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Abstract 

Background:  As a valuable medicinal plant, Rhodiola has a very long history of folk medicine used as an important 
adaptogen, tonic, and hemostatic. However, our knowledge of the chloroplast genome level of Rhodiola is limited. 
This drawback has limited studies on the identification, evolution, genetic diversity and other relevant studies on 
Rhodiola.

Results:  Six Rhodiola complete chloroplast genomes were determined and compared to another Rhodiola cp 
genome at the genome scale. The results revealed a cp genome with a typical quadripartite and circular structure 
that ranged in size from 150,771 to 151,891 base pairs. High similarity of genome organization, gene number, gene 
order, and GC content were found among the chloroplast genomes of Rhodiola. 186 (R. wallichiana) to 200 (R. gelida) 
SSRs and 144 pairs of repeats were detected in the 6 Rhodiola cp genomes. Thirteen mutational hotspots for genome 
divergence were determined and could be used as candidate markers for phylogenetic analyses and Rhodiola species 
identification. The phylogenetic relationships inferred by members of Rhodiola cluster into two clades: dioecious and 
hermaphrodite. Our findings are helpful for understanding Rhodiola’s taxonomic, phylogenetic, and evolutionary 
relationships.

Conclusions:  Comparative analysis of chloroplast genomes of Rhodiola facilitates medicinal resource conservation, 
phylogenetic reconstruction and biogeographical research of Rhodiola.
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Introduction
As traditional natural plant pharmaceuticals and health 
food, Rhodiola belongs to the family Crassulaceae and 
mainly distributed in alpine regions of Asia and Europe 
[1–3]. 73 species of Rhodiola plants are distributed in 
China, and the Qinghai-Tibet Plateau has the most species 
[4]. The extract of Rhodiola plants, especially R. crenulata 
and R. rosea, has various pharmacological effects such 
as anti-hypoxia, fatigue, tumors, radiation, aging, and 
improvement of mental and physical functions [5]. Due 
to the fragile ecological environment of the Qinghai-Tibet 

Open Access

*Correspondence:  lanxiaozhong@163.com

1 The Provincial and Ministerial Co‑Founded Collaborative Innovation Center 
for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, 
The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory 
for Tibetan Materia Medica Resources Scientific Protection and Utilization 
Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture 
and Animal Husbandry University, Nyingchi 860000, Tibet, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08834-9&domain=pdf


Page 2 of 11Zhao et al. BMC Genomics          (2022) 23:577 

Plateau and the lack of artificial cultivation techniques, 
relying solely on the digging of wild resources can easily 
lead to the reduction of Rhodiola plant resources and the 
loss of genetic diversity resources [6].

Due to the variety of Rhodiola plants, the source of 
commercial medicine of Rhodiola is very complicated, 
but the pharmacodynamics of different species of Rho-
diola have a significant difference in clinical efficacy 
[7]. The traits of the medicinal plants of Rhodiola and 
the characteristics of the microstructure are similar [7]. 
At present, R. crenulata is the only primordial plant 
of the Rhodiola medicinal herbs contained in the Chi-
nese Pharmacopoeia (2020 Edition). The development 
and research of its alternative varieties is imminent. In 
recent years, the mixed use of plant roots and rhizomes 
of distinct species of Rhodiola has occurred frequently. 
Researchers have studied the Rhodiola Herbal Slices on 
the market using DNA barcoding technology, only 40% 
of the samples are R. crenulata collected in the Chinese 
Pharmacopoeia [8]. The mixuse of Rhodiola medicinal 
materials directly affects the safety and efficacy of clinical 
medications, and coupled with unrestricted collection, 
the number of wild resources has decreased dramatically. 
Therefore, in order to realize the protection and sus-
tainable development of Rhodiola plants, it is necessary 
to conduct in-depth research on the identification and 
genetic diversity of their species.

