found graphically to be approximately between 0.28 and 0.88 (Fig 8). For

each sample ICC between these limits we obtain a certain confidence interval, as described

Fig 5. Probability distributions of ICC(1) values obtained with simulations using Model 1, showing the effect of

increasing noise (error). In all three cases n = 20, k = 3 and σr = 10. The standard deviation of the noise term is

increased from σv = 5 (giving population ICC ρ1 = 0.8) to σv = 7.5 (ρ1 = 0.64) and σv = 10 (ρ1 = 0.5).

https://doi.org/10.1371/journal.pone.0219854.g005
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above. Inspection of Fig 8 shows that one single population ICC value is common to all of

these confidence intervals–namely ρ1 = 0.7. A moment of reflection shows that this result

should be expected. The true (population) ICC is likely to be found in the overlap of any two

95% confidence intervals.

4.2. Simulation study of Model 2 (two-way random)

As discussed in Section 2.4, the only difference between Model 1 and Model 2 is the presence,

in Model 2, of bias (systematic error) terms cj sampled from a normal distribution with stan-

dard deviation σc and mean value = zero. To see the effect of such biases, we may therefore

start with Model 1, i.e. σc = 0, and then turn on a non-zero bias, sampling the cj from normal

distributions with successively larger bias variance σc
2 (keeping everything else fixed). This is

demonstrated in Fig 9 and Table 3.

Fig 9 shows the distributions of ICC(A,1) and ICC(C,1) obtained with three different ver-

sions of Model 2, namely with a "weak" bias (σc/σr = 0.01), a "moderate" bias (σc/σr = 0.5), and a

"strong" bias (σc/σr = 1.0). In the "weak" bias case, the results of Model 2 are practically identical

to the results of Model 1 (σc/σr = 0)–at least with the modest number of subjects n = 20. As can

be seen from Fig 9, the effect of an increasing bias σc is a lower average value <ICC(A,1)> and

a wider ICC(A,1) probability distribution. The average ICC value in each distribution agrees

approximately with the population ICC. Using Eq (9) we find ρ2A = 102/(102 + 0.12 + 52)�

0.80, ρ2A = 102/(102 + 52 + 52)� 0.67 and ρ2A = 102/(102 + 102 + 52)� 0.44 for the three ICC

Fig 6. Probability distributions of ICC(1) obtained with Model 1, showing the effect of increasing the number of

subjects. The number of subjects increases from n = 20 to n = 100 and n = 400. In all three cases k = 3 and the standard

deviations of error and subject’s score are σv = σr = 10, giving the population ICC = 0.5. As can be seen, an increasing n
leads to a decrease in the width of the probability distribution.

https://doi.org/10.1371/journal.pone.0219854.g006
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(A,1) distributions, respectively. The increased width of the ICC(A,1) distributions with

increasing σc may be attributed to the increasing contribution from the random variation of

the cj terms.

The ICC(C,1) distributions are insensitive to the presence of bias; they remain the same,

regardless of the strength of the bias. Using Eq (13) we find ρ2C = 102/(102 + 52) = 0.8 for all

three ICC(C,1) distributions. They coincide with the ICC(1) (zero bias) distribution as well as

with the ICC(A,1) distribution when biases are very small. This indicates that the confidence

limits of ρ2C (the consistency population ICC of Model 2) will be the same as the confidence

limits of ρ1 (population ICC of Model 1, i.e. in the absence of bias). Thus, Fig 8 may be used to

graphically derive not only the confidence limits corresponding to an ICC(1) value calculated

from an experimental matrix compatible with Model 1, but also the confidence limits corre-

sponding to an ICC(C,1) value calculated from a matrix compatible with Model 2. This obser-

vation is in agreement with the confidence limit formulas given by McGraw and Wong [6]

provided that the number of subjects n is not too small.

Since we may turn the bias down all the way to zero without changing the ICC(C,1) distri-

bution, ICC(C,1) may, as already discussed in Section 2.5.3, be regarded as an estimate of the

intraclass correlation that would be obtained if the effects of bias could be removed or cor-

rected for [17]. However, it should also be observed that the ICC(C,1) value might give an

exaggerated and misleading impression of the reliability of a method unless it is clearly stated

that the value given is the consistency ICC value.

