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Respiratory disease of calves from birth until weaning in cow/calf operations is
common, yet sporadic in occurrence and usually with low prevalence. Dewell and
colleagues1 reported a 12% overall morbidity in a group of 1556 calves, of which
39% (4.7% case specific) was due to respiratory disease. In a survey of 520 cow/
calf producers in Canada the incidence of preweaning mortality (5.4%–5.6%) attrib-
uted to pneumonia ranges from 12.8% to 17.5%, with greater losses occurring on
larger operations.2 The diagnosis of pneumonia in calves between the age of 1 month
and weaning is generally termed nursing calf pneumonia, or in the case of spring
calving herds, summer pneumonia. Although the common risk factors associated
with bovine respiratory disease (BRD) in postweaned calves, such as commingling,
transportation stress, and dietary changes, can be identified in cases of nursing calf
pneumonia, they may not be of primary importance.

RISK FACTORS

Identification of risk factors associated with calf pneumonia in beef herds is an impor-
tant step in attempts to manage this disease. An acceptable way to consider and
quantify the causative factors with clinical disease is in the form of a logistic regression
equation. This type of equation represents the relationship between the probability of
disease and the presence or absence of one or more risk factors.3–6 Risk factors asso-
ciated with a clinical disease (ie, nursing calf pneumonia) should include

1. Failure or partial failure of passive transfer
2. Any type of commingling of different groups, even those belonging to the same

operation, such as in extended calving intervals or 2 different calving seasons
3. Environmental risk, extreme cold or heat along with precipitation
4. Nutritional risk, such as a change in diet, energy, and protein deficiency
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5. Exposure to pathogens such as bovine herpesvirus 1 (BHV-1), bovine virus diarrhea
virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine respiratory corona-
virus (BRCV), and Mycoplasma bovis

6. Trace mineral deficiency
7. Handling stress
8. Other operation-specific risk factors.

Each one of these risk factors or a combination of several can result in enough
stress to allow clinical disease to manifest itself. A regression equation Y 5 b0 1
b1X1 1 b2X2 1 . 1 bkXk, for respiratory disease may resemble this model: Y 5
0.2 1 0.2(X1) 1 0.1(X2) 1 0.1(X3) 1 0.15(X4) 1 .., where Y is the probability of respi-
ratory disease, X1 is the degree of failure of passive transfer, X2 is the nutritional status
of the cow and newborn calf, X3 is environmental influences such as rain or snow and
cold temperatures, and X4 is exposure to pathogens. Although this approach helps to
provide an understanding of the risk factors and explain the cause of the disease, the
diagnostic ability to identify or even influence some of these factors is not always
apparent. Producers can become frustrated with control programs that focus on
only 1 or 2 factors. In herd investigations each risk factor must be considered.

EFFECT OF MATERNAL IMMUNITY

The role of maternal immunity and its relationship to health in calves is clear. Its role as
a risk factor with respiratory disease in nursing calves is not so clearly defined. Wittum
and Perino7 showed that calves with failure of passive transfer were 3.2 to 9.5 times
more likely to become sick and 5.4 times more likely to die before weaning than calves
with normal passive transfer. Faber and colleagues8 reported on the role of passive
transfer in reducing risk of illness and mortality and on lifetime effects in dairy cattle.
Dewell and colleagues1 reported that calves with serum IgG concentrations of at least
2700 mg/dL weighed an estimated 3.34 kg (7.38 pounds) more at 205 days of age than
calves with lower serum IgG concentration. The effect on performance was also noted
in lambs, in which there was a significant association with IgG concentration at 24
hours of age and mean daily gain.9 The research makes it clear that a partial or
complete failure of passive transfer is one of the most important risk factors leading
to the development of clinical disease and a negative effect on performance. How
does maternal immunity play a role in preventing clinical disease in neonatal and
young calves? In the bovine, with syndesmochorial placentation, transfer of immunity
does not take place during gestation. Although the fetus is able to mount an active
immune response during gestation, the newborn is essentially lacking protection
against common organisms that in the adult cause no clinical disease.10 Other
immune factors also seem to play a role in disease protection and production perfor-
mance in the young bovine.