To solve the problem of Rhodiola plant identification, 
Wang et  al. developed random amplification polymor-
phic DNA (RAPD) and inter-simple sequence repeat 
(ISSR) primers to identify R. angusta, R. crenulata, R. 
bupleuroides, and R. sachalinensis [9]. Li et al. established 
a method for classifying and identifying R. quadrifida 
and R. crenulata based on nuclear magnetic resonance 
1H-NMR fingerprints-chemical pattern recognition 
technique [10]. Zhu et  al.found that the internal tran-
scribed spacer 2 (ITS2) sequence can effectively distin-
guish R. crenulata and R. rosea [11]. Booker et  al. used 
nuclear magnetic resonance spectroscopy coupled with 
high performance thin layer chromatography techniques 
to comprehensively analyze R. crenulata and R. rosea col-
lected in markets around the world [12]. These advanced 
identification methods currently used can solve the iden-
tification problems of some Rhodiola plants, but they also 
have the disadvantages of having a narrow application 
range and high identification cost.

DNA barcoding is a new species identification tech-
nology developed in recent years [13]. It eliminates the 
obstacles of traditional morphological recognition meth-
ods that rely on long-term experience. The plant chlo-
roplast (cp) genome, as a research hotspot for screening 
DNA barcoding sequences, can also be used as a super-
barcoding for phylogenetic and species identification 

studies [14]. The use of the cp genome to solve the prob-
lem of difficult classification of related species is of great 
significance for species identification in herbal medicine 
and even the entire plant community. Chen et  al. pro-
posed that using the whole genome as a super-barcode 
can effectively identify Ligularia plants [15]. Zhong et al. 
found that 41 Dendrobium species can be effectively 
identified based on the whole cp genome, and Dendro-
bium officinale from 3 different places of production can 
also be distinguished [16].

For a long time, due to the difficulties in collecting sam-
ples and specimens, the phylogenetic relationship within 
Rhodiola is still poorly understood [17]. Mayuzumi et al. 
proposed that Rhodiola as a distinct genus from Sedum 
and a close relationship between Rhodiola and Pseudose-
dum [3]. A recent molecular phylogenetic study using 
plastome genomes sampled about 12 representative spe-
cies of Rhodiola supported Rhodiola was divided into 
dioecious clade and hermaphrodite clade [4]. Although 
these studies provided new and important insights into 
the phylogeny of Rhodiola, a broader sampling scheme is 
needed to better understand the phylogenetic relation-
ships of Rhodiola.

In this study, we sequenced the cp genomes of R. tan-
gutica, R. wallichiana, R. quadrifida, R. bupleuroides, R. 
gelida, and R. henryi using Illumina technology followed 
by reference-guided assembly of de novo contigs. Our 
aims were: 1) to detect the variations of long repeats and 
SSRs in 6 Rhodiola cp genomes; 2) to identify divergence 
hotspots as potential genetic markers for Rhodiola DNA 
barcoding; and 3) to reconstruct a phylogeny for Rhodiola 
species using protein coding sequences of the cp genome 
and infer their phylogenetic location within Crassulaceae.

Results
General features of the Six Rhodiola cp genomes
The cp genomes of R. tangutica (2.4 Gb), R. wallichiana 
(2.1 Gb), R. quadrifida (2.4 Gb), R. bupleuroides (2.2 Gb), 
R. gelida (2.1 Gb), and R. henryi (2.3 Gb) were sequenced 
with approximately 2.0  Gb of paired-end reads, respec-
tively. Clean reads were achieved by removing adap-
tors and low-quality read pairs. The recovered clean 
reads for R. quadrifida, R. tangutica, R. wallichiana, R. 
bupleuroides, R. gelida, and R. henryi were 1,737,149, 
1,013,832, 839,613, 973,418, 866,547, and 1,092,141, 
respectively (Table S1). Six Rhodiola complete cp 
genome maps (Fig.  1) were obtained through de novo 
genome sequencing and assembly with the reference R. 
rosea (MH410216) genome. The average organelle cov-
erage for R. quadrifida, R. tangutica, R. wallichiana, 
R. bupleuroides, R. gelida, and R. henryi with the refer-
ence genome reached 1,378, 262, 254, 193, 203, and 313, 
respectively (Table S1).
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The cp genome size ranged from 150,771  bp in R. 
quadrifida to 151,891  bp in R. henryi, which included 
82,211 bp (R. tangutica) to 83,095 bp (R. gelida) large sin-
gle-copy (LSC) regions, and 16,991 bp (R. quadrifida) to 
17,104 bp (R. tangutica) small single-copy (SSC) regions, 
separated by a pair of 25,773  bp (R. quadrifida) to 
25,887 bp (R. henryi) inverted repeat (IR) regions (Fig. 1; 
Table S1). There were 85 protein-coding genes, 37 tRNA 
genes, and 8 rRNA genes that were identified in each 