Table 3 gives an survey of the main features of Model 2 for the case n = 20, k = 3, showing

the average values < ICC(A,1) > and < ICC(C,1) > as well as the 95% central range limits

obtained from the simulated distributions. The average values and central range limits are

Fig 7. Probability distributions of ICC(1) obtained with Model 1, showing the effect of increasing the number of

measurements k. In all four distributions, n = 20 and σv = σr = 10 (giving population ICC = 0.5). Increasing k leads to a

decreasing width.

https://doi.org/10.1371/journal.pone.0219854.g007
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shown as functions of the two parameters (σv/σr) and (σc/σr) (see Eq (36)). The average values

of ICC(1) are for comparison shown also for σc > 0, even though the formula ICC(1) is then

invalid. It may be noted that excellent ICC(A,1) values are with any certainty only found in the

upper left corner; relative noise as well as relative bias have to be at most about 0.1. Occasion-

ally, a high ICC(A,1) value could be obtained even with a strong relative bias; the 95% central

range is very wide. The results for ICC(C,1) are, as already discussed, independent of σc and

equal to the results obtained for ICC(1) with Model 1. Average invalid ICC(1) values (in brack-

ets) are everywhere lower than the ICC(A,1) and ICC(C,1) values. For σc = 0 (Model 1) we

find< ICC(1) > =< ICC(A,1) > =< ICC(C,1 >. We also find equal 95% central range limits,

i.e. equal distributions as also exemplified in Fig 4.

Table 4 gives an example (for n = 20 and k = 3) of what to expect when the ratio ICC(C,1)/

ICC(A,1), where ICC(C,1) and ICC(A,1) have been calculated from the same matrix, is used as

a qualitative indication of the presence of bias. The simulated average ratio <ICC(C,1)/ICC

(A,1)> obtained with Model 2 is shown, as well as the probability of finding an ICC(C,1) value

larger than ICC(A,1). The average ratio increases with increasing bias and decreases with

increasing noise. In the absence of bias the average ratio is very close to unity; the (very nar-

row) distribution is such that it is actually more probable to find an ICC(C,1) value that is

lower than ICC(A,1). With a low relative bias (� 0.1) the difference between ICC(C,1) and

ICC(A,1) is seen to be of order 1%. With a high relative bias (� 1) it might be as much as a fac-

tor� 2. As mentioned, it is strongly recommended to use an F-test as well (see Section 2.4.5).

Fig 8. Graphic presentation of confidence limits. The curves show the upper and lower 95% central range limits of

the ICC(1) probability distributions as functions of the population ICC, using Model 1. The number of measurements

is everywhere k = 3 while the number of subjects n range from 10 to 100. Read horizontally, the diagram provides the

95% confidence limits of the population ICC for a given sample ICC(1) value. For example, if n = 10 and the sample

ICC(1) is found to be 0.70, then the confidence limits of the population ICC are graphically read to be approximately

0.38 and 0.91. The diagram is also valid for ICC(C,1), i.e. the consistency ICC obtained with Model 2 and Model 3.

https://doi.org/10.1371/journal.pone.0219854.g008
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Fig 9. Probability distributions of ICC(A,1) and ICC(C,1) obtained with Model 2, showing the effect of increasing

bias. In all cases n = 20, k = 3, σr = 10 and σv = 5. The bias standard deviation σc is increased from σc = 0.1 to σc = 5 and

then to σc = 10. As may be seen, the ICC(C,1) distributions are insensitive to bias. The ICC(A,1) distributions are, with

increasing bias, shifted towards lower values and broadened.

https://doi.org/10.1371/journal.pone.0219854.g009

Table 3. A survey of features of Model 2.