Antibodies, Cytokines, and Maternal Cell Transfer

Disease protection for the newborn is conferred by the transfer of antibody, primarily
through the absorption of IgG1. All classes of immunoglobulins IgG, IgM, and IgA are
absorbed, with IgA and IgG1 being resecreted to provide mucosal protection. In addi-
tion to immunoglobulins, other immune-protective components are part of passive
transfer.

Hirako and colleagues11 showed that proinflammatory immune cytokines interleukin
1b (IL1b), IL1 receptor antagonist, and tumor necrosis factor a (TNF-a) were lower in
postcolostrum-fed calves that became clinically ill in the first 4 months of life. Proin-
flammatory cytokines are necessary to activate innate and active immunity.
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Lymphocytes from the dam are passed to the neonate via the colostrum. These
lymphocytes may survive for a period of time in the intestinal lumen but may also pene-
trate the mucosa and find residence in the mesenteric lymph nodes. This transfer may
allow for cell-mediated immunity to be passed to the newborn from the dam. Archam-
bault and colleagues12 reported that cell-mediated immune transfer to neonates could
be enhanced by maternal vaccination. Although Donovan and colleagues13 showed
that transfer of live maternal cells from colostrum to neonatal calves enhanced
responses to antigens against which the dams had previously responded (BVDV),
but not to antigens to which the dams were naive, our complete understanding of
the role of lymphocyte transfer is still not clear. What is clear is there is no true substi-
tute for the passage of maternal immunity from dam to the neonate. Colostral supple-
ments, substitutes, and frozen colostrum, although valuable as an addition to fresh
colostrum, cannot match the quality of the dam’s fresh colostrum.14

Quality, Concentration, and Volume

Measurement of maternal immunity is centered on the measurement of the amount of
immunoglobulins in the bloodstream. Measurement of total proteins with the refrac-
tometer can give a qualitative measurement of passive transfer.15 Total proteins in
the serum that are equal to or greater than 5.5 provide a yes or no answer to whether
passive transfer has occurred. Dewell and colleagues1 showed that quantitative differ-
ences in passive transfer may result in differences in outcomes of disease and perfor-
mance. Calves with serum IgG1 levels up to 2500 mg/dL were 1.5 times more likely to
get sick before weaning and 2.4 times more likely to die before weaning than calves
with higher IgG1 levels. Calves need to acquire as much protection as possible
from the dam’s colostrum. Anything less than maximum absorption seems to increase
health and performance risk.

Absorption

The volume intake of colostrum is positively correlated with passive transfer, but how
does adequate transfer occur in beef cattle with at times a very low volume of colos-
trum? In a Canadian study, colostrum production in beef cows ranged from 0.9 to 5 L.
In the same study the production of colostral immunoglobulins ranged from 103 to 525
g.16 If the requirement of the calf to achieve adequate transfer is 300 g, then with
a concentration of 150 g/L, the neonate would need to consume 2 L at an efficiency
of absorption at 100%. Estimates of absorption range from 6% to 88%, although
most estimates fall in the range of 20% to 35%.17,18 If one assumes an efficiency of
absorption of 35% and a colostral concentration value of 100 g/L, then to achieve
a serum concentration of 20 g/L, with a total serum volume of 4 L (serum volume
59.6% of body weight), the calf would have to consume approximately 2.3 L.

Consumption in grams of Ig0s ð100� 2:3 LÞ �%AEA=plasma volume

ðBody weight� 9:6%Þ ð0:35=4LÞ ¼ expected Ig concentration 20:125 g=L

With this knowledge it becomes imperative that any investigation of respiratory
disease in suckling calves must begin with an analysis of factors that influence the
passage of immunity from dam to calf.

