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ABSTRACT: Aqueous two-phase systems provide oil-free alter-
natives in the formulation of emulsions in food and other
applications. Theoretical interpretation of measurements on such
systems, however, is complicated by the high polydispersity of the
polymers. Here, phase diagrams of demixing and interfacial tensions
are determined for aqueous solutions of two large polymers present
in a mass ratio of 1:1, dextran (70 kDa) and nongelling gelatin (100
kDa), with or without further addition of smaller dextran molecules
(20 kDa). Both in experiments and in calculations from Scheutjens−
Fleer self-consistent field lattice theory, we find that small polymers
decrease the interfacial tension at equal tie-line length in the phase diagram. After identifying the partial contributions of all
chemical components to the interfacial tension, we conclude that excess water at the interface is partially displaced by small
polymer molecules. An interpretation in terms of the Gibbs adsorption equation provides an instructive way to describe effects of
polydispersity on the interfacial tension of demixed polymer solutions.

■ INTRODUCTION

In their monograph Molecular Theory of Capillarity first
published in 1982,1 Rowlinson and Widom address the crucial
role played by the experimentally well-known phenomenon of
interfacial tension in showing the existence of molecules and
the forces between them. The monograph highlights the
historic role played by van der Waals in the development of a
theoretical description, first, in 1873, by the van der Waals
equation of state quantifying these intermolecular forces2 and
second, 20 years later, by the introduction of the squared-
gradient theory to provide means to determine the structure
and tension of the interface.3,4 More than a century later,
squared-gradient theory and its mean-field extensions derived
from density functional theory5 are still commonly used in
present day theoretical research on interfaces.6

An important class of interfaces that are currently of
experimental and theoretical interest are those formed between
phase-separated polymer blends and polymer solutions.7,8 This
is especially the case for the phase-separated polymer solutions
that are encountered in daily life, such as in processed food,
paint, and cosmetics. In recent years, such (aqueous) polymer
systems have been the focus of considerable research efforts,9,10

since control over their microstructure could result in obtaining
aqueous substitutes for oil-containing food formulations.
Improved control is necessary for long-term stability of
water-in-water emulsions and to endow them with sensory

quality. However, since these water−water interfaces usually
have a very low interfacial tension (of the order of 10 μN m−1

or less),11−14 with an interfacial thickness on the order of the
polymer radius of gyration, adsorption of colloidal particles or
small molecules is severely hampered.15,16

An important factor in all studies on phase-separated
polymer solutions is the polymer chain length and its influence
on the magnitude of the interfacial tension.8,17,18 Not only is
the investigation of the chain length dependence of theoretical
interest, with particular attention on the scaling behavior as the
chain length increases,19−21 but it is also key in experiments, as
chain length polydispersity is almost always a factor and many
studies have addressed the phase composition of polydisperse
systems.22−26 In polydisperse mixtures, not all molecular size
fractions are fractionated over the coexisting phases to the same
degree. In particular, for the low molar mass fractions, the
degree of fractionation over the phases is expected to be low. As
a consequence, the interfacial tension is expected to be lowered
(relative to the monodisperse case) when small molar mass
fractions are present. Polydispersity may therefore provide a
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way to modify the stability of water-in-water emulsions.
Predicting the effect of polydispersity is, however, not simple,
and the situation is complicated by the fact that water
accumulates at the interface.27

In this work, we aim to understand better the influence of
polydispersity on interfacial tension. The interfacial tension of a
model system for a water-based food formulation is measured
with and without the presence of a small molar mass fraction of
one of the phase separating polymers. We compare our
experimental results with self-consistent field lattice theory
calculations.28 Finally, an attempt is made to interpret our
results in terms of the Gibbs adsorption equation for the
various components.