Model 2 <ICC(A,1)>

(95% central range ICC(A,1) distribution)

<ICC(1)>

<ICC(C,1)> (95% central range)

σc /σr (relative bias)

σv / σr (relative noise) 0 0.1 0.5 1.0 1.5 (independent of bias)

0.1 0.99

(0.98–1.00)

0.99

0.98

(0.94–0.99)

[0.94]

0.81

(0.46–0.99)

[0.78]

0.58

(0.19–0.97)

[0.49]

0.43

(0.09–0.94)

[0.26]

0.99

(0.98–1.00)

0.5 0.78

(0.61–0.90)

0.78

0.78

(0.60–0.89)

[0.78]

0.67

(0.37–0.86)

[0.64]

0.50

(0.16–0.83)

[0.41]

0.38

(0.08–0.78)

[0.22]

0.79

(0.60–0.90)

1.0 0.48

(0.20–0.71)

0.48

0.48

(0.19–0.71)

[0.48]

0.44

(0.16–0.68)

[0.41]

0.35

(0.10–0.63)

[0.28]

0.28

(0.06–0.59)

[0.14]

0.48

(0.19–0.71)

1.5 0.30

(0.00–0.57)

0.30

0.30

(0.00–0.56)

[0.30]

0.28

(0.00–0.54)

[0.26]

0.24

(0.00–0.50)

[0.18]

0.20

(0.00–0.47)

[0.09]

0.30

(0.00–0.57

Simulated results are shown for n = 20 and k = 3. In columns 2–6 is shown the average ICC(A,1) value, the 95% central range (within parenthesis) of the simulated ICC

(A,1) distribution, and the average ICC(1) value. The latter is shown within brackets where the ICC(1) formula is invalid. Column 7 shows the average value and 95%

data range of the ICC(C,1) distribution. The data may be compared with probability distributions shown in Fig 5 and Fig 9.

https://doi.org/10.1371/journal.pone.0219854.t003
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4.3. Simulation study of Model 3 (two-way mixed model)

In order to demonstrate features of Model 3, we will discuss the following example. Let us

assume that there are two research groups, A and B, each consisting of k = 3 raters. These two

groups intend to carry out the same kind of measurements on the same population (with σr =

10), and for this purpose each of them makes a reliability study on n = 20 subjects (not the

same subjects).

For the present argument we will make a comparison with Model 2. We assume that the

raters in each group have been randomly chosen from a population of raters normally distrib-

uted with a bias standard deviation σc = 5. The probability distributions of all possible ICC

(A,1) and ICC(C,1) values in a reliability study with such raters are given by Model 2 and

shown in Fig 9, where they are marked "bias = 5".

Assume that each group has made a reliability study. We now consider the fact that each

group, A and B, has a certain set of biases c1, c2 and c3. We assume that group A has a set (a) of

biases, namely c1 = 1, c2 = 6 and c3 = -1, while group B has a set (b) of biases c1 = 10, c2 = 6 and

c3 = - 10. The set (a) is not unlikely, while the set (b) is very improbable but still possible.

Using Model 3 (simulation with fixed biases), these two sets of biases have been used to sim-

ulate the two ICC(A,1) and two ICC(C,1) probability distributions shown in Fig 10. We may

note that the ICC(C,1) distributions again coincide with each other and also with the ICC(C,1)

distributions in Fig 9.

The ICC(A,1) probability distributions in Fig 10 are however distinctly different from each

other. They are the probability distributions from which group A and group B will actually

obtain their ICC(A,1) values in a reliability study, if their biases are regarded as given. Thus,

they are also the probability distributions for the ICC(A,1) values that would be obtained in a

second reliability study. What Fig 10 shows is simply that if group A and group B would repeat

their respective reliability studies, they would probably obtain an ICC(A,1) value not far from

the one found in their first study. With a third set C of three randomly selected raters we may

of course expect another result, as indicated by the Model 2 distribution in Fig 7.