GENETIC RISK

Calving ease is an important genetic trait that affects passive transfer via stress level at
birth. Besser and colleagues19 reported that calves experiencing dystocia had lower
absorption of IgG1 from colostrum associated with respiratory acidosis. Calves
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born after experiencing calving difficulty have a physiologic acidosis. In addition,
increased calving difficulty is associated with extended time to nursing.20 Because
time to first nursing is associated with efficiency of absorption, this too is a factor
related to efficiency of passive transfer. It is important to recognize the role of calving
ease in the equation of long-term health of calves. A second genetic trait associated
with passive transfer is that of udder and teat conformation. The mechanics of transfer
are critical to passive transfer, that is, teat size and length, and udder attachment.
Goonewardene and colleagues21 reported that pendulous udders coupled with large
teat size can complicate the suckling process. This situation reduces the probability of
good immune transfer, which increases the risk of clinical disease and decrease
growth rates. A third genetic trait is the selection for increased growth rates in calves.
Muggli and colleagues22 reported that calves from Hereford lines selected for perfor-
mance had lower IgG1 concentration than calves from the randomly selected control
line. Field observations seem to support this research observation. Herds with selec-
tion pressure exclusively on performance tend to experience a higher level of clinical
disease, often in the form of respiratory disease. The reason for this may not be
evident; however, it may seem logical that selection for performance also leads to
an increase in birth weight, calving difficulty, longer period of time to standing and
nursing, or perhaps greater milk production leading to a higher incidence of mastitis
or udder and teat problems, thus leading to decreased absorption of immunity.
HANDLING RISK

Maternal stress is another risk factor that must be considered. Tuchscherer and
colleagues23 reported the effect of maternal stress in sows and its subsequent nega-
tive effect on passive transfer with the sequelae of higher morbidity and mortality in
suckling pigs. Lay and colleagues24 reported on stress in pregnant cows exposed
to repeated transportation and the negative effect on the progeny to respond to stress.
It is evident from these studies that repeated stress in the pregnant female can have
a detrimental effect on the health of offspring. The application of this directly relates to
adopting low-stress handling methods of pregnant females.
COMMINGLING RISK

Commingling risk in postweaned calves has been well documented to be a major risk
factor in the development of BRD.25–27 On the other hand, commingling stress is not
usually a prime risk factor in respiratory disease of young calves. When calves are
moved to new pastures during the grazing season or combined with different groups,
or sorted during estrous synchronization procedures, this stressor can be involved.
Thus, any investigation of respiratory disease in young calves must include this poten-
tial risk factor.
ENVIRONMENTAL RISK

Environmental risk is a third risk factor.28 The stress of heat and humidity as described
by the temperature humidity index has been associated with an increase in early
embryonic loss in dairy cattle.29 Environmental risk can affect transfer of maternal
immunity. Calves born in extremely harsh environmental conditions such as cold or
heat have delayed time to nursing, and the stress associated with controlling homeo-
stasis. Carstens30 states calf mortality increases with decreases in ambient tempera-
ture or when precipitation occurs on the day of birth.
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NUTRITIONAL RISK

Nutritional restriction of energy and protein in the beef cow can have profound effects on
the developing fetus. Long and colleagues31 showed that restriction of the cow resulted
in a decrease in placentation area. Larson and colleagues32 reported an increase in calf
weaning weight from cows on winter range receiving adequate protein supplementation
in late gestation versus cows on restricted protein diets. Late gestation protein supple-
mentation of cows also improved carcass quality in steers born to protein-
supplemented cows. These effects are analogous to the detrimental effects of nutritional
restriction in gestating sows on fetal myogenesis, birth weight, and postnatal growth.33

Odde20 reported that body condition score (BCS) influenced time to standing for
a newborn calf. Calves born to cows with BCS 4 took approximately 60 minutes to stand
in contrast to calves born to cows with BCS 5, which took 43 minutes to stand. Time to
standing has a direct influence on intake and absorption of colostral immune factors.

PATHOGEN RISK

The most common approach when dealing with respiratory outbreaks in suckling
calves is to identify the most likely viral and/or bacterial pathogens as the cause.
Although this is an important part of prevention and treatment strategies, the cause
may be more symptomatic rather than a major risk factor, particularly as it applies
to secondary bacterial pathogens. Most cow/calf herds are maintained in multiple
pasture units on a single operation. Exposure within these units to potential pathogens
is common. In many herds, pathogens such as BRSV have likely become endemic and
are not likely to cause significant clinical disease in well-vaccinated herds. In herd situ-
ations with exposure to BVDV persistent infection (PI) animals in the absence of other
risk factors may result in clinical disease.34 Exposure to cattle from other operations
may present a pathogen risk because naive cattle exposed to the common viral path-
ogens such as infectious bovine rhinotracheitis (IBR), BRSV, BVDV, and BRCV as well
as the bacterial pathogen such as Mycoplasma bovis35,36 may cause clinical disease
in the absence of other apparent risk factors. The risk posed by these viral pathogens
is readily reduced by herd vaccination programs. The use of modified live virus (MLV)
vaccines greatly decreases shedding of these viruses and reduces the risk of clinical
disease. The pathogen previously characterized as Pasteurella trehalosi and recently
renamed Bibersteinia trehalosi has long been recognized as a cause of ovine respira-
tory disease in small ruminants.37,38 Its role in acute cases of respiratory disease in
young dairy and stocker calves seems to be increasing and may be influenced by
the use of prophylactic antibiotics given to control other pathogens.39 Vaccination
to control bacterial pathogens gives mixed results in the field. This finding could be
due to timing of vaccination, not given before pathogen exposure, lack of booster
doses, and lack of attention to the primary causative risk factors.

