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Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central

problem in computational neuroscience. Monte Carlo approaches to this problem are

computationally expensive and often fail to provide mechanistic insight. Thus, the field

has seen the development of mathematical and numerical approaches, often relying on

a Fokker-Planck formalism. These approaches force a compromise between biological

realism, accuracy and computational efficiency. In this article we develop an extension

of existing diffusion approximations to more accurately approximate the response of

neurons with adaptation currents and noisy synaptic currents. The implementation

refines existing numerical schemes for solving the associated Fokker-Planck equations

to improve computationally efficiency and accuracy. Computer code implementing the

developed algorithms is made available to the public.

Keywords: stochastic modeling, Fokker-Planck equation, diffusion approximation, linear response, numerical

analysis, spike frequency adaptation

1. INTRODUCTION

Linking neuronal membrane dynamics, synaptic input statistics and spike train statistics is a central
problem in computational neuroscience. The forward problem of mapping membrane dynamics
and input statistics to spiking statistics, such as firing rates, is important for understanding how
biological neurons transmit sensory andmotor signals. The inverse problem of mapping spike train
statistics to input statistics and membrane dynamics is critical for inferring synaptic connectivity
and neuron properties from extracellular recordings (Pillow et al., 2008; Pernice and Rotter, 2013).
Efficient and accurate solutions to both the forward and backward problem rely on computational
models of neurons that balance simplicity and computational tractability with biological realism.
The adaptive exponential integrate-and-fire (AdEx) neuron model has been proposed as a balance
between these needs: It is simple enough to be amenable to mathematical analysis, computationally
efficient to simulate and its parameters can be fit to accurately capture the responses of diverse types
of biological neurons (Fourcaud-Trocme et al., 2003; Richardson et al., 2003; Brette and Gerstner,
2005; Jolivet et al., 2008; Naud et al., 2008; Touboul and Brette, 2008; Richardson, 2009; Hertäg
et al., 2014; Ocker and Doiron, 2014).

Noise is pervasive in the brain. Unreliable neurotransmitter release, ion channel noise
and irregular arrival of synaptic inputs combine so that spiking activity is highly irregular
with mean spike counts approximately equal to their variance (Softky and Koch, 1993;
Shadlen and Newsome, 1994, 1998; Faisal et al., 2008). While the deterministic dynamics
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of the AdEx model are well-characterized (Naud et al., 2008;
Touboul and Brette, 2008), its response to the strong noise
observed in cortical circuits is more difficult to analyze
mathematically. Spike train statistics can be approximated
from Monte-Carlo simulations, but it is computationally
expensive to obtain accurate approximations. Fokker-Planck
techniques offer an alternative method for approximating spiking
and membrane potential statistics. The threshold integration
method (Richardson, 2007, 2008; Richardson and Swarbrick,
2010) provides efficient numerical schemes for solving Fokker-
Planck equations associated with integrate-and-fire neuron
models, but is only applicable when the Fokker-Planck equation
is one-dimensional. Temporally correlated inputs and adaptation
currents introduce additional dimensions that prevent the direct
application of threshold integration. This shortcoming is partially
overcome by approximations that reduce the dimensionality of
the Fokker-Planck equations: A quasi-static approximation can
be used to capture the effects of slow and weak adaptation
with one dimension (Richardson, 2009; Ocker and Doiron,
2014). Matched variance approximations capture the effects
of temporally correlated synaptic inputs in one dimension
by scaling the noise coefficient to capture passive membrane
variability (Alijani and Richardson, 2011; Hertäg et al., 2014).

In this article, we present a suite of numerical algorithms
for solving Fokker-Planck equations associated with the AdEx
model driven by stochastic synaptic input. We extend the
matched variance approach (Alijani and Richardson, 2011;
Hertäg et al., 2014) to account for the membrane potential
fluctuations introduced by a voltage-based adaptation current
and to account for a wider class of temporally correlated
input. This approximation more accurately captures the
effects of strong or fast voltage-based adaptation on neuronal
response statistics than previous approximations for adaptive
neuron models (Richardson, 2009; Ocker and Doiron,
2014). Moreover, we developed a higher order solver for
the numerical implementation of the threshold-integration
scheme (Richardson, 2007, 2008) to solve the associated
Fokker-Planck equations more efficiently. All of these numerical
schemes are combined into user-friendly computer code that is
publicly available at http://www.mathworks.com/matlabcentral/
fileexchange/55337-adex-threshold-integrator.

2. METHODS

2.1. Model Description
We consider integrate-and-fire model neurons with linear
adaptation, defined by Brette and Gerstner (2005)

Cm
dV

dt
= gL(EL − V)+ ψ(V)− w+ I (1)

τw
dw

dt
= −w+ a(V − EL) (2)

V ≥ Vth ⇒ V → Vre and w → w+ b (3)

where Equation (3) indicates that each time V(t) reaches a
threshold at Vth, it is reset to Vre and w(t) is incremented by
a fixed amount, b. In this expression, Cm is the membrane

capacitance, V(t) is the membrane potential, gL is a leak
conductance, EL is the leak reversal potential, w(t) is an
adaptation variable with time constant τw, b captures the spike-
dependence of w(t) and a captures the voltage-dependence of
w(t). Our numerical methods are derived for general ψ(V),
but all simulations use the adaptive exponential integrate-and-
fire (AdEx) model (Fourcaud-Trocme et al., 2003; Brette and
Gerstner, 2005), for which

ψ(V) = gL1Te
(V−VT )/1T .

Our methods are also easily adapted to the closely related
Izhikevich model, which contain a quadratic, instead of
exponential, non-linearity (Izhikevich, 2003).

We develop numerical approximations that can be applied to
any stationary stochastic input current, I(t), but all examples use
a model of the form

I(t) = Je
∑

k

αe(t − tek)+ Ji
∑

k

αe(t − tik). (4)

Here, Je > 0 and Je < 0 are excitatory and inhibitory
synaptic weights, αx(t) is a postsynaptic current waveform (EPSC
and IPSC), and tx

k
are spike times for x = e, i. Without loss

of generality, assume that
∫
αx(t)dt = 1. We consider two

instantiations of this model, one is temporally uncorrelated and
the other temporally correlated.

The temporally uncorrelated input model is achieved by
letting excitatory and inhibitory spike arrive as homogeneous
Poisson processes with rates re and ri, and by taking the synaptic
currents to be Dirac delta functions,

αx(t) = δ(t), x = e, i.

The temporally correlated input model is defined by
introducing temporal correlations to the spike times and to the
synaptic kinetics. Excitatory and inhibitory spike times arrive
as inhomogeneous Poisson processes. The time-dependent firing
rates, νx(t), obey Ornstein-Uhlenbeck dynamics,

τν
dνx

dt
= −νx + rx + σν

√
2τνηx(t),

for x = e, i where τν sets the timescale of firing rate fluctuations,
rx is the stationary mean rate, σν is the stationary standard
deviation and ηx(t) is standard Gaussian white noise. As long
as σν ≪ rx, firing rates are positive with overwhelmingly large
probability (Merkel and Lindner, 2010; Rosenbaum et al., 2012b).
Synaptic kinetics for the temporally correlated input model are
captured by setting (Dayan and Abbott, 2001)

αe(t) =
Je

τe
e−t/τe2(t)

αi(t) =
Ji

τd,i − τr,i
(e−t/τd,i − e−t/τr,i )2(t)

where 2(t) is the Heaviside step function, τe is the decay
timescale of EPSCs and τr,i < τd,i are the rise and decay
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TABLE 1 | Default parameter values.

τm (ms) 15

EL (mV) −72

1T (mV) 1

VT (mV) −55

Vth (mV) −45

Vre (mV) −72

a/Cm (kHz) 0.15

b/Cm (mV·kHz) 0.025

τw (ms) 50

Je, Ji (mV) 0.4, −0.75

re, ri (kHz) 10, 2

τe (ms) 4

τd,i (ms) 6

τr,i (ms) 1

τν (ms) 10

σν (Hz) 100

Default model parameters used in all figures unless otherwise specified in figure caption.

Note that the precise values of Cm and gL do not need to be specified since the dynamics

only depend on their ratio, τm = Cm/gL. Note also that the last five parameters are only

relevant for the temporally correlated input model.

timescales of IPSCs respectively. Synaptic time scales were chosen
to mimic the kinetics of AMPA and GABAB mediated kinetics
(see Table 1 and Dayan and Abbott, 2001).

We consider the neuron response statistics and the accuracy
of our approximations under a variety of different parameter
values. The “default” parameter values, used in all simulations
except where explicitly stated otherwise in figure captions and
axes labels, are given in Table 1.

For all Monte Carlo simulations, Equations (1–3) were solved
using a forward Euler scheme with a time bin size of dt =
0.1 ms, except where specified otherwise. Each Monte Carlo
simulation was of length 65 s. The first 5 s of all simulations
were not used in computing statistics, so exactly 60 s were used.
Statistics were computed by averaging over 10 such Monte Carlo
simulations, except where specified otherwise. All simulations
and numerical computations were performed on a MacBook Pro
running OS X 10.11.2 with a 2.3 GHz Intel Core i7 processor
and 16 GB of 1600 MHz DDR3 RAM. Simulations were run
in Matlab R2015b (Mathworks) using the mex environment to
compile C code that can be run from the Matlab command
line.