Rhodiola cp genome (Table S2). Among these unique 
genes, 15 genes harbored one intron and three genes 
(ycf3, clpP, and rps12) harbored two introns (Table S2).

Long repeats and SSRs
Repeat sequences have been applied extensively for 
phylogeny, population genetics, genetic mapping, and 
forensic studies [18]. A total of 144 pairs of repeats 
were detected in the 6 Rhodiola cp genomes, with the 

Fig. 1  Gene maps of the complete cp genome of six species of Rhodiola. Genes drawn outside of the map circle are transcribed clockwise, 
while those drawn inside are transcribed counter-clockwise. The darker gray in the inner circle corresponds to GC content while the lighter gray 
corresponds to AT content
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repeat length range from 30 to 62  bp (Fig.  2A). The cp 
genomes of 6 Rhodiola have 5, 15, 8, 11, 12 and 9 forward 
repeats and 10, 14, 13, 16, 13 and 14 palindromic repeats 
(Fig.  2B). Reverse repeats and complementary repeats 
only exist in the cp genome of R. gelida (Fig.  2B). The 
long repeat lengths of 30, 31, 32, 40, and 41 bp existed in 
all 6 Rhodiola cp genomes (Fig. 2A). Long repeat lengths 
of 33, 34, and 36 bp were found the least often and only 
existed in the R. gelida and R. bupleuroides cp genomes, 
respectively (Fig. 2A).

Simple sequence repeats (SSRs) are usually 1–6  bp 
tandem repeat DNA sequences and are widely used as 
molecular markers with their polymorphic to identify 
closely related species [19]. In our study, SSRs in 6 Rho-
diola cp genomes were identified using MISA software. 
The number of SSRs in the 6 Rhodiola species ranged 
from 186 (R. wallichiana) to 200 (R. gelida) (Fig. 3A). The 
numbers and distribution of all SSR types were similar 
and conserved in the 6 Rhodiola cp genomes, except for 
pentanucleotide, which only existed in R. bupleuroides 
(Fig.  3B). Mononucleotide repeat motifs were occupied 
the largest proportion in these SSRs, ranging from 63% 
(R. bupleuroides) to 65% (R. henryi). No hexanucleotide 
repeat motifs were found in the 6 Rhodiola cp genomes 
(Fig. 3B).

Divergence hotspots
We selected eight Rhodiola cp genome sequences to be 
compared and plotted using the mVISTA software with 
the annotated cp genome of R. rosea as a reference to elu-
cidate the level of sequence divergence (Fig. 4). Based on 
the overall sequence identity, the results indicated that 
the coding regions exhibit lower divergence levels than 
the non-coding regions and two IR regions exhibit higher 
conservation than the remaining sequences across the 
whole chloroplast genome, as can be seen in other plants 
[20, 21]. Furthermore, the results showed that the ycf1 
and trnH-GUG-psbA sequences of Rhodiola were highly 
divergent regions.