COST OF ILLNESS

The cost of respiratory disease in nursing calves is not easily measurable, therefore
some assumptions must be made. Weaning weights are generally assumed to be
less with any clinical disease such as calf scours. With respiratory disease the
assumption is that weaning weights are reduced by as much as 15.87 kg (35 pounds)
on average.7 This loss does not include treatment costs or time and labor associated
with treatment or death loss. If the value of gain at the calf level until weaning is
approximately $1.10/kg ($0.50/pound), then a loss of weaning weight of 15.87 kg
(35 pounds) would be worth $17.50. If treatment costs including labor are $20/calf,
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and assuming no death loss, then the cost of one calf needing treatment would be
$37.50. If the percentage of calves becoming ill during the suckling phase is 10%,
then the cost of illness for each calf in the herd would be $3.75. When death loss
occurs and is included in this calculation the cost of illness increases dramatically.
If the value of each calf lost is equal to the cost of keeping a cow on an annual basis
(eg, $500), then each 1% death loss increases the cost of respiratory disease for each
surviving calf by $5.00/calf. Thus, if the percentage of calves needing treatment is
10% and death loss is 1%, then the total cost of respiratory disease would be
$8.75 for each surviving calf. With proper herd health management, attention to
common risk factors, and the use of specific vaccines most herd outbreaks of respi-
ratory disease in suckling calves can be reduced or prevented.

MANAGEMENT OF RESPIRATORY DISEASE IN SUCKLING CALVES

Management of respiratory disease in suckling calves requires knowledge of all the
risk factors contributing to the signs and symptoms of clinical disease. Signs and
symptoms of respiratory disease in calves include increased respiratory rates,
increased rectal temperature, a single or both ears drooped, and depression. It is diffi-
cult to distinguish the causative agents based on clinical signs. It is also likely that
most cases of respiratory disease are the result of infections by multiple pathogens.
For the veterinarian to manage and prevent these cases, it is necessary to logically
create a list of risk factors most likely involved in the outbreak.

VACCINATION

Vaccination of young calves (30–60 days) to prevent respiratory disease has become
a common management practice. Beef calves are commonly vaccinated against clos-
tridial diseases at a young age. Although reports suggest that vaccination produces
a limited antibody response in young calves,40 this practice seems to be an effective
management strategy as the prevalence of clostridial diseases such as blackleg,
malignant edema, and gas gangrene become rare in vaccinated populations. The
addition of viral vaccines and bacterins to prevent respiratory disease is also now
commonly included. Their efficacy has come under some scrutiny as even in well-
vaccinated herds cases of respiratory disease may still occur. Vaccines are given to
prevent clinical disease and pathogen transmission caused by specific pathogens.
IBR vaccine is given to prevent IBR. It is not possible to vaccinate against every path-
ogen known to cause respiratory disease. Nor do all vaccines provide equal levels of
protection or efficacy. It becomes critical to prioritize vaccines given to young calves.
To do this the veterinarian must have a guiding principle regarding vaccination. It is
helpful to ask 3 questions:

1. Is there a substantial risk of disease caused by a specific pathogen?
2. Is there a commercial vaccine that has shown efficacy against the specific

pathogen?
3. Does management of the herd allow for the proper use of the vaccine within the

constraints of handling times?

If the answer is no to any of these questions, then it begs the questions, why recom-
mend their use at all and will other risk management strategies prove to be as effective?