2.2. A Review of Spectral and Statistical
Measures of Stationary Stochastic
Processes
We are interested in the steady-state statistics of membrane
potential and spiking activity when the input current, I(t),
is modeled as a stationary stochastic process. We first briefly
review the statistical measures of stationary stochastic processes
used in this study. A more in depth treatment can be
found elsewhere (Yaglom, 2004; Tetzlaff et al., 2008). We
model the spike train of a neuron as a sum of Dirac delta

functions,

s(t) =
∑

k

δ(t − tk)

where tk is the k-th threshold crossing of V(t). The steady-state
firing rate is given by

r0 = lim
T→∞

T−1
∫ T

0
s(t)dt.

A common measure of covariability between two processes is the
cross-covariance function, defined by

CXY (τ ) = cov(X(t),Y(t + τ ))

for stationary stochastic processes, X(t) and Y(t). Analytical
computations are often simplified by transitioning to the Fourier
domain, defining the cross-spectral density,

C̃XY (f ) =
∫ ∞

−∞
CXY (τ )e

−2π if τdτ

and the power spectral density, C̃XX(f ). The analytical and
numerical computation of cross-spectral densities is simplified by
the relationship (Yaglom, 2004),

C̃XY (f ) = lim
T→∞

X̃∗
T(f )ỸT(f )

where ∗ denotes the complex conjugate,

X̃T(f ) =
1√
2T

∫ T

−T
[X(t)− µX]e

−2π iftdt (5)

is the normalized, finite-time Fourier transform of X(t) with its
steady-state mean, µX , subtracted and similarly for YT(t). This
relationship is particularly useful because it allows convolutions
to be treated easily. In particular, suppose that U(t) = (K∗X)(t)
where ∗ denotes convolution and K(t) is a deterministic kernel
with finite L2 norm. Then

ŨT(f ) = K̃(f )X̃T(f ) (6)

for sufficiently large T where

K̃(f ) =
∫ ∞

−∞
K(t)e−2π iftdt

is the Fourier transform of K(t), and therefore

C̃UU(f ) = |K̃(f )|2C̃XX(f ). (7)

Finally, the steady-state variance can be computed from the
integral of the power-spectral density,

var(X) =
∫ ∞

−∞
C̃XX(f )df (8)

These relationships will be helpful in computing several statistics
used below.
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3. RESULTS

3.1. A Review of the Quasi-Static
Approximation for Stochastic Neuron
Models with Adaptation Currents
We first consider the AdEx model from Equations (1–3) with
temporally uncorrelated inputs. In this case, a classic diffusion
approximation (Gluss, 1967; Capocelli and Ricciardi, 1971;
Ricciardi and Sacerdote, 1979) replaces I(t) from Equations (4)
with

I(t) = µI +
√
2DIη(t) (9)

where µI = Jere + Jiri is the mean input bias,

DI =
J2e re + J2i ri

2
(10)

is the effective diffusion coefficient and η(t) is standard Gaussian
white noise. This choice of coefficients, µI and DI , assures that
the steady-state mean of the input current is captured exactly by
the input model and also that the first two infinitesimal moments
of the membrane potential are the same for the diffusion
approximation as they are for the temporally uncorrelated input
model (Gluss, 1967; Capocelli and Ricciardi, 1971; Ricciardi and
Sacerdote, 1979).

Under the diffusion approximation in Equations (9), the
AdEx model from Equations (1–3) represents a coupled,
two-dimensional system of stochastic differential equations.
Therefore, the joint probability density of V and w obeys a
two-dimensional Fokker-Planck equation (see Hertäg et al.,
2014 for full formulation of the two-dimensional Fokker-Planck
equation). In principle, this equation could be solved numerically
and the resulting bivariate probability density could be used to
compute the firing rate of the neuron. However, the Fokker-
Planck equation is computationally expensive and difficult to
solve, in part because it has two spatial dimensions and in part
because of the non-local boundary conditions associated with
the threshold-reset condition in Equation (3) (Richardson, 2009;
Hertäg et al., 2014; Ocker and Doiron, 2014).

Previous studies of stochastic neuron models with voltage-
activated adaptation currents (Richardson, 2009; Hertäg et al.,
2014; Ocker and Doiron, 2014) resolve the difficulty inherent in
solving a two-dimensional equation by utilizing the fact that the
adaptation time constant, τw, is typically much larger than the
membrane time constant, τw ≫ τm = Cm/gL. This separation
of timescales justifies a quasi-static approximation in which w in
Equation (1) is replaced by its steady-statemean value,µw. Under
this approximation, the AdEx model can be viewed as a non-
adaptive exponential integrate-and-fire model (EIF, obtained by
setting a = b = 0) with an extra bias term accounting for
the mean adaptation current. The only difficulty is that the
steady-state mean adaptation current depends on the steady-state
firing rate and steady state mean membrane potential, and vice
versa. In Richardson (2009) and Ocker and Doiron (2014), this
difficulty was overcome by numerically computing the fixed point
of their dependence as described next.

The linearity of Equation (2) allows the steady-state mean
value ofw(t) to be computed exactly in terms of the firing rate and
the steady state mean of V(t). Specifically, taking expectations in
Equation (2) and including the spike-based perturbations from
Equation (3) gives,

τw
d〈w〉
dt

= a(〈V〉 − EL)− 〈w〉 + τwbr (11)

where 〈w〉 is the time-dependent mean of w(t), 〈V〉 is the
time-dependent mean membrane potential and r(t) is the
instantaneous firing rate of the neuron. The last term in this
equation captures the fact thatw(t) is incremented by b each time
the neuron spikes, as indicated in Equation (3). The steady-state
mean is given by finding the unique fixed point of this differential
equation,

µw = lim
t→∞

〈w〉

= a(µV − EL)+ τwbr0
(12)

where µV and r0 are the steady-state mean membrane potential
and firing rate respectively.

Once w(t) is replaced by its steady-state mean value and
I(t) is replaced by Gaussian white noise plus a bias term,
µI , Equation (1) is a one-dimensional stochastic differential
equation,

Cm
dV

dt
= gL(EL − V)+ ψ(V)

− µw + µI +
√
2DIη(t),

V ≥ Vth ⇒ V → Vre.

(13)

Thus, the steady-state probability density of V and the steady
state firing rate can be computed by solving a time-independent
Fokker-Planck equation, parameterized by µw (see Appendix A
for precise formulation of the one-dimensional Fokker-Planck
equation).

This Fokker-Planck equation can be solved numerically
efficiently using the threshold integration method developed
in Richardson (2007, 2008). We improved computational
efficiency of previous implementations of the threshold
integration method in several ways. First, we implemented the
solver in the C programming language. To maintain usability,
we used the Matlab “mex” environment so that the compiled C
code can be called from the Matlab command line. Additionally,
solver allows for a variable mesh size so that the mesh can be
refined where the derivative of the solution is expected to be
large in magnitude.

Finally, we improved the numerical scheme used to
implement the threshold-integration method. Previous
implementations used a “modified Euler scheme” that exploits
the linearity of the Fokker-Planck equation to write the solution
in terms of integrals over mesh elements (Richardson, 2008).
Whereas these previous implementations used the midpoint rule
to approximate the resulting integrals, we used the more accurate
Simpson’s rule. A detailed description of the numerical solver is
given in Appendix A. The performance of our implementation is
compared to previous implementations below.
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FIGURE 1 | Quasi-static and matched variance approximations to the firing rate of an adaptive neuron model compared to Monte Carlo simulations as

a function of presynaptic input rate. (A) Steady-state postsynaptic Firing rate, r0, as the presynaptic excitatory rate, re, increases. Plotted for Monte-Carlo

simulations (red circles), quasi-static approximation (gray curve) and matched variance approximation (blue curve). (B,C) Error and % error of the quasi-static and

matched variance approximations compared to Monte-Carlo simulations. The temporally uncorrelated input model was used with all parameters except re given in

Table 1.

In summary, the mean membrane potential and firing rate,
µV and r0, can be computed as a function of the mean adaptation
current, µw, by numerically solving the Fokker-Planck equation.
Similarly, the steady-state mean of the adaptation variable can
be computed in terms of the steady-state mean membrane
potential and firing rate using Equation (12). Combining these
two strategies, the steady state statistics can be approximated
using fixed point iteration (see Appendix B). We hereafter refer
to the approximation obtained this way as the “quasi-static
approximation” to steady-state statistics. This approach was used
previously in Richardson (2009) and Ocker and Doiron (2014).

The quasi-static approximation is expected to be accurate
when adaptation is slow and weak (Richardson, 2009; Ocker
and Doiron, 2014). We tested the accuracy of the quasi-static
approximation with stronger and fast adaptation (see Methods)
as a function of the the rate, re, of excitatory presynaptic spikes
(Figure 1). While the quasi-static approximation captured the
overall shape of the dependence of steady state firing rate on
re (Figure 1A, compare red circles and gray curve), the errors
were substantial in magnitude and percentage (Figures 1B,C,
gray curve).

We next show that these errors are due largely to the fact
that the quasi-static approximation does not account for sub-
threshold, passive membrane potential variability elicited by
sub-threshold, voltage-based adaptation. We then propose an
improved approximation that accounts for this variability.