■ METHODS

Experimental Details. Sample Preparation. Experiments
were performed on aqueous mixtures of dextran and gelatin.
Two different dextrans were used, with Mw = 70 kDa (Sigma-
Aldrich, from Leuconostoc spp., “narrow molecular weight
distribution” grade, product no. 44886, Mw/Mn = 1.72) and Mw
= 15−25 kDa (Sigma-Aldrich, from Leuconostoc spp., product
no. 31387). For brevity, these will be denoted from here on as
“70 kDa dextran” and “20 kDa dextran”. Gelatin of
approximately 100 kDa (Norland products, from cold water
fish, nongelling at room temperature, gelation temperature 8−
10 °C, high molar mass grade,29 Mw/Mn ∼ 2) was kindly
supplied by FIB Foods B.V. (Harderwijk, The Netherlands).
The polymers were used as received. The polymer content of
solutions will be expressed as mass fractions.
Stock solutions of the polymers were prepared as follows.

Dextran was dissolved in Milli-Q water by gentle mixing on a
roller bank. Two dextran stock solutions were prepared, one
containing only dextran of 70 kDa (10%) and the other
containing both 70 and 20 kDa dextran at 10 and 5%,
respectively (2:1 polymer mass ratio). Gelatin was dissolved at
10% in Milli-Q water under magnetic stirring by heating in a
water bath of approximately 60 °C for about 15−30 min until
all material was dissolved and then allowed to cool to room
temperature.
Samples were prepared by mixing the stock solutions and

diluting with Milli-Q water. A 1:1 polymer mass ratio was used
for samples containing 70 kDa dextran and gelatin and a ratio
of 2:1:2 for samples containing 70 kDa dextran, 20 kDa
dextran, and gelatin. The concentration of the two large
polymers was varied in the range from 3.4 to 5.0%. The
resulting samples were of approximately neutral pH and had a
salt concentration of the order of 10 mM, due to residual salt
from the polymers. Samples above the critical demixing
concentration became turbid after mixing due to the onset of
phase separation. Centrifugation overnight at 200 × g resulted
in samples with two clear phases.
Phase Composition. After centrifugation, part of each phase

was isolated. The composition of each phase was measured
using polarimetry30 at four wavelengths (589, 546, 436, and 365
nm) on an Anton Paar MCP 500 polarimeter, allowing
simultaneous determination of the concentration of dextran
and gelatin of each isolated phase. For an elaborate description
of the procedure, see ref 31. We verified that the specific
rotation of dextran is independent of molar mass; thereby, our
measurements on systems containing both 20 and 70 kDa
dextran yield their combined mass fraction in each phase. These
measurements allow construction of phase diagrams and

computation of the tie-line length defined in terms of the
difference in polymer mass fraction between the two phases

≡ − + −α β α βL w w w w[( ) ( ) ]A A
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where wi
j indicates the (total) mass fraction of dextran (A) or

gelatin (B) in each phase (denoted α and β).
Interfacial Tension. The interfacial tension γ of the water−

water interface was obtained by measuring the capillary length
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where Δρ is the mass density difference between the two
phases and g is the gravitational acceleration. The capillary
length, in turn, was found by analyzing the deformation of the
static interfacial profile near a vertical wall,32 which has a shape
given by33
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where x denotes the distance to the vertical wall, z denotes the
elevation of the profile above the level infinitely far from the
wall, and h ≡ z(x = 0) denotes the contact height. See refs 13
and 14 for an extended description.
Samples for this purpose were prepared by placing about 1

mL of the isolated bottom phases in disposable polystyrene
cuvettes (1 × 1 cm2) and carefully placing the same volume of
isolated upper phases on top of them. The cuvettes were
centrifuged for about 2 h at 200g to remove droplets that might
have been formed as part of this procedure and afterward
observed in a Nikon Eclipse LV100 Pol that had been rotated
90° to have a horizontal optical path. The profiles of the
water−water interface were extracted using image recognition
techniques and fitted to eq 3. An example is shown in Figure 1.

Finally, the density of each phase was measured on an Anton
Paar DMA 5000 oscillating U-tube density meter (accurate to
10−6 g cm−3), such that the density difference of order 10−3 g
cm−3 between the phases could be determined and the value of
the interfacial tension could be inferred from the capillary
length via eq 2. For each sample, four micrographs were
analyzed and the results averaged.