VACCINE INTERFERENCE

A common practice among cattle producers is to use combination vaccines, which
combine several different antigens into a single injection. The advantage of this
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approach is to reduce the number of injections given to animals yet achieve the same
level of immunity as if each antigen had been given independently. Biologics manufac-
turers must prove to the United States Department of Agriculture that there is no inter-
ference among individual antigens when given together in a single dose. What is not
well understood is the potential for interference when different vaccines are given
concurrently. As was stated earlier, it is a common practice to give MLV vaccines
along with bacterins. Studies have shown that vaccine interactions may occur when
giving an MLV vaccine along with bacterins.41 Immune interaction, defined by a dimin-
ished immune response to one or more of the antigens given concurrently, was
recently reported in 2 separate trials.42 This interaction seems to be confined to
animals that are naive to the antigens given.

MATERNAL IMMUNITY AND VACCINATION

What is the role of maternal immunity on vaccination of the young calf? Does the pres-
ence of maternal antibody interfere with an active immune response? Woolums and
Smith43 reviewed and described reasons for lack of protection following vaccination
in young calves: age of calf at vaccination, amount of maternal antibody, type of
vaccine, virulence of the pathogen challenge, and the outcome that was used to
describe the success or failure of the vaccination. With BHV-1, the antibody response
in the presence of antibody is negligible; however, on receiving a second dose even
months later the response was greater than calves receiving their initial dose at this
same time.44 In BVDV, the literature is less clearly defined.45–47 What is clear is that
calves without maternal immunity to BVDV can respond to MLV vaccine, whereas
at higher levels of maternal antibody, antibody production is blocked and cell-
mediated immune (CMI) responses are primed.48 Vaccination of young calves with
BRSV has shown a CMI response in the presence of maternal antibody.49 In a recent
study intranasal vaccination with BRSV showed protection against BRSV challenge as
measured by virus shedding.50 The data indicate that young beef calves can respond
to vaccination, and response as measured by antibody production is affected in the
presence of maternal immunity. A population of memory cells can be generated and
when either vaccination or exposure occurs, immunization has provided a degree of
protection not seen in nonvaccinated animals.

POPULATION DYNAMICS

Methods to control disease in beef cattle populations have traditionally been focused
on immunization to prevent clinical disease. Whereas prevention of clinical disease is
a direct effect of immunization, the indirect effect of disease prevention by decreasing
transmission is of primary importance with pathogens that are transmitted from animal
to animal.51

In human medical literature, the concept of population/herd immunity has success-
fully been used to implement vaccination programs designed to protect populations
against specific pathogens. Specifically, they include diphtheria, tetanus, and
pertussis, and also measles, mumps and rubella, as well as poliomyelitis.52 Although
we are concerned about each individual being protected against disease, the greater
purpose is to immunize as many as possible within the population such that suscep-
tible individuals within a population are also protected. A greater level of population
protection can be achieved by

1. Reducing the number of animals shedding disease pathogens
2. Decreasing the amount of pathogens shed by infected animals
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3. Decreasing the duration of shedding
4. Increasing the infectious dose necessary to cause infection.

The percentage of immune individuals in a population to achieve herd protection
varies by pathogen, but ranges from 83% to 94%.53 This concept is the basic premise
of herd vaccination programs.

In the veterinary medicine community there is some debate about the practice of
annual booster vaccinations in companion animals because some boosters may no
longer be necessary for clinical disease prevention because of low risk.54 For veteri-
narians in food animal practice there are questions as to efficacy, duration of immunity,
and number of doses needed to achieve significant population and individual animal
protection.55,56 Veterinarians are called on to make recommendations concerning
vaccination protocols for multiple diverse livestock businesses. To do so they require
in-depth herd knowledge regarding some assessment of risk for specific diseases,
management, genetics, nutrition status, and handling facilities. For example, in beef
cattle breeding herds, purchased females or bulls may be introduced into new herds
without benefit of a quarantine period, biosecurity testing, or knowledge of purchased
animals’ herd disease status. Even when vaccination programs are specifically out-
lined, it is rare for buyers to seek veterinary advice as to the quality of the program.

In IBR-vaccinated animals, protective immunity is assumed regardless of type of
vaccine, with MLV vaccines providing better protection.57 Although the issue of dura-
tion of immunity and protection may be debated, the real issue is one of risk analysis
and risk management. What is the risk of the herd being exposed to a field challenge
with either IBR or BVDV? In most commercial operations this risk exists, but is difficult
to quantify. In most purchases this approach does not have negative consequences;
however, in a quality control system with responsibility for disease control, the veter-
inarian will likely seek to lower the risk of exposure and increase specific immunity to
the pathogens considered to be of greatest risk.