3.2. A Matched Variance Approximation to
Sub-Threshold Adaptation Dynamics
We conjectured that the errors made by the quasi-static
approximation were largely due sub-threshold fluctuations
in w(t), which are not accounted for by the quasi-static
approximation. Our goal in this section is to derive a diffusion
approximation that accurately captures the steady-state free
membrane potential variance when sub-threshold adaptation is
taken into account.

To demonstrate the source of the errors made by the quasi-
static approximation, first consider the free membrane potential
under the quasi-static approximation, defined by removing active

currents and spiking from Equation (13) to obtain

Cm
dU

dt
= gL(EL − U)− µw

−µI +
√
2DIη(t).

This represents an Ornstein-Uhlenbeck process with steady-state
variance (Gardiner, 1985)

var(U) = DI τm

C2
m

. (14)

where τm = Cm/gL. Thus, the variance of the free membrane
potential under the quasi-static approximation does not depend
on adaptation dynamics at all (since Equation 14 does not depend
on µw, τw, a or b).

For the full AdEx model, the sub-threshold membrane
potential is affected by fluctuations in w(t) through voltage-based
adaptation. This can be seen by considering the free membrane
potential and adaptation dynamics defined by omitting spike-
activation and spiking dynamics from Equations (1–3) to obtain

Cm
dU

dt
= −gL(U − EL)−W + I

τw
dW

dt
= −W + a(U − EL).

(15)

Here, U(t) represents the free membrane potential and W(t)
the “free adaptation” current. Since these equations are coupled,
fluctuations inW(t) affect fluctuations in V(t) and vice versa.

In Appendix C, we show that the steady-state variance of
U(t) under Equations (15) for the temporally uncorrelated input
model is given by

var(U) = DI τm

C2
m

[
1−

(
a

a+ gL

) (
τm

τm + τw

)]
(16)

where DI = (J2e re + J2i ri)/2 as above. This reveals a
major source of error in the quasi-static approximation. As
noted above, the free membrane potential variance for the
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FIGURE 2 | Steady-state free membrane potential variance and the

error in estimating it with a quasi-static approximation. (A) Steady-state

free membrane potential variance when sub-threshold adaptation is

accounted for, from Equation (16), as a function of voltage-based adaptation

strength, a, and adaptation timescale, τw. (B) Percent error of quasi-static

approximation to the steady-state membrane potential variance, from

Equation (14), vs. the variance from (A). Adaptation strengths, a, are reported

in units kHz·Cm. Voltage variance has units mV2. All parameters other than a

and τw are as in Table 1.

quasi-static approximation (Equation 14) does not depend on
adaptation at all. On the other hand, the free membrane potential
variance of the full model is affected by sub-threshold adaptation
currents, since Equation (16) depends on a and τw. Comparing
Equations (14) and (16) reveals that the steady-state variance
under the quasi-static approximation is least accurate when
adaptation is strong (a larger relative to gL) and/or fast (τw
smaller relative to τm).

This difference is demonstrated by comparing the
approximated and actual free membrane potential variance
for different values of a and τw (Figure 2). The quasi-static
approximation does especially poorly in capturing the free
membrane potential variability when a is large or τw is small
(Figure 2B). These errors in approximating the variability of
sub-threshold membrane potential variability introduce errors
in the resulting firing rate approximation. Notably, the percent
error made in approximating the firing rate depends similarly
on the adaptation parameters as the percent error made in
approximating the membrane potential variance (Figures 3C,D,
compare to Figure 2B).

We now derive a one-dimensional “matched variance”
diffusion approximation that accurately captures the steady-state
free membrane potential variance of the two-dimensional model
in Equation (15). This diffusion approximation is defined by

Cm
dU

dt
=− gL(U − EL)− µw + µI

+
√
2Deffη(t)

(17)

where η(t) is standard Gaussian white noise and the diffusion
coefficient, Deff, is scaled to account for the variability of V(t) in
the presence of sub-threshold adaptation. The steady-state free
membrane potential variance from Equation (17) is Gardiner
(1985)

var(U) = Deff τm

C2
m

. (18)

We want to choose Deff so that this variance is equal to the
variance in Equation (16) from the two-dimensional model. This

is achieved by setting Equation (16) equal to Equation (18) and
solving for Deff to obtain

Deff = DI

[
1−

(
a

a+ gL

) (
τm

τm + τw

)]
(19)

where DI = (J2e re + J2i ri)/2. This choice of Deff defines
the “matched variance” approximation under the temporally
uncorrelated input model (see Methods).

In summary, the matched variance diffusion approximation,
given by using Equation (17) with Deff from Equation (19),
achieves the same steady state free membrane potential variance
as the two-dimensional model in Equation (15) under the
temporally uncorrelated input model (see Methods). This
approach is similar to previousmatched variance approximations
that account for the effects of temporally correlated noise, but
not sub-threshold adaptation, on the free membrane potential
variance (Alijani and Richardson, 2011; Hertäg et al., 2014).
Below, we consider a combination of these approaches that
accounts for both voltage-based adaptation and temporally
correlated inputs.

Once Deff is computed, the matched variance approximation
to the firing rates can be computed using the same Fokker-
Planck solver and iterative methods used for the quasi-static
approximation reviewed above and in Appendices A and B. The
only difference between the quasi-static and matched variance
approximations is the choice of diffusion coefficient, DI or Deff.

The matched variance diffusion approximation corrects a
substantial portion of the error made by the quasi-static
approximation, especially when the neuron is in the fluctuation
dominated regime (Figure 1, compare blue and gray). This is
because the fluctuations introduced by the adaptation current
alter firing rates the most in the fluctuation driven regime.

Moreover, the matched variance approximation provides
a substantially improved firing rate approximation whenever
voltage-based adaptation is strong and/or fast (a large, τw
small; Figures 3E,F). Notably, the absolute error in firing rate
is less than 1 Hz and the relative error less than 10% for the
entire set of parameters we considered (Figures 3E,F). It was
greater than 1 Hz and 10% for a considerable portion of the
parameters using the quasi-static approximation (Figures 3C,D).
Nevertheless, the matched variance approximation replaces the
temporally correlated adaptation current with white noise which
introduces some error, especially when adaptation is strong and
fast (Figure 3F).

The matched variance approximation offers essentially the
same computational efficiency as the quasi-static approximation
since they only differ by the value of the diffusion coefficient used.
The average CPU time used to compute each firing rate data point
in Figure 1 was 1.4 ms for the quasi-static approximation and
1.5 ms for the matched variance approximation.

A comparison of numerical schemes for solving the Fokker-
Planck equation shows that the modified Euler scheme with
Simpson’s rule substantially outperforms the previously proposed
modified Euler scheme with the midpoint rule (Figure 4,
compare blue and red). Interestingly, a standard Euler scheme
slightly outperforms the modified Euler scheme with the
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FIGURE 3 | Firing rate approximations and errors as a function of voltage-based adaptation strength and timescale. (A) Firing rate from Monte-Carlo

simulations as a function of voltage-based adaptation strength, a, and adaptation timescale, τw. (B) Standard error of the mean from simulations in (A). (C,D)

Absolute error and percent absolute error of quasi-static approximation to firing rate compared to simulations from (A). (E,F) Same as (C,D), but for matched variance

approximation. Adaptation strengths, a, are reported in units kHz·Cm. The temporally uncorrelated input model was used. All parameters other than a and τw are as in

Table 1.

midpoint rule (Figure 4, compare green and red), but only gives
a reasonable approximation for very fine meshes, due to the large
exponential nonlinearity in ψ(V) for V near VT (Richardson,
2008).

Despite the fact that the matched variance approximation
captures some of the variability introduced by sub-threshold
voltage-based adaptation, errors are introduced by several
assumptions made by the model. We next explore these other
sources of error by modulating various parameters of the model.

Both the quasi-static and matched variance approximations
approximate spike-based inputs with Gaussian white noise. This
diffusion approximation is only mathematically valid in the limit
of small synaptic weights, Je, Ji ≪ 1, and large presynaptic firing
rates, re, ri ≫ 1 (Ricciardi and Sacerdote, 1979). To test the
dependence of our numerical approximations on the synaptic
weights, we computed the error in approximating postsynaptic
firing rates as the synaptic weights were scaled and firing rates
were scaled inversely, so that the mean input, µI = Jere + Jiri
remained fixed. Specifically, we set Jx → cJx and rx → rx/c for
x = e, i and for a range of scalings, c. We found that the matched
variance approximation accurately predicted the firing rate over a
large range of scalings (Figure 5 blue curve, absolute error < 5%
for all data points) and substantially outperforms the quasi-static
approximation (Figure 5, compare blue and gray).