In addition, the nucleotide diversity (Pi) values were 
calculated to evaluate the sequence divergence among 
22 Rhodiola cp genomes (Table S3). The genetic distance 
of all 75 protein-coding genes varied from 0 to 0.01143 
(ycf1) with an average value of 0.00444 (Fig.  5A). Based 
on a considerably higher Pi value of > 0.009, we found 
seven highly variable regions (ycf1, rps15, ndhF, rpoC1, 
rps8, rpl20, rps18, and matK) (Fig.  5A). These values of 
the non-coding regions ranged from 0 to 0.04122 (trnH-
GUG-psbA) with an average value of 0.01057 (Fig. 5B). A 
total of five mutational hotspots that showed high values 
of PI (≥ 0.02) were identified, including trnH-GUG-psbA, 
rps15-ycf1, trnG-GCC-trnR-UCU​, trnC-GCA-petN, and 

Fig. 2  The number of long repeats in the whole cp genome sequence of the 6 Rhodiola species. A Frequency of repeats more than 30 bp long. B 
Frequency of repeat type
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ndhF-rpl32. The analysis revealed that the protein-coding 
regions exhibit lower divergence levels than non-cod-
ing regions. These hotspot regions could be utilized as 
potential molecular markers for phylogenetic studies and 
the identification of Rhodiola species.

Phylogenetic analysis within Rhodiola
Complete cp genomes comprise abundant phylogenetic 
information, which could be applied to evolution and 
phylogenetic studies of angiosperms because of sev-
eral advantages, such as high accuracy and resolution 
[22]. In order to clarify the phylogenetic position of six 
newly assembled Rhodiola within the Saxifragales, phy-
logenetic tree was constructed. The phylogenetic tree 

showed that all Rhodiola species formed a monophy-
letic clade and then were classified into two separate 
branches (Fig. 6), which is inconsistent with the record 
in Flora of China [1]. The dioecious clade composed of 
nine dioecious Rhodiola species, and the hermaphro-
dite clade included all the hermaphrodite species.

Materials and methods
All methods were performed in accordance with the rel-
evant guidelines and regulations.

Plant materials and DNA extraction
Wild plant materials of Rhodiola were collected in 
Nyingchi (Tibet, China). The specimens of Rhodiola have 

Fig. 3  Analysis of SSRs in the 6 Rhodiola cp genomes. A Frequency of common motifs in the 6 Rhodiola cp genomes. B Number of different SSR 
types detected in the 6 Rhodiola cp genomes



Page 6 of 11Zhao et al. BMC Genomics          (2022) 23:577 

been kept at the Tibet Agriculture & Animal Husbandry 
University and Kunming Institute of Botany. Total 
genomic DNA was extracted from silica-gel-dried leaves 
using the modified CTAB (cetyltrimethylammonium bro-
mide) method [23]. The quantity and quality of extracted 
genomic DNA were determined by gel electrophoresis 
and NanoDrop 2000 Spectrophotometer (Thermo Scien-
tific, Carlsbad, CA, USA).

Chloroplast genome sequencing, assembly and annotation
Genomic DNA was randomly fragmented by sonication 
(Covaris, M220). Paired-end sequencing libraries were 
constructed according to the Illumina standard protocol 
(Illumina, San Diego, CA, USA). Sample sequencing was 
carried out on an Illumina Hiseq X-Ten platform. Total 
genomic DNAs were also sent to BGI (Shenzhen, China) 
for library (400  bp) preparation for genome skimming 

sequencing. Paired-end (150  bp) sequencing was con-
ducted on the Illumina HiSeq X-10 platform, generating 
∼2 Gb data per sample. Raw reads were filtered by qual-
ity control software NGS QC Toolkit v2.3.333 to obtain 
high quality Illumina data [24].

Next, filtered reads were de novo assembled using 
NOVOPlasty [25] with parameters of K-mer (33). These 
assembled chloroplast genomes were annotated in GeSeq 
[26], coupled with manually edited start and stop codons 
in Geneious 11.1.4 [27] (Biomatters Ltd., Auckland, New 
Zealand) with a reference R. rosea chloroplast genome 
(Genbank accession number MH410216). In addition, 
all tRNA genes were further verified using tRNAscan-
SE v1.21 [28]. The border region between the inverted 
repeat (IR) and the large single copy (LSC), also between 
inverted repeats and small single copy (SSC) junc-
tion were determined through local BLAST software. 