In most livestock businesses the risk of exposure to common pathogens is not
known. However, there is information as to the number of immune animals necessary
to prevent spread of disease. By using this information the veterinarian can make
informed recommendations regarding the type of vaccine, the timing of boosters,
and the frequency of vaccination. The spread of disease depends on the basic repro-
ductive rate (Ro). The basic reproduction number Ro is the number of secondary infec-
tions resulting from one primary case in a totally susceptible population. The basic
reproduction number is a feature of the infectious agent and the host population
without a control measure being active.

If Ro in a vaccinated population is larger than 1, then the vaccine cannot totally
prevent the spread of infection and additional biosecurity principles must be used.58

It has been estimated that for BHV-1 infections Ro is approximately 7.0. After using
2 different vaccines it was estimated that Ro was 2.4 and 1.1.59 This finding means
that within a susceptible population, 2.4 or 1.1 new cases will arise from 1 case. In
this immunized population transmission cannot effectively be prevented. Within real
populations these numbers must be considered within the context that as animals
become infected and are contagious, the number of susceptible animals declines
and the number of recovered and immune animals increases. It has been estimated
that the critical proportion of immune animals is expressed by the equation critical
proportion 5 1 � 1/Ro. The higher the Ro the greater the number of animals that
must be immune to prevent spread of the infectious agent. If Ro 5 7.0 for a specific
pathogen, then the proportion of immune animals within that population must be
1 � (1/7). This calculation means that approximately 86% of the population must be



Respiratory Disease in Cow/Calf Operations 237
immune to prevent transmission. Estimates for limiting the spread of BVDV within
a population have been made based on mathematical models. In herds without PI
animals, 57% of the animals must be immune to stop transmission. For herds with
animals that are persistently infected with BVDV, 97% must be immune.60 This issue
of herd immunity to BVDV is further complicated by the amount of cross-protection
afforded by commercial vaccines, as strain differences can exist between vaccine
virus and wild virus.61 A sound recommendation for vaccines can be made based
only on actual challenge model and field trials using sound science and proper design.

The challenge of making sound vaccination recommendations as part of an overall
herd health program is the responsibility of food animal veterinarians. Making those
recommendations requires an in-depth knowledge of the risk of disease, management
ability, facilities, nutritional requirements, and in breeding herds the current genetic
base. In addition, veterinarians must have a working knowledge of the relative efficacy,
duration of immunity, and the effect on transmission of the available commercial
vaccines. With this as a working tool, the veterinarian can use the concept of popula-
tion dynamics and herd immunity when making specific herd recommendations
regarding the timing and frequency of vaccination administration.62

SUMMARY

When investigating outbreaks of respiratory disease in young calves, it is important to
review all of the risk factors that could potentially contribute to the clinical disease. A
list of risk factors should include

1. Failure or partial failure of passive transfer. This may be due to

Cows in low body condition score
Udder and teat conformation
Genetic type, selection for moderate growth versus high performance (select for

type based on resources available to the operation)

2. Genetic risk
Dystocia
Mothering ability
Udder and teat conformation
2. Any type of commingling of different groups, even those belonging to the same
operation
Moving long distances to new pastures
Combining different pasture groups together before weaning
3. Environmental risk

Heat risk
Cold risk
Snow and freezing rain
4. Nutritional risk, such as a change in diet

Creep feeding
Lush pastures
Drought-stressed pastures
5. Exposure to pathogens such as IBR, BVDV, BRSV, BRCV, and Mycoplasma bovis

Within-herd exposure or exposure to other populations
6. Trace mineral deficiency or toxicity

Cu, Se, Zn
Sulfur
7. Other risk factors

Lack of adequate quality and quantity of labor
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Practitioners ultimately give advice and make recommendations based on 3
principles

1. Research
2. Experience
3. Observations by veterinary peers.

Although this approach can be less than ideal, it is evident even from the literature
that not all answers to questions regarding nursing calf pneumonia can be found.
Nor can all questions be answered through research. For this reason, in investiga-
tion of outbreaks of clinical disease in beef herds, the use of a well-constructed
list of risk factors is essential. The list of risk factors to be ruled out should become
evident and recommendations for intervention and ultimately prevention can be
implemented.
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