We may understand the details of the Model 3 distributions in Fig 10 as follows. In case (a),

the bias values c1 = 1, c2 = 6 and c3 = -1 give, using Eq (23), θ 2 = 13. Using Eq (24), the absolute

agreement population ICC is then ρ3A = 102/(102 + 13 + 52)� 0.725. Using Eq (27), the consis-

tency population ICC is ρ3C = 102/(102 + 52) = 0.8. We can see from Fig 10 that the maxima of

Table 4. Survey of model 2 for n = 20 and k = 3: the average ratio<ICC(C,1)/ICC(A,1)> and the probability for ICC(C,1) to be larger than ICC(A,1) in a single

data matrix.

Model 2

n = 20, k = 3

< ICC(C,1) / ICC(A,1)>

(Probability of ICC(C,1) > ICC(A,1))

σc /σr (relative bias)

σv / σr (relative noise) 0 0.1 0.5 1.0 1.5

0.1 1.000

(37%)

1.011

(95%)

1.278

(99.8%)

2.114

(100%)

3.506

(100%)

0.5 1.000

(37%)

1.009

(58%)

1.215

(96%)

1.857

(99%)

2.947

(99%)

1.0 1.001

(38%)

1.006

(44%)

1.134

(85%)

1.526

(95%)

2.165

(98%)

1.5 1.001

(38%)

1.005

(42%)

1.080

(73%)

1.318

(91%)

1.727

(95%)

Shown in each cell in columns 2–6 is the simulated average ratio < ICC(C,1) / ICC(A,1) > where ICC(C,1) and ICC(A,1) have been calculated from the same matrix.

Within parenthesis is shown the probability that the ICC(C,1) value will be larger than the ICC(A,1) value.

https://doi.org/10.1371/journal.pone.0219854.t004

Intraclass correlation – A discusssion and demonstration of basic features

PLOS ONE | https://doi.org/10.1371/journal.pone.0219854 July 22, 2019 28 / 35

https://doi.org/10.1371/journal.pone.0219854.t004
https://doi.org/10.1371/journal.pone.0219854


the ICC(A,1) and ICC(C,1) distributions in case (a) are positioned near these ρ3A and ρ3C val-

ues. The width of the ICC(A,1) distribution obtained with Model 3 is somewhat smaller than

the width of the ICC(A,1) ("bias = 5") distribution obtained with Model 2 in Fig 9, reflecting

the fact that since the cj are fixed, the width is due only to the variation in the subject scores rj

and the noise vij.

In case (b), the fixed bias values c1 = 10, c2 = 6 and c3 = -10 give in the same way θ 2 = 112,

from which the absolute agreement population ICC is found to be ρ3A� 0.422. The consis-

tency population ICC is again found to be ρ3C = 0.8 and again the ICC(A,1) and ICC(C,1) dis-

tributions are approximately centred on these values.

Thus, when the choice of raters has been made, it may turn out that the ICC(A,1) values

obtained by the two research groups A and B are very different from each other, due to their

different biases. This is more likely to happen if the number of raters in each group is small

and the raters have been sampled from a population with a large standard deviation σc.

In general we should expect that the ICC(A,1) 95% confidence intervals obtained by group

A and group B will overlap. Within this overlap we may, as indicated in Section 4.1, expect to

find the Model 2 population intraclass coefficient ρ2A.

5. Analysis procedure

5.1. Conventional approach

In the conventional approach to the analysis of a reliability study it is common to specify one

statistical model (the one-way random, the two way random or the two-way mixed model) in

accordance with the design of the study [2,6]. For example, in the SPSS software it is required

Fig 10. Effect of fixed bias: ICC(A,1) and ICC(C,1) distributions simulated using Model 3. Two simulated Model 3

cases are shown, (a) and (b). In both cases, n = 20, k = 3, σr = 10 and σv = 5. In case (a), the fixed bias values are c1 = 1,

c2 = 6 and c3 = -1. In case (b), they are c1 = 10, c2 = 6 and c3 = -10. A larger spread among the fixed bias values gives a

larger shift of the ICC(A,1) distribution towards lower values. The ICC(C,1) distributions are however insensitive to

bias.

https://doi.org/10.1371/journal.pone.0219854.g010
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that the one-way random model is chosen if the ICC(1) value is to be calculated. Likewise, if

the ICC(A,1) value is desired, one has to choose the absolute agreement two-way random or

two-way mixed model. To obtain the ICC(C,1) value, one has to choose the consistency two-

way random or two-way mixed model. Similar recommendations are given in the flow charts

presented by McGraw and Wong [6] and Koo et al [2].