Fig. 4  Sequence alignment of chloroplast genomes of eight Rhodiola species. Sequence identity plot comparing the chloroplast genomes with 
R. rosea as a reference using mVISTA. The grey arrows and thick black lines above the alignment indicate genes with their orientation. The Y-axis 
represents the identity from 50 to 100%
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Finally, the circular gene maps of Rhodiola plastomes 
were drawn utilizing the Organellar Genome DRAW tool 
(OGDRAW) [29].

Comparative genomic analysis and molecular marker 
identification
To detect variations within Rhodiola cp genomes, we 
compared the cp genomes of R. crenulata, R. rosea, 
and the six newly assembled Rhodiola cp genomes by 
mVISTA [30]. The nucleotide diversity of the Rhodiola cp 
genomes was detected by DNA Sequence Polymorphism 
(DnaSP) software [31].

Characterization of repeat sequence and SSRs
The long repetitive sequences were detected using 
REPuter with a 30 bp minimum repeat size and a Ham-
ming distance of 3 [32]. Simple sequence repeats (SSRs) 
in the cp genomes were identified via the MISA perl 
script [33] with the minimum number of repeats set to 
8, 5, 3, 3, 3 and 3 for mono-, di-, tri-, tetra-, penta-, and 
hexa-nucleotides, respectively.

Phylogenetic analysis
The phylogenetic analysis was performed on six newly 
assembled Rhodiola cp genomes, another 55 Saxifragales 
species, and one outgroup Rosa rugosa, all of which were 

down loaded from the NCBI (Table S4) except those of 
six newly assembled Rhodiola cp genomes. Molecular 
phylogenetic trees, using aligned sequences of 38 pro-
tein-coding genes (Table S5) with MAFFT 7.0 [34] and 
adjusted manually where necessary, were constructed 
using IQ-TREE (Nguyen et  al.,2015) and MrBayes 3.2.6 
software [35] under the GTRGAMMA model.

Discussion
Six Rhodiola cp genomes were sequenced and assembled 
in our study, and this information was used to identify 
candidate DNA markers and infer Rhodiola phylogeny. 
The size of the cp genome, the length of the SSC, LSC, 
and IR regions, the content of the GC, and gene con-
tent demonstrated a high degree of similarity among 
the genomes, implying that Rhodiola species shared low 
diversity [4]. The IR region, however, has a larger GC con-
tent than the LSC and SSC regions. In most angiosperm 
chloroplasts, there are 74 protein-coding genes, with an 
additional five in a few species [36]. Six newly assembled 
Rhodiola cp genomes contain 85 protein-coding genes, 
37 tRNA genes, and 8 rRNA genes, which is consistent 
with previous studies [4].

Repetitive sequences play crucial roles in chloroplast 
genome arrangement and sequence divergence [37]. 
Reverse repeats and complementary repeats only exist in 

Fig. 5  The nucleotide variability (Pi) values were compared among 22 Rhodiola species. A The P-distance value of protein-coding genes. B The 
P-distance value of intergenic regions
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Fig. 6  Phylogenetic tree based on 38 protein-coding genes shared by the cp genomes of 55 Saxifragales species. The tree was generated using 
a ML method with 1000 bootstrap replicates. Numbers on the nodes indicate bootstrap values. Different colors represent species belonging to 
different families
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the cp genome of R. gelida, reflecting the fact that Rho-
diola chloroplast genomes exhibited a significant differ-
ence in type, length and number of repeats. Chloroplast 
SSR markers are efficient genetic resources to investigate 
population genetics and biogeography of closely related 
taxa due to their relatively richness, high reproducibil-
ity and polymorphism [38, 39]. Wang et al. used 11 ISSR 
primers to reveal the interspecific or intraspecific genetic 
differences and diversity of four Rhodiola species [9].In 
our study, A and T nucleotides were the most common, 
while tandem G or C repeats were quite rare (Fig.  3A), 
which was in concordance with the other research results 
[40, 41].These SSR markers could be used to examine the 
genetic structure, differentiation, diversity, and mater-
nity in the 6 Rhodiola species and their relative species in 
future studies.