While the matched variance approximation corrects for some
variability introduced by sub-threshold, passive adaptation, it
does not correct for fluctuations in the adaptation current evoked
by action potentials. Some of this variability is introduced the
reset of the membrane potential after a spike, V → Vre.
This reset rule affects the adaptation current, w, through the

FIGURE 4 | Convergence of numerical schemes for computing steady

state firing rate. (A) Relative numerical error (defined as the relative deviation

of the computed firing rate from the rate computed with a fine uniform mesh of

size dv = 10−4 mV which gives 7× 105 mesh points) plotted as a function of

the number of mesh points. The mesh was uniform except near Vre and Vth

where it was refined (see Appendix A). (B) Same error plotted as a function of

CPU time to compute the firing rate. Firing rates were computed using the

threshold integration method with a standard Euler solver (green), the modified

Euler method from Richardson (2007, 2008) using a midpoint rule for

integration (red) and the modified Euler method using Simpson’s rule (blue).

For the Euler method, the error is not plotted for coarser meshes because they

yielded a predicted firing rate of zero. Circle indicates the mesh size used in all

other figures. All parameters are as in Table 1.

voltage-based adaptation. If Vre is far from the steady-state
mean membrane potential, the voltage-reset rule has a larger
impact on the adaptation current, so we expect the matched
variance approximation to perform poorly since it ignores this
impact altogether. Indeed, we found that the matched variance
approximation performs especially poorly for Vre < −80 mV
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FIGURE 5 | Firing rate and error as a function of synaptic weights. (A)

Steady state firing rate from simulations (red circles), quasi-static

approximation (gray) and matched variance approximation (blue) as synaptic

weights, Je and Ji, are scaled by different factors. (B) Percent errors from (A).

Presynaptic firing rates, re and ri, were scaled inversely so that µI = Jere + Jiri

remained constant. The temporally uncorrelated input model was used. All

parameters other than Je, Ji, re and ri are as in Table 1.

FIGURE 6 | Firing rate and error as a function of reset potential. (A)

Steady state firing rate from simulations (red circles), quasi-static

approximation (gray) and matched variance approximation (blue) as a function

of the reset potential, Vre. (B) Percent errors from (A). The temporally

uncorrelated input model was used. All parameters other than Vre are as in

Table 1.

(Figure 6). Nevertheless, it still outperforms the quasi-static
approximation (Figure 6, compare blue and gray).

Surprisingly, we found that a lower reset potential (Vre more
negative) produced a larger firing rate, and this effect was
captured by simulations and both numerical approximations
(Figure 6A). This is a consequence of strong voltage-based
adaptation. Resetting the membrane potential far below EL also
reduces the adaptation current, w, through Equation (2). The
membrane potential recovers from its reset before w (since τm <
τw), during which time the neuron has an increased likelihood of
spiking.

While the matched variance approximation captures
some sub-threshold fluctuations introduced by voltage-based
adaptation, it uses the same approximation to the effects of
spike-based adaptation that the quasi-static approximation uses.
Thus, we expect both approximations to perform poorly when
spike-based adaptation is too strong or fast. We confirmed this
expectation by comparing both approximations to Monte-Carlo
simulations over a range of spike-based adaptation strengths,
b, and adaptation timescales, τw (Figure 7). As expected, the
matched variance approximation performed most poorly when

spike-based adaptation was both fast and strong (Figures 7E,F).
The quasi-static approximation performed poorly for faster
adaptation, but interestingly performed better for stronger spike-
based adaptation (Figures 7C,D). Surprisingly, the quasi-static
approximation actually performed better than the matched
variance approximation for strong and slow spike-based
adaptation.

3.3. Numerical Methods to Compute the
Linear Response to a Modulation of Input
Current
So far, we considered numerical methods to compute the steady
state firing rate of an adaptive model neuron with stationary
inputs. We now consider the response of the neuron to inputs
whose statistics exhibit an explicit time-dependence. In general,
this would require solving a time-dependent formulation of the
Fokker-Planck equation that is not amenable to the threshold-
integration methods used for the steady state problem. However,
if the temporal modulation of the statistics are weak, threshold-
integration methods can be used to solve the time-dependent
Fokker-Planck equation to first order in the magnitude of the
modulation (Richardson, 2007, 2008). This can be combined with
linear response theory to quantify neuronal signal transfer, inter-
neuronal correlations and recurrent network stability (Lindner
et al., 2005; de la Rocha et al., 2007; Richardson, 2008; Shea-
Brown et al., 2008; Ostojic et al., 2009; Ledoux and Brunel, 2011;
Trousdale et al., 2012). We follow previously developed methods
for computing the response of an adaptive neuron model to a
modulation (Richardson, 2009; Ocker and Doiron, 2014), with
some refinements. Details of the implementation are given in
Appendix D and we review the overall approach here.

In short, we consider a weak perturbation to the synaptic input
of the form

I(t) = I0(t)+ ǫu(t)
where I0(t) is the un-perturbed input considered above and u(t)
is some stationary perturbation. Linear response theory can be
used to show that the finite-time Fourier transform of the firing
rate can be written as

r̃T(f ) = ǫSr(f )̃uT(f )+ o(ǫ)

for sufficiently large T where S̃r(f ) is the the susceptibility
function of the neuron’s firing rate (Risken, 1996; Fourcaud and
Brunel, 2002).

The susceptibility function can be computed from a one-
dimensional Fokker-Planck equation, linearly coupled with an
equation for the modulation of the adaptation current. This
can in turn be solved using threshold-integration methods. This
approach was first developed in Richardson (2009) and also used
in Ocker and Doiron (2014). We review the approach and our
implementation of it in Appendix D. Similar to our computation
of steady-state statistics, we improved the efficiency and accuracy
of the susceptibility computation by implementing the solver
in C, using Simpson’s method to compute integrals and using
the matched variance approximation for the effective diffusion
coefficient.
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FIGURE 7 | Firing rate approximations and errors as a function of spike-based adaptation strength and timescale. (A–F) Same as Figures 3A–F except

that spike-based adaptation strength, b, was varied instead of voltage-based. Adaptation strengths, b, are reported in units mV·kHz·Cm. The temporally uncorrelated

input model was used. All parameters other than a and τw are as in Table 1.

It is often necessary to take an inverse Fourier transform of
susceptibility functions (see the examples below, for instance).
Using Fast Fourier Transform methods for this inverse requires
a uniform grid of frequencies. This grid must be fine enough
to capture the low-frequencies introduced by adaptation, but
must also extend to sufficiently high frequencies to capture faster
spiking and membrane potential timescales. As a result, the
susceptibility functions must be evaluated at a large number of
frequency values. This can be computationally expensive since
threshold-integration must be performed separately for each
value of f (see Appendix D).

To overcome this high computational cost, we note that
susceptibility functions of neuron models are typically smooth
and slowly varying functions of f , especially at higher frequencies
and especially when viewed on a log-log scale (see Figure 8,
for example). Instead of evaluating them at each value of f , we
first evaluate them at a coarser, potentially non-uniform mesh of
frequencies. Since the functions change more sharply at lower
frequencies, we use a mesh that is uniform on a log scale.
Once the susceptibility functions are computed on this coarser
mesh, interpolation is used to estimate their values on a finer,
uniform mesh. The inverse Fast Fourier Transform can then be
applied to the interpolated values, since the mesh is uniform and
sufficiently fine. We specifically found that using piecewise-cubic
Hermite interpolating polynomials (Fritsch and Carlson, 1980)
via Matlab’s built-in pchip command yields accurate results when
the coarser mesh has only 30 points (spaced evenly on a log scale).
We next verify this numerical approach by approximating spike
triggered averages and inter-neuronal spike train correlations,
which require the application of an inverse transform to the
susceptibility functions.

3.4. Computing Spike-Triggered Average
and Cross-Spectral Density between the
Spike Train and an Input Current
Perturbation
To test the accuracy of our approximation of the response to a
modulation, we performedMonte-Carlo simulations with a weak
Gaussian white noise term was added to I(t),

I(t) → I(t)+ u(t)

where

u(t) =
√
2Dnηn(t)

and ηn(t) is Gaussian white noise. The excitatory and inhibitory
conductances were left un-perturbed for this example.

We considered two ways to quantify the response to
the white noise perturbation. We first considered the cross-
spectral density, C̃us(f ), between the white noise input and the
postsynaptic spike train (see Methods for definition). A direct
application of linear response theory shows that the cross-
spectral density is given to first order in Dn by

C̃us(f ) = 2DnSr(f ).

Thus, the cross-spectral density can be numerically approximated
by computing the susceptibility function. We also considered the
spike-triggered average noise, defined by

STA(τ ) = avgj
(
u(τ − tj)

)
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FIGURE 8 | Spike triggered average input current and cross-spectral density under a white noise perturbation for different excitatory presynaptic

rates. A weak white noise current was added to the model neuron (Dn/C
2
m = 0.1(mV)2/ms). (A,B) The magnitude (|C̃us| in units CmmV) and phase (angle(C̃us ), in

radians) of the cross-spectral density between the white noise input and postsynaptic spike train. (C) The spike triggered average (units CmmV/ms) of the white noise

input. (A–C) were computed with presynaptic excitatory rate re = 8 kHz. (D–F) are the same as (A–C), but with re = 10 kHz. (G–I) are the same, but with re = 12 kHz.