5.2. Present approach

We find that the initial specification of a statistical model is inconvenient and not necessary.

Of course, the researcher may, from the design of a reliability study, expect that a certain

model should be appropriate (see Section 2.6). Reasonably, the design has been such that it

might be hoped that not only error (noise) but also systematic differences between measure-

ments (bias) are negligible, in which case Model 1 (one-way random) can be used. However, it

may turn out that the model has to be reconsidered. Unexpected biases may turn up; also, the

effect of biases may be larger than foreseen.

We therefore propose that while the design of the method should, of course, be planned

with utmost care, the analysis of the result of the reliability study should be impartially open to

all different possibilities. Our recommendation is similar to that previously given by Weir [19].

The analysis procedure may for example be as follows. We start by calculating the mean

squares MS from the matrix of experimental data and, from them, the sample ICC values (ICC

(1), ICC(A,1) and ICC(C,1), using the standard formulas shown e.g. in Fig 1. If we find that

ICC(1)� ICC(A,1)� ICC(C,1), i.e. approximately equal (within a few percent; see Table 4),

then biases are likely to be small or even negligible. If an F-test with F = MSBM/MSE shows

that Model 1 cannot be rejected, then ICC(1) may be reported as a result, with the comment

that biases are negligible. We may note, though, that all three ICC values may then be regarded

equally valid estimates of the population intraclass coefficient. The estimated magnitude of the

spread in true scores and the noise are obtained by calculating the standard deviations σr and

σv, using Eq (5).

Distinctly different ICC(1), ICC(A,1) and ICC(C,1) values from the same matrix indicate

the presence of non-negligible biases (see Table 4), i.e. systematic differences between different

measurements j = 1,2, . . .,k. Usually, one then finds ICC(1) < ICC(A,1) < ICC(C,1); however,

ICC(1) is no longer a valid formula. The F test may be used to definitely reject Model 1, con-

firming the probable presence of bias. We need not specify whether Model 2 (two-way ran-

dom) or Model 3 (two-way mixed) is used instead of Model 1; it makes no difference.

Thus, we avoid the error of reporting the ICC(1) value in the presence of bias. We report

instead two ICC values, ICC(A,1) and ICC(C,1), together with their confidence intervals and a

comment on the presence of bias. The estimated magnitudes of spread in true scores and of

bias and noise are obtained by calculating the standard deviations σr, σv and σc, using Eq (11).

5.3. A clinical example

To exemplify the analysis procedure we use clinical data from Elfving et al [20]. The measured

data, shown in Table 5, have been extracted from a reliability study of a method using electro-

myography. The data are a subset of electromyographic recordings made on back muscles on

three separate days, namely measurements made in the morning on 10 subjects.

For the present analysis we have used SPSS version 24 as a calculation tool. Application of

ANOVA (as part the ICC calculation in SPSS) gave the mean squares MSBS = 212.61,

MSBM = 39.15, MSE = 24.45 and MSWS = 25.92. Results for single-score ICC with 95% confi-

dence intervals were, choosing the one-way random model, ICC(1) = 0.706 (0.387–0.906) and,

choosing the two-way random model, ICC(A,1) = 0.708 (0.392–0.907) and ICC(C,1) = 0.720
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(0.396–0.912). We may note that the confidence interval obtained for ICC(1) and ICC(C,1)

agrees well with a graphical reading from Fig 8. It is clear from Fig 8 that somewhat less wide

confidence intervals could have been obtained with a larger number of subjects. We need not

use the two-way mixed model; it gives exactly the same results as the two-way random model.