The whole cp genome contains abundant mutation 
sites, which can be used directly as a super barcode for 
species identification. As with hypervariable regions of 
the genome, they can also be screened out as potential 
molecular markers [42, 43]. At present, many species 
have been successfully identified based on the chloroplast 
genome, especially the species with frequent hybridiza-
tion and apomixis [43–45]. Ycf1, rps15, ndhF, rpoC1, 
rps8, rpl20, rps18 and matK genes in CDS showed signifi-
cant variation and high sequence variations were found 
in intergenic regions as follows: trnH-GUG-psbA, rps15-
ycf1, trnG-GCC-trnR-UCU​, trnC-GCA-petN, and ndhF-
rpl32 (Fig. 6). These regions can also be used as candidate 
markers for elucidating the phylogenetic relationship 
among Rhodiola species. In many species, TrnH-GUG-
psbA and matK are the most mutated hotspots for spe-
cies identification, such as Kengyilia [46], Apocynaceae 
[47] and Orchidinae [48]. Ycf1 marker has good species 
identification resolution in Pinus at the within-genus 
level relationships [49]. Ycf1 has a better effect on the 
identification of Rhodiola due to its longer sequence 
(~ 5800 bp). We recommend that the ycf1 gene be used to 
reconstruct phylogenetic relationships of Rhodiola where 
there is a lack of genomic information.

Our phylogenetic analysis strongly supported the 
monophyly of Rhodiola species, which is consistent with 
previous studies [3, 4]. All Rhodiola species are clas-
sified into two separate branches (dioecious and her-
maphrodite), which supports the view of Zhao et  al. 
[4]. What interests us is that R. wallichiana was gath-
ered in the hermaphrodite clade, and we think that we 
may have selected a rare unisexualis among R. wallichi-
ana. So, we speculate that unisexual R. wallichiana and 
bisexual R. wallichiana may have huge genetic differ-
ences. In addition, the dioecious clade also contains R. 
integrifolia, which has been temporarily classified as 
a hybrid between R. rosea and R. rhodantha [50]. Our 

phylogenetic analyses also revealed that there are close 
relationships between Crassulaceae and Saxifragaceae, 
supporting the view that there is a common origin 
between them. In some traditional angiosperm classifi-
cation systems, Saxifragaceae is the largest group of gar-
bage bins in angiosperms, and many branches that are 
unrelated in evolution are forcibly pieced together into 
a highly multi-line group. Our phylogeny suggested that 
the Penthoraceae and Haloragidaceae were clustered into 
one clade, indicating their close relationship. The APGII 
research considers that Penthoraceae can be selectively 
combined with Haloragidaceae [51], our research seems 
to support this view. However, since there is only one 
chloroplast genome data in two families and lack of data 
on the cp genome of more species, we believe that when 
more species in the two families have been sequenced to 
accurately determine their evolutionary relationship.

Conclusions
In this study, we determined and characterized six cp 
genome sequences of Rhodiola, which are commonly 
used as Tibetan medicinal materials. The size of the 
genome, the structure and organization of genes were 
shown to be conservative, which is similar to those 
reported cp genomes of Rhodiola species. To develop 
molecular markers for future phylogeographic and popu-
lation genetic studies, thirteen mutational hotspots were 
identified. The results of phylogenetic analysis showed 
that Rhodiola species were clustered into two clades: 
dioecious and hermaphrodite, with strong support val-
ues. The complete cp genome sequences that were 
newly assembled facilitate medicinal resource conserva-
tion, phylogenetic reconstruction, and biogeographical 
research of Rhodiola.
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