In all panels, results from Monte Carlo simulations are in red and numerical results from the matched variance approximation are in blue. The filled blue circles in

indicate the coarse frequency values at which threshold-integration was applied. The smooth blue curve indicates the interpolated values used to compute the inverse

Fourier transforms for the STAs. The temporally uncorrelated input model was used with the additional white noise input. All parameters except re are as in Table 1.

where tj are the spike times of the neuron. These STA can
be computed from the cross-spectral density by first noting
that (Dayan and Abbott, 2001)

STA(τ ) = Cus(−τ )
r0

where Cus(τ ) = cov(u(t), s(t + τ )) is the cross-covariance
function between the white noise input and the postsynaptic
spike train, which is the inverse Fourier transform of C̃us(f ) (see
Methods and Tetzlaff et al., 2008). Putting this all together gives

STA = 2Dn

r0
F

−1 [
S∗r

]

where F
−1 denotes the inverse Fourier transform and ∗ the

complex conjugate. Thus, the spike-triggered average can be

approximated directly from the susceptibility through an inverse
Fourier transform of the susceptibility function.

A comparison of the numerically computed values of STA(τ )
and C̃us(f ) to their estimates from Monte-Carlo simulations of
the full AdEx model shows good agreement (Figure 8). Note
that, since the cross-spectral density is proportional to the
susceptibility, Figure 8 also reveals the shape of the susceptibility
function and demonstrates the interpolation used (compare
coarse mesh indicated by blue circles to interpolated fine mesh
indicated by solid blue curve). The peak in the susceptibility
function arises from resonance inherited by the spike- and
voltage-based adaptation rules (Brunel et al., 2003; Richardson
et al., 2003; Richardson, 2009; Ocker and Doiron, 2014). This
resonance is captured by the numerical approximation because
the fixed point computation of the susceptibility function takes
into account the linear filtering of the adaptation currents (see
Appendix D) as in Richardson (2009) and Ocker and Doiron
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FIGURE 9 | Spike triggered average input current and cross-spectral density under a white noise perturbation as a function of presynaptic excitatory

rate. Same as Figure 8 except that only numerical results are shown, using the matched variance approximation, over a range of values of the excitatory presynaptic

rate, re.

(2014). Computing the numerical approximation to the cross-
spectral density and spike triggered average over a larger range
of presynaptic excitatory rates, re shows that this peak is a robust
feature of the adaptive model at various firing rates (Figure 9).

Numerical computation of the linear response function, cross-
spectrum and spike triggered average was extremely efficient,
with all three computed in 21 ms on average for each value of
re used in Figure 9. As noted above, this efficiency was obtained
by first computing Sr(f ) at a coarse and non-uniform mesh of
frequencies, then using polynomial interpolation to approximate
the response at a fine, uniform grid of frequencies so that the
inverse Fast Fourier Transform can be used to calculate STA(τ ).
Using this approach, the threshold-integration scheme was only
called 30 times (one for each coarse frequency mesh point),
but capturing the fast and slow timescales in STA(τ ) required
interpolating these 30 values to a fine mesh of 20,001 frequency
values (0 to 2 kHz with 0.1 Hz steps). To estimate the efficiency
added by our interpolation scheme, we tried computing the
susceptibility directly on the finer mesh (with re = 10 kHz).
This required 20,001 calls to the threshold-integration scheme
and took 2.5 s. Thus, our interpolation approach is about 100
times faster than computing the susceptibility at each frequency
directly.

3.5. Computing the Cross-Covariance
Function between the Spiking Response of
Two Model Neurons
We now consider two identical versions of the pyramidal neuron
model, each identical to the individual models considered above,
but with the additional assumption that a proportion c = 0.1
of the excitatory presynaptic spike times are shared between the
neurons. This scenario models two neurons with overlapping
presynaptic pools. These shared presynaptic spikes introduce
correlations between the inputs to the two neurons, which in turn
introduces correlations between their postsynaptic spike trains,

sk(t) =
∑

j

δ(t − tk,j)

where tk,j is the jth spike of neuron k = 1, 2.
Linear response theory can be used to show that the cross-

spectral density is given to first order in c by Lindner et al. (2005),

FIGURE 10 | Cross-covariance between two identical neurons

receiving shared excitatory synaptic input. (A) Cross-covariance and (B)

cross-spectral density between the spike trains produced by two identical

AdEx model neurons that share 10% of their excitatory presynaptic spike

times, which occur as a homogeneous Poisson process. Computed from

Monte Carlo simulations (red) and from the matched variance approximation

(blue). The temporally uncorrelated input model was used. All parameters are

as in Table 1.

de la Rocha et al. (2007), and Shea-Brown et al. (2008)

C̃s1s2 (f ) = |Sr(f )|2C̃I1I2 (f )

where Sr(f ) is the susceptibility function of both neurons and

C̃I1I2 (f ) = c J2e re

is the cross-spectral density between the neurons’ input currents.
The cross-covariance can then be computed through an inverse
Fourier transform of the cross-spectral density (see Methods).

Comparing the cross-covariance and cross-spectral density
approximated numerically using this method to those computed
from Monte-Carlo simulations shows reasonable agreement
(Figure 10). Moreover, the numerical approximations were
computed efficiently, taking less than 50 ms.

An analogous approach can be applied when the neurons
share inhibitory presynaptic inputs too. Moreover, an extension
of this method can be applied to compute the correlation between
synaptically coupled neurons and the entire matrix of cross-
correlations in large, sparsely coupled networks (Ostojic et al.,
2009; Trousdale et al., 2012). Thus, our numerical methods can be
used to efficiently approximate the correlation structure of large
populations of synaptically coupled adaptive model neurons.
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3.6. A Matched Variance Approximation
with Temporally Correlated Input Currents
So far we have considered numerical approximations obtained
for a model of temporally uncorrelated synaptic input currents
(see Methods). Synaptic currents in vivo are temporally
correlated due to synaptic kinetics and temporal correlations in
presynaptic spike timing. This shortcoming has been partially
overcome by approximations that scale the diffusion coefficient
to capture the steady-state free membrane potential variance
of the full model (Alijani and Richardson, 2011; Hertäg
et al., 2014), analogous to the matched variance approximation
to adaptation dynamics described above. In these previous
approaches, the approximation was only applied to synaptic
input currents with an exponentially-shaped auto-correlation
function, which can be used tomodel Poisson presynaptic spiking
with exponential post-synaptic current waveforms. Moreover,
these previous approaches were either applied to non-adaptive
neuronmodels (Alijani and Richardson, 2011) or did not account
for the effects of sub-threshold adaptation on the free membrane
potential variance (Hertäg et al., 2014). We next extend this
approach to account for sub-threshold adaptation and arbitrary
stationary stochastic input.

First note that the linearity of Equations (15) allows the steady-
state variance of U(t) to be computed for any stationary input
I(t). Specifically, note that each line in Equation (15) implements
a linear filter so that, for sufficiently large t,

U(t) = (Kv ∗ I)(t)− (Kv ∗W)(t)+ c1(t)

W(t) = a(Kw ∗ U)(t)+ c2(t)
(20)

where c1(t) and c2(t) are asymptotically constant as t → ∞ and ∗
denotes convolution. The kernels of the membrane potential and
adaptation filters are given by

Kv(t) =
1

Cm
e−t/τm2(t),

and

Kw(t) =
1

τw
e−t/τw2(t),

where τm = Cm/gL and 2(t) is the Heaviside step function.
Transitioning to the Fourier domain and using Equation (6), we
can write Equations (20) as

ŨT(f ) = K̃v(f )̃IT(f )− K̃v(f )W̃T(f )

W̃T(f ) = aK̃w(f )ŨT(f )

for sufficiently large T where

K̃v(f ) =
τm

Cm(1+ 2π if τm)

and

K̃w(f ) =
1

1+ 2π if τw

are the Fourier transforms of Kv(t) and Kw(t). Here, ŨT(f ), ĨT(f )
and w̃T(f ) are defined by Equation (5). This is a linear system of
algebraic equations that is easily solved at each frequency, f , to
obtain

ŨT(f ) =
K̃v(f )

1+ aK̃v(f )K̃w(f )
ĨT(f ).

The power spectral density of U(t) is therefore given by (see
Equation 7)

C̃UU(f ) = lim
T→∞

|ŨT(f )|2

= |K̃v(f )|2
|1+ aK̃v(f )K̃w(f )|2

C̃II(f )

where C̃II(f ) is the power spectral density of I(t). The steady-state
variance of the free membrane potential is then given by

var(U) =
∫ ∞

−∞
C̃II(f )|Keff(f )|2df .

This expression is valid for any stationary input, I(t), for which
C̃II(f ) is defined and well-behaved (Yaglom, 2004).

Under the diffusion approximation in Equation (17), the free
membrane potential variance is given by Equation (18).
Combining these expressions shows that the diffusion
approximation accurately captures the free membrane potential
variance by taking

Deff = C2
m

τm

∫ ∞

−∞
C̃II(f )|Keff(f )|2df (21)

which defines the matched variance approximation to temporally
correlated inputs. In the absence of voltage-based adaptation
(a = 0) and when I(t) has an exponential-shaped auto-
covariance function, this approximation is identical to the ones
in Alijani and Richardson (2011) and Hertäg et al. (2014).