We observe that ICC(1), ICC(A,1) and ICC(C,1) are closely equal (as are also their confi-

dence intervals), which suggests that there are no systematic differences between the record-

ings from day to day, i.e. no bias; thus ICC(1) might be correctly reported. ICC(C,1) is slightly

higher which indicates that there might possibly be a weak bias; the ratio ICC(C,1)/ICC(A,1) is

1.017 (compare Table 4). To make more certain, we look at the between days F-value which is

F = MSBM/MSE = 1.601 with p = 0.229. This low F-value and relatively high p value shows

that the systematic differences between days are not significant; i.e. the one-way random

model (no bias) cannot be rejected.

Additional insight is provided by calculating the estimated standard deviations. Assuming

first that the one-way model is applicable we find manually, using the mean squares quoted

above and Eq (5), the standard deviations σr = 7.89 Hz and σv = 5.09 Hz. Thus, even if biases

are assumed to be absent, the error σv is substantial, i.e. 5.09/7.89 = 65% of the spread σr

among the true scores of the subjects. To discern the magnitude of a possible bias, we use

instead the two-way random model and apply Eq (11), which, with the mean squares quoted

above, gives σr = 7.92 Hz, σv = 4.94 Hz and σc = 1.21 Hz. Thus, if biases exist, they are small,

and the F-test has already told us that the one-way model cannot be rejected. It may be noted

that both σv values are estimates of the standard error of measurement, one (5.09 Hz) obtained

from MSWS and the other (4.94 Hz) from MSE. The standard error of measurement in con-

nection with ICC is discussed by for example [19] and [32].

However, even if there were no significant biases, the result was not encouraging. The ICC

value obtained, ICC� 0.71, was not considered to be good enough for the intended use of the

method as a diagnostic tool [20].

6. Discussion

Of course, a basic aim when designing a method of measurement should be to have small ran-

dom errors and negligible systematic errors. Indeed, if the precise value of a measurement is

important we cannot afford to have anything else. A good outcome of a reilability study would

Table 5. A clinical example from physiotherapy.

Subject Day 1 Day 2 Day 3 Mean

1 59.9 67.7 72.2 66.6

2 62.9 66.5 67.9 65.8

3 58.9 50.1 47.9 52.3

4 46.8 50.0 53.9 50.3

5 62.5 67.8 62.6 64.3

6 44.8 42.7 48.4 45.3

7 57.3 49.6 48.0 51.7

8 49.0 45.2 57.5 50.6

9 43.5 41.5 47.4 44.2

10 39.2 50.9 56.3 48.8

Mean 52.5 53.2 56.2 54.0

Electromyographic median frequency data (Hz) obtained from the lumbar left side of the back muscles, recorded on

three separate days (from Elfving et al 1999).

https://doi.org/10.1371/journal.pone.0219854.t005
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therefore be to find that Model 1 (the one-way random model) is valid and that the ICC(1)

value is good or excellent; or, more precisely, that the lower limit of the confidence interval of

ICC(1) is found to be in the range from good to excellent.

Unfortunately, this is not always the case. For example, while systematic errors might be

negligible, random errors may be too large, as in the clinical exemple just described.

If, on the other hand, biases are non-negligible but expected to be randomly varying

(Model 2), is the method then reliable? That should depend on its intended use. Model 2

means that in another measurement biases will usually be different, and therefore it will in

general not be possible to correct for them. The method might still be reliable to a limited

extent as regards absolute agreement, provided that the randomly varying biases are not too

large. However, from Table 3 it can be seen that for relative biases� 0.5, one should hardly

expect an ICC(A,1) value better than moderate or good.

If ICC(C,1) is found to be good or excellent, but ICC(A,1) is poor or moderate, then the

method might still be used to obtain information on consistency (ranking order and differ-

ences between subjects). The presence of noise (random error) will limit this restricted reliabil-

ity of the method. Since ICC(C,1) is insensitive to the presence of bias, results as regards

consistency made by different raters or research groups should be possible to compare.

If ICC(C,1) as well as ICC(A,1) are poor, then the method of measurement is of course not

reliable at all and should be re-designed or discarded.

Finally we should discuss Model 3 (two-way mixed model). We have already seen that in

the analysis of a reliability study it may seem meaningless to differ between Model 2 and

Model 3 since they give equal results.