We consider an input model where temporal correlations are
introduced by synaptic kinetics and by temporal correlations in
the timing of presynaptic spikes (see Methods). Under this input
model, the power spectral density of the synaptic input current is
given by Rosenbaum et al. (2012b)

C̃II(f ) = J2e [re + C̃νν(f )]̃αe(f )

+ J2i [ri + C̃νν(f )]̃αi(f )

where

α̃e(f ) =
1

1+ 4π2τ 2e f
2

is the Fourier transform of the excitatory postsynaptic current
waveform,

α̃i(f ) =
1

(1+ 4π2τ 2r,if
2)(1+ 4π2τ 2

d,if
2)
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FIGURE 11 | Quasi-static and matched variance approximations to firing rates when input currents are temporally correlated. (A) Steady-state

postsynaptic Firing rate, r0, as the presynaptic excitatory rate, re, increases. Plotted for Monte-Carlo simulations (red circles), quasi-static approximation (gray curve)

and matched variance approximation (blue curve) for the temporally correlated input model (see Methods). (B,C) Error and % error of the quasi-static and matched

variance approximations compared to Monte-Carlo simulations. The temporally correlated input model was used. All parameters other than re are as in Table 1.

is the Fourier transform of the excitatory postsynaptic current
waveform and

C̃νν(f ) =
2σ 2
ν τν

1+ 4π2τ 2ν f
2

is the power spectral density of the firing rate fluctuations,
ν(t). Under this model, the integral in Equation (21) can be
approximated numerically (we used the integral command in
Matlab) to obtain the corrected diffusion coefficient that defines
the matched variance approximation.

Testing this matched variance approximation against Monte-
Carlo simulations shows that it captures the overall shape of
the dependence of firing rate on presynaptic excitatory rate
(Figure 11A, compare blue and red), but introduces large errors
(Figures 11B,C blue). Nevertheless, it substantially out-performs
the quasi-static approximation obtained using the diffusion
coefficient in Equation (10) (Figures 11B,C gray).

The timescale of temporal input correlations is determined
by the timescale of firing rate fluctuations, τν , as well as the
timescales of synaptic kinetics, τe, τr,i and τd,i. In the limit that
all of these timescales approach zero, the input is approximated
accurately by the temporally uncorrelatedmodel. Thus, we expect
the matched variance approximation for temporally correlated
inputs to be approximately as accurate as for temporally
uncorrelated inputs when these timescales are small.

To test this prediction, we compared the matched variance
(and quasi-static) approximation to Monte-Carlo simulations
as the input timescales were scaled (Figure 12). As expected,
the matched variance approximation performs well when input
timescales are fast, but not when they are slow (Figure 12,
blue curves). The quasi-static approximation, obtained using
the diffusion coefficient in Equation (10), does not capture
any dependence of the firing rate on the input timescales
and performs worse than the matched variance approximation
(Figure 12, compare blue and gray curves).

These examples demonstrate that the matched variance
approximation offers an improvement over approximations that
do not correct for synaptic timescales at all, but there is
substantial room for improvement in the approximation of firing
rates of neuron models drive by temporally correlated inputs.

4. DISCUSSION

We derived and tested a suite of accurate and efficient numerical
methods for approximating the response statistics of the
adaptive integrate-and-fire neuron models with noisy synaptic
input. We introduced an extension of the matched variance
approximation (Alijani and Richardson, 2011; Hertäg et al., 2014)
to capture the effects of sub-threshold, voltage-based adaptation
currents on passive membrane variability. This approximation is
more accurate than previously posed quasi-static approximations
to the effects of adaptation (Richardson, 2009; Ocker and Doiron,
2014), especially when voltage-based adaptation currents are
strong and/or fast.

Our approximation is also applicable in the case of
arbitrary, temporally correlated synaptic inputs. This extends
previous approximations, which are applicable only when
inputs have exponentially-shaped auto-correlations and
which do not account for the effects of voltage-based
adaptation currents on sub-threshold membrane potential
variability (Alijani and Richardson, 2011; Hertäg et al., 2014).
In the examples we considered, however, the matched variance
approximation performed relatively poorly when strong
adaptation was combined with temporally correlated inputs
(Figures 11, 12).

The methods presented here rely heavily on previously
developed techniques. The threshold-integration method was
developed previously (Richardson, 2007, 2008) and we only
improved the computational efficiency. Similarly, the fixed
point iteration method for approximating the effect of an
adaptation current was considered previously (Richardson, 2009;
Ocker and Doiron, 2014) and we derived a re-scaled diffusion
coefficient to account for variability in sub-threshold adaptation
currents. A matched variance approximation has been developed
to account for temporally correlated synaptic inputs and we
extended this method to account for sub-threshold adaptation
currents.

The response of model neurons to temporally correlated
inputs has also been approximated using timescale separation
when synaptic kinetics are much slower or faster than membrane
dynamics (Moreno-Bote and Parga, 2006). However, with the
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FIGURE 12 | Firing rates and errors as a function of temporally correlated input timescale. (A) Steady state firing rate from simulations (red circles),

quasi-static approximation (gray) and matched variance approximation (blue) as the timescales (τe, τr,i, τd,i and τν ) are scaled by different factors. (B,C) Errors and

percent errors from (A). The excitatory presynaptic rate was increased to re = 11 kHz and the time bin width was decreased to dt = 0.05 for simulations. The

temporally correlated input model was used. All parameters other than re, τe, τr,i, τd,i and τν are as in Table 1.

exception of NMDA synaptic kinetics, synaptic and membrane
timescales in cortex are not so separated, especially when one
accounts for faster “effective” membrane time constant arising
from the barrage of conductance-based inputs received by
neurons in vivo (Destexhe and Paré, 1999; Destexhe et al., 2003;
Kuhn et al., 2004).

Computational efficiency is often ignored when reporting on
numerical methods for stochastic neuron models. We carefully
designed our methods to be computationally efficient and
tested this efficiency. As a consequence, our methods allow
the computation of membrane potential response properties
orders of magnitude faster than some previous methods for
which timing has been reported (Hertäg et al., 2014), though
our methods are potentially less accurate. While the difference
between milliseconds and seconds of computation time is
unimportant when computing the firing rate of a single neuron
model for one set of parameters, it could be critical for
applications where response properties need to be computed
many times. For example, computing rates and correlations in
a large recurrent network requires solving a fixed point point
problem in which stationary rates and susceptibility functions
are computed many times per neuron (Amit and Brunel, 1997;
Brunel and Hakim, 1999; Trousdale et al., 2012). Additionally,
fitting a networkmodel to recordedmulticellular data can require
the repeated evaluation of rates and susceptibility functions
for several parameter values and several neurons (Pernice and
Rotter, 2013).

Our methods compromise some accuracy for biological
realism. Specifically, the inclusion of temporally correlated noise
and adaptation currents forced us to use approximations that
introduced errors in the computation of response statistics. Real
neurons receive temporally correlated input and have adaptation
currents. Thus, the inclusion of these complicating factors is a
necessity for realistic modeling. We hope that future work can
refine the approximations discussed here to reduce their errors
further.

One shortcoming of our approach is that we used a highly
simplified synaptic input model. We only considered synaptic
timescales modeled after AMPA and GABAB mediated kinetics.

NMDA mediated kinetics are much slower and are best
captured by a conductance-based synapse model that depends
non-linearly on voltage (Dayan and Abbott, 2001). Thus, we
expect our approximations, which rely on a current-based
synapse model with fast kinetics, to perform poorly for NMDA
mediated synaptic kinetics. Thematched variance approximation
be extended to conductance-based synapse models, using
approximations for the free membrane potential variance for
such a models (Rudolph and Destexhe, 2003; Richardson,
2004; Richardson and Gerstner, 2005; Lindner and Longtin,
2006).

Another shortcoming of our approach is that we were unable
to accurately approximate the power spectral density, auto-
correlation or Fano factor of the postsynaptic spike trains. The
inability to compute temporal spike train statistics is primarily
due to the non-renewal properties introduced by the strong
and slow adaptation current as well as temporally correlated
synaptic input. Methods have been developed for approximating
the spiking statistics of integrate-and-fire models with adaptation
currents and temporally correlated inputs (Middleton et al., 2003;
Lindner, 2004; Moreno-Bote and Parga, 2006; Ly and Tranchina,
2009; Richardson and Swarbrick, 2010; Dummer et al., 2014;
Schwalger et al., 2015; Shiau et al., 2015). It would be interesting
to investigate whether some of these methods could be integrated
with the methods developed here.

We used a linear model of adaptation in the sense that the
dependence of V ′(t) on w in Equation (1) and the dependence
of w′(t) on V in Equation (2) is linear. This linearity was used
in the matched variance approximation because it allowed the
variance of the free membrane potential to be computed in
closed form in the presence of sub-threshold adaptation. The
quasi-static approximation has been applied to models in which
the adaptation variable depends nonlinearly on V (Richardson,
2009). Extending the matched variance approach to nonlinear
adaptation would be a challenge since it would require the
computation of the free membrane potential variance in a
nonlinear system of stochastic differential equations.

Another approach to accounting for adaptation currents
would be to solve the full two-dimensional Fokker-Planck
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equation for the bivariate density of w(t) and V(t). Analytical
approaches have been developed for spike-based adaptation
when noise is weak and spiking is mean-driven (Schwalger and
Lindner, 2015). Numerical solutions to the general problem
are difficult because threshold-integration cannot be applied
directly to the two-dimensional equation. Instead, one could use
a numerical scheme such as finite difference, finite volume or
finite element methods (see a similar approach for a two-neuron
model in Rosenbaum et al., 2012a). Our future work will consider
these approaches.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

ACKNOWLEDGMENTS

The reviewers provided useful insights, comments and
suggestions that substantially improved the manuscript.
This work was supported by NSF grant DMS-1517828.

REFERENCES

Alijani, A. K., and Richardson, M. J. E. (2011). Rate response of neurons
subject to fast or frozen noise: from stochastic and homogeneous to
deterministic and heterogeneous populations. Phys. Rev. E 84:011919. doi:
10.1103/PhysRevE.84.011919

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671. doi:
10.1162/089976699300016179

Brunel, N., Hakim, V., and Richardson, M. J. E. (2003). Firing-rate resonance in a
generalized integrate-and-fire neuron with subthreshold resonance. Phys. Rev.
E 67:051916. doi: 10.1103/PhysRevE.67.051916

Capocelli, R., and Ricciardi, L. M. (1971). Diffusion approximation and first
passage time problem for a model neuron. Kybernetik 8, 214–223. doi:
10.1007/BF00288750

Dayan, P., and Abbott, L. (2001). Theoretical Neuroscience. Cambridge, MA: MIT
Press.

de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., and Reyes, A. (2007).
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A. APPENDIX

A. Steady State Fokker-Planck Equation
and Numerical Scheme for Its Solution
The stochastic differential equation in Equation (13) can be
re-written in the form

dV

dt
= A0(V)+

√
2D0(V)η(t)

where η(t) is Gaussian white noise,

A0(V) = C−1
m

(
− gL(V − EL)+ ψ(V)− µw + µI

)

is the drift coefficient and

D0 =
DI

C2
m

is the diffusion coefficient. The matched variance approximation
is identical except the diffusion coefficient from the input current,
DI , is replaced by an effective diffusion coefficient, Deff, that
accounts for the fluctuating adaptation current. The Fokker-
Planck equation for the stationary probability density, P0(v),
of the diffusion process, V(t), can be written in the form of a
continuity equation (Risken, 1996; Richardson, 2007, 2008),

d

dv
J0(v) = r0δ(v− Vre) (A1)

where

J0(v) = A0(v)P0(v)− D0
dP0(v)

dv

is the stationary probability flux and r0 = J0(Vth) is the stationary
firing rate of the neuron. The absorbing boundary at threshold
imposes the Dirichlet boundary condition, P0(Vth) = 0. An
additional condition is given by noting that P0(v) is a probability
density so that

∫ Vth

−∞
P0(v)dv = 1.

We now describe a numerical method for computing the steady
state statistics of the AdEx model with the adaptation current,
w(t), replaced by its steady-state mean, 〈w〉. This is identical to
solving a non-adaptive EIF model with an adjusted input current,
I(t) → I(t) − 〈w〉. An identical method was used in Richardson
(2007, 2008) except that a midpoint rule was used to approximate
integrals whereas we use Simpson’s rule.

The steady state probability flux is defined by

J0(v) = A0(v)P0(v)− D0
dP0(v)

dv

which satisfies the trivial differential equation

J′0(v) = r0δ(v− Vre)

with boundary condition J0(Vth) = r0 where r0 is the stationary
firing rate. Recall also that P0(Vth) = 0. Now define p0(v) =

P0(v)/r0 and j0(v) = J0(v)/r0. We can then re-write the Fokker-
Planck equation as a system,

p′0(v) =
1

D0

[
A0(v)p0(v)− j0(v)

]

j′0(v) = δ(v− Vre)

with boundary conditions j0(Vth) = 1 and p0(Vth) = 0. The
solution for j0(v) is given trivially as

j0(v) =
{
1 v ≥ Vre

0 v ≤ Vre

and the solution for p0(v) can be found numerically by
integrating backwards from v = Vth. Specifically, we re-write the
equation for p0(v) as

− p′0(v) = G(v)p0(v)+H(v) (A2)

where G(v) = −A0(v)/D0(v) and H(v) = j0(v)/D0. This linear
differential equation can be solved numerically for the scaled
density p0(v). Once p0 is found, the firing rate and the true density
are given by

r0 =
(∫ Vth

Vlb

p0(v)dv

)−1

and P0(v) = r0p0(v).
To solve Equation (A2) numerically, we choose a lower

boundary, Vlb, sufficiently below EL and Vre that the density
is approximately zero there, then discretize the state space
[Vlb,Vth] into a possibly non-uniform mesh {vk}nk=1. We denote

by pk0 the numerical approximation to p0(vk). Since the last
element represents threshold, vn = Vth, the boundary conditions
give us pn0 = 0 and jn0 = 1. Equation (A2) can then be integrated
backwards from threshold using a numerical integration scheme.

The most straightforward integration scheme for
Equation (A2) is a standard Euler scheme defined by setting

pk0 = pk+1
0 + (pk+1

0 Gk +Hk)1vk

whereGk andHk represent the functionsG(v) andH(v) evaluated
at the midpoint (vk + vk+1)/2 and where1vk = vk+1 − vk. This
method is only accurate for very fine meshes, due in part to the
large advection term for v > VT (see Figure 4, green curve).

The “modified Euler” scheme proposed in Richardson (2007,
2008) takes advantage of the linearity of Equation (A2) to first
write an analytical solution

pk0 = pk+1
0 exp

(∫ vk+1

vk

Gdv

)
+

∫ vk+1

vk

H(u)exp

(∫ u

vk

Gdv

)
du.

(A3)
Using a midpoint rule to approximate the integrals in this
expression gives an increment defined by

pk0 = pk+1
0 exp (Gk1vk)+Hk

exp (Gk1vk)− 1

Gk
.
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For mesh points where Gk is approximately zero, numerical
inaccuracies are circumvented by replacing the fraction in this
expression with its limit,

exp (Gk1vk)− 1

Gk
→ 1vk

as Gk → 0. This scheme gives better convergence results than
the Euler scheme for coarse meshes, but not for finer meshes
(Figure 4).

To improve the numerical accuracy over all mesh sizes, we
propose a new scheme that uses the same analytical expression
(A3), but approximates the integrals using Simpson’s method
instead of a midpoint method. This is achieved by taking the
increment defined by

pk0 = pk+1
0 exp

(
Ik1

)
+ Ik2

where

Ik1 = 1

6

(
G(vk)+ 4Gk + G(vk+1)

)
1vk

is the Simpson’s rule approximation to the first integral in
Equation (A3). Approximating the second integral is more
difficult because it is a double integral. Also, H(v) = j0(v)/D0

has a jump discontinuity inherited from j0(v). Since Simpson’s
method does not converge for integrals of discontinuous
functions, we must evaluate H(v) at the midpoints only. Thus,
the outer integral is approximated by

Ik2 = Hk

6

(
1+ 4 exp(Ik3)+ exp(Ik1)

)
1vk.

where Ik3 is the Simpson’s rule approximation to the integral of G
from vk to (vk + vk+1)/2, which is given by

Ik3 = 1

6

(
G(vk)+ 4G(0.75vk + 0.25vk+1)+ Gk

)
1vk/2.

While this numerical scheme requires several more arithmetic
operations per increment, it converges much more quickly than
the other two methods, giving much more accurate results at
coarser meshes using less CPU time (Figure 4). For all figures,
except where indicated otherwise in figure caption, we set Vlb =
−100 mV and used a mesh that was uniform with step size
1v = 0.1 mV, except for the two mesh points surrounding Vre

and all mesh points above VT where the mesh size was refined to
1v/2 = 0.05 mV. This yielded 654 mesh points. For Figure 4, an
analogous mesh was used, with1v scaled by different factors.

B. Iterative Method for Computing Fixed
Point of Steady-State Statistics
The steady-state mean adaptation current, µw, can be computed
from the steady-state rate, r0, and steady-state mean membrane
potential, µV , in closed form using Equation (12). Conversely,
the steady state rate and mean membrane potential can
be computed from the steady-state adaptation current by
numerically solving the associated Fokker-Planck equation as

described in Appendix A. To find the steady-state statistics, we
used an iterative method to compute the fixed point of these
mappings, similar to the approach in Richardson (2009) and
Ocker and Doiron (2014).

Specifically, define

g(v, r) = a(v− EL)+ τwbr.

to be the function determined by Equation (12) that maps mean
membrane potential and firing rate to mean adaptation current.
Similarly define h(w) = (v, r) to be the mapping from mean
adaptation current to mean membrane potential and firing rate
determined by numerically solving the Fokker-Planck equation.
Choose an initial value w0 = 0, then iteratively calculate

(vj, rj) = h(wj−1)

and

wj = (1− q)wj−1 + qg(vj, rj)

until
∣∣∣∣
vj − vj+1

vj + vj+1

∣∣∣∣ +
∣∣∣∣
rj − rj+1

rj + rj+1

∣∣∣∣ < ǫ

for some small relative error tolerance, ǫ. We used ǫ = 10−4.
Here, 0 < q ≤ 1 controls the size of the iterative step. Larger
values of q can potentially yield faster convergence, but also
make the iterations more susceptible to oscillations that do not
converge. Smaller values of q converge slowly even in the best
case, but are more robust. To obtain a robust and fast iterative
method, we implemented a scheme that first searches for a fixed
point using q = 0.25. If convergence is not realized within
50 iterations, q is successively decreased until convergence is
obtained.