Still, we wish to examine what difference there is. We therefore consider the Model 2 and

Model 3 definitions of the ICC. Formally, they differ only in that the term σc in the Model 2

definition, Eq (9), has been replaced by the term θc in the Model 3 definition, Eq (24). From

the derivation of the EMS relations (S2 Appendix using Eq (A2-6) and Eq (A2-8)) we find that

in Model 2

sc
2 �

X

j

ðcj � �cÞ2

ðk � 1Þ
ð39Þ

while in Model 3

yc
2 ¼

X

j

ðcj � �cÞ2

ðk � 1Þ
ð40Þ

Comparing Eq (39) and Eq (40), we can see that the meaning of Eq (39) is that the quantity θc
2

calculated by Eq (40) is assumed to be an estimate (�) of the variance σc
2 of a normal distribu-

tion of biases (e.g., raters) from which these biases cj have been sampled. In Model 3 one has

evidently refrained from making this assumption.

Now, the ICC is basically defined as the variance (regarded as a measure of variation) of

interest, divided by the total variance. However, fixed cj values do not represent a variation; for

example, simulations using Model 3 give ICC distributions that are narrower than those

obtained with Model 2, as seen by comparing Fig 9 and Fig 10. Therefore, one might hesitate

about the meaning and justification of the term θc
2 in Eq (24). Removing it, one obtains the

consistency intraclass correlation Eq (27). Indeed, when biases are fixed the use of the consis-

tency intraclass correlation is the only option considered by Shrout and Fleiss [5].
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Nevertheless, θc
2 is present in Eq (24). We conclude that θc

2 in Eq (24) is in fact equivalent

to an estimate of the variance of a population of biases. In other words, as regards evaluating

ICC(A,1) from a study of reliability, Model 3 is not only in practice but also conceptually

equivalent to Model 2. In the practical analysis of a reliability study it will therefore be suffi-

cient to consider Model 1 and Model 2 (see the clinical example in Section 5.3).

A statement of fixed biases is thus not relevant for the calculation of ICC, but may be

regarded as information about how the researcher intends to proceed [6]. Fixed biases

should mean that the researcher intends to continue with the same method, staff and experi-

mental set-up, so that the biases (if any) may be expected to remain the same. One should of

course not expect an absolute agreement between experimental set-ups with different fixed

biases.

If the fixed biases are substantial (i.e. if ICC(A,1) is poor or moderate), it seems that a rea-

sonable approach should be to try to correct for or remove them. If that is not possible, ICC

(C,1) still gives an estimate of the reliability of results as regards consistency, i.e. ranking order

and differences between subjects. Results as regards consistency obtained by different research

groups may be possible to compare.

7. Conclusion

Our main, practical conclusion is as follows. It is not necessary and indeed inconvenient to be

locked to a definite statistical model (one-way random, two-way random or two-way mixed)

when beginning the analysis of a matrix of single-score experimental data obtained in for

example a reliability study. All three single-score intraclass correlation coefficient versions, i.e.

ICC(1) (classical), ICC(A,1) (absolute agreement) and ICC(C,1) (consistency) may be calcu-

lated and compared. A close agreement between them (within a few percent) indicates qualita-

tively the absence of systematic error (biases), while disagreement, with an ICC(C,1) value

larger than ICC(A,1), indicates the presence of bias. An F-test will show if the null hypothesis

(absence of bias) should be rejected. If not, the ICC(1) value may be reported together with its

confidence interval. However, in the presence of bias, ICC(1) is no longer a valid formula and

should not be used. ICC(A,1) as well as ICC(C,1) are valid in the presence as well as in the

absence of measurement bias. The two coefficients provide different and complementary

information about the reliability of the method and both should be reported together with

their confidence intervals. Thus, ICC(A,1) provides an estimate of the reliability where the

effect of bias is taken into account, while ICC(C,1) neglects this effect. As previously suggested,

ICC(C,1) may be said to provide an estimate of the ICC that would be obtained if biases were

absent.
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