C. Steady-State Free Membrane Potential
Variance for Temporally Uncorrelated
Inputs
We now derive Equation (16) for the steady-state variance of the
free membrane potential under the two-dimensional dynamics
of Equation (15) and under the temporally uncorrelated input
model. First note that, when I(t) is temporally uncorrelated, the
first two moments of U(t) and W(t) are identical to the first two
moments under the substitution I(t) → µI +

√
2DIη(t), which

gives the two-dimensional stochastic differential equation

dEX
dt

= −AEX + C + Bη(t)

where η(t) is white noise,

EX(t) =
[
U(t)
W(t)

]
,

A =
[

1/τm 1/Cm

−a/τw 1/τw

]
,
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B =
[ √

2DI/Cm

0

]

and C is a constant 2× 1 vector. Thus, EX(t) is a two-dimensional
Ornstein-Uhlenbeck process and the steady-state covariance
matrix has a known closed form (Gardiner, 1985)

6 = det(A)BBT + QBBTQT

2Tr(A) det(A)

where Q = A − Tr(A)I2 and I2 is the 2 × 2 identity
matrix. Substituting A and B into this expression, the steady
state variance of U(t) is given by the top-right element of the
covariance matrix, var(U) = 6(1, 1), which is easily simplified
to give Equation (16).

D. Numerical Methods for Computing the
Susceptibility and Linear Response
Functions
We first consider the response of the neuron to a periodic
perturbation, which can be combined with linear response
theory to calculate the response to more general forms
of modulations (Risken, 1996; Fourcaud and Brunel, 2002).
Consider a complex, oscillatory perturbation of the synaptic
input of the form

I(t) = I0(t)+ ǫe2π ift

where I0(t) is the un-perturbed input with stationary statistics
considered above. Here, f is the frequency of the modulations
and the small parameter ǫ scales the amplitude. Using a complex
modulation allows the amplitude and phase shift of the response
to be calculated simultaneously (Richardson, 2007, 2008).

When ǫ = 0, we recover the steady state model from
Appendices A and B. To first order in ǫ, the time-dependent part
of the statistics are periodic with frequency f after an aperiodic
transient (Risken, 1996; Fourcaud and Brunel, 2002). Therefore,
for sufficiently large t and to first order in ǫ, we can write

P(v, t) = P0(v)+ ǫP1(v)e2π ift

r(t) = r0 + ǫSr(f )e2π ift

〈V(t)〉 = µV + ǫSV (t)e2π ift

〈w(t)〉 = µw + ǫSw(f )e2π ift

(A4)

where P0(v), r0, µV and µw are the steady state statistics from
above obtained by setting ǫ = 0 and computed using themethods
outline in Appendices A and B.

The terms, P1(v), Sr(f ), SV (f ) and Sw(f ) are the susceptibility
functions of the probability density, firing rate, mean membrane
potential and mean adaptation current. We next derive
approximations of these quantities by adapting previously
used methods for models with voltage-gated adaptation
currents (Richardson, 2009; Ocker and Doiron, 2014).

First note that, due to the linearity of Equation (2), the value
of Sw can be computed exactly in terms of SV and Sr . This is
accomplished by making the substitutions from Equation (A4)

into Equation (11), collecting all time-dependent terms and
solving the resulting equation to obtain

Sw = aSV + τwbSr
2π if τw + 1

. (A5)

We next note that substituting 〈w(t)〉 fromEquation (A4) into the
equation for V(t) is equivalent to a non-adaptive EIF model with
input current I(t) = I0(t)− µw + ǫ(1− Sw)e2π ift +O(ǫ2). With
this substitution, the oscillation in of the firing rate and mean
membrane potential are to first order in ǫ by

Sr = (1− Sw)S
EIF
r

SV = (1− Sw)S
EIF
V

(A6)

where SEIFr (f ) is the susceptibility of the firing rate and SEIFV (f ) of
the mean membrane potential for the non-adaptive EIF model
(obtained by setting a = b = 0 in Equations 1–3).

The EIF susceptibility functions, SEIFr and SEIFV , can be
computed at a given frequency, f , using the threshold integration
developed in Richardson (2007, 2008). We again improved
previous implementations of the threshold integration method
by implementing the algorithm in C and using Simpson’s rule to
evaluate the resulting integrals, as we describe below. Note that
the susceptibility functions must be evaluated with a bias term
shifted by the steady state mean adaptation current, µI → µI −
µw, which is computed using the steady state solver described
above.

In summary, SV and Sr can each be computed as a function of
Sw using Equations (A6) and Sw can be computed as a function
of SV and Sr using Equation (A5). Similar to the steady state
statistics, this yields a fixed point problem for the modulated
statistics, Sv, Sr and Sw. This fixed point problem could be
solved iteratively, as done for the fixed point statistics above,
but a simpler and more efficient approach is given by noting
that the relationships between Sr , SV and Sw are linear, unlike
the nonlinear dependence of r0 and µV on µw for the steady
state problem. Therefore, the fixed point values of Sr , SV and
Sw are easily found in closed form by solving the linear system
determined by Equations (A5) and (A6).

In summary, the susceptibility functions, Sr(f ), SV (f ) and
Sw(f ) are computed by first solving the steady-state problem
for r0 and µV on µw as described above, then computing
the EIF susceptibility functions, SEIFr (f ) and SEIFV (f ), using
threshold integration, then solving the linear system determined
by Equations (A5) and (A6).

We now describe our numerical scheme for computing the
EIF susceptibility functions, SEIFr (f ) and SEIFV (f ), that are used to
compute the susceptibility functions for the full adaptive model
as described above.

We adapted the numerical “threshold-integration” scheme
introduced in Richardson (2007, 2008) except that we use
Simpson’s rule in place of the midpoint rule to approximate
integrals, as described below. We review this approach now.
A more detailed description can be found in Richardson
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(2007, 2008). The modulated membrane potential, V(t), obeys a
stochastic differential equation of the form

dV

dt
= A(V, t)+

√
2D0η(t)

with drift coefficient

A(V, t) = A0(V)+ ǫA1e
2π ift,

The time-independent drift and diffusion coefficients, A0(V) and
D0, are the same as for the steady state equation considered
above and the coefficient for the time-dependent drift is
A1 = C−1

m . The Fokker-Planck equation for the time-dependent
probability density, P(v, t), can be written as a continuity
equation

∂

∂v
J(v, t)+ ∂

∂t
P(v, t) = r(t)δ(v− Vre)

with probability flux

J(v, t) = A(v, t)P(v, t)− D0
∂

∂v
P(v, t)

If we make the substitution for P(v, t) from Equations (A4) and
expand to linear order in ǫ, we recover the steady state Fokker-
Planck Equation (A1) for P0(v) and derive a new continuity
equation for P1(v), given by

d

dv
J1(v) = Srδ(v− Vre)− 2π ifP1(v)

where

J1 = AP0 + A0P1 − D0
d

dv
P1

is the linear order perturbation of the probability flux defined
by

J(v, t) = J0(v)+ ǫJ1(v)e2π ift +O(ǫ2).

Boundary conditions are P1(Vth) = 0 and

∫ Vth

−∞
P1(v)dv = 0.

The modulation in the firing rate is given by Sr = J1(Vth)
and the modulation in the mean membrane potential is given
by integrating vP1(v). Note that P0(v) appears in the equation
for P1(v), so the steady state statistics must be computed first.
The continuity equation can be rewritten as as system of ordinary
differential equations

dP1

dv
= 1

D0
A0P1 +

1

D0
[A1P0 − J1]

dJ1

dv
= Srδ(v− Vre)− 2π ifP1

As for the steady state equation, we reformulate the problem
by defining rescaled density and flux functions. First decompose
P1(v) and J1(v) as P1(v) = Srpr(v) + p1(v) and J1(v) = Srjr(v) +
j1(v). The components satisfy the two systems of equations

−p′1(v) = − 1

D0
A0p1 +

1

D0

[
j1 − A1P0

]

−j′1(v) = 2π ifp1

and

−p′r(v) = − 1

D0
A0pr +

1

D0
jr

−j′r(v) = 2π ifpr − δ(v− Vre)

with boundary conditions pr(Vth) = p1(Vth) = j1(Vth) = 0 and
jr(Vth) = 1. As for the steady state equation for p0(v) considered
above, these equations for p1(v) and pr(v) can be written
as −p′(v) = G(v)p(v) + H(v). To integrate these equations, we
use the same modified Euler method with Simpson’s rule that we
used for the steady state density (see Appendix A). As above, we
use a forward Euler step to integrate the equations for j1 and jr .
Once p1, j1, pr and jr have been found, the modulation in the
firing rate can be found by noting that J1(Vlb) ≈ 0 assuming that
Vlb was chosen sufficiently below EL and Ei. Thus, we have

Sr = − j1(Vlb)

jr(Vlb)
.

The modulation in V(t) can be found by noting that

SV =
∫ Vth

Vlb

vP1(v)dv =
∫ Vth

Vlb

v[r1pr(v)+ p1(v)]dv.
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