Self-Consistent Field Computations. In this section, a
brief outline of the self-consistent field (SCF) computations
will be given. We employ the numerical lattice approximation

Figure 1. Example of a profile of a water−water interface near a
vertical cuvette wall (located on the left). The system is composed for
5.00, 2.50, and 5.00% of 70 kDa dextran, 20 kDa dextran, and 100 kDa
gelatin, respectively, and has a tie-line length of L = 15.39 ± 0.06% as
measured from optical rotation. The red dotted curve indicates the fit
to eq 3, resulting in c = 0.710 ± 0.016 mm. Together with Δρ = 2.668
g L−1, the application of eq 2 results in γ = 13.2 ± 0.6 μN m−1.
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by Scheutjens and Fleer (SF-SCF), which is a versatile tool for
computing the thermodynamic properties of, e.g., polymer,
surfactant, and polyelectrolyte solutions at solid−liquid or
liquid−liquid interfaces. In essence, it is an extension of Flory−
Huggins theory7 to include gradients. For a detailed back-
ground on this approach, we refer to other publications.28,34−36

We used SF-SCF theory as implemented by the SFBox software
package.36

In SF-SCF, the system is represented by lattice sites and
molecules are composed of one or more segments, with one
segment exactly filling one lattice site. It is a mean-field
approach in which each segment interacts with an average
potential due to the other segments; the objective of SCF is to
obtain concentration profiles that are self-consistent and to
minimize the free energy for a given system. Various geometries
are possible, such as planar, cylindrical, or spherical, with
gradients in one, two, or three dimensions. In the present work,
the focus is on a flat interface, so we consider a planar geometry
with gradients in one direction (x-axis).
To model the experimental system, our SCF computations

involve two polymers A and B dissolved in a theta solvent (S),
i.e., the Flory−Huggins interaction parameter is χAS = χBS = 0.5.
Polymer A consists of MA = 1000 or 300 monomers (to model
the large and small dextrans, respectively), polymer B consists
always of MB = 1000 monomers, and the solvent consists of a
single monomer (MS = 1). These polymers will be denoted
A1000, A300, and B1000 for short. Monomers A and B are mutually
slightly repulsive, χAB = 0.05, leading to phase separation above
the critical point located at volume fractions ϕA = ϕB ≃ 0.022
for the system A1000 + B1000. For the systems A1000 + B1000 and
A300 + B1000, the ratio in the global volume fractions ϕA:ϕB was
1:1, and for the system A1000 + A300 + B1000, the ratio in the
global volume fractions was 2:1:2, to mimic our experiments.
To compare with experiments, it is customary to set the length
of a lattice site (corresponding to a single segment) equal to b =
0.3 nm.36 Computations for systems relatively far from the
critical point were carried out with 500 lattice layers, whereas
closer to the critical point 1500 lattice layers were used, with
mirrors placed before the first and after the last lattice layer.
Relevant physical quantities can be extracted from the SCF

computations. The tie-line length, for instance, is defined on
the basis of the volume fraction profiles ϕi(x) as

ϕ ϕ ϕ ϕ
≡

−∞ − +∞ + −∞ − +∞
L
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2
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where ϕi(±∞) indicates the volume fraction of A or B
monomers in the bulk. This means effectively that for polymer
A, we take here the sum of both small and large polymers
[ϕA(±∞) = ϕA1000

(±∞) + ϕA300
(±∞)], if both are present, to

match the experiments.
The volume fraction profiles also give insight into the

interfacial excess of each component. This can be quantified by
computing
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where the distance x is normalized by the lattice size b. The
interfacial excess can only be computed when the position xGibbs

of the Gibbs dividing plane is fixed. Here we choose xGibbs such
that the interfacial excess of polymer A is equal to that of
polymer B, θA = θB (in the situation that for polymer A both
small and large polymer fractions are present, θA is defined as
the sum θA = θA1000

+ θA300
). This definition has the advantage

that the Gibbs plane coincides with the symmetry plane for a
symmetrical system (e.g., A1000 + B1000). From the interfacial
excess θi, the polymer or solvent adsorption number density Γi
can be calculated as

θ
Γ =

M bi
i

i
2

(6)

where Mi is the degree of polymerization of component i. It
should be noted that, regardless of the choice for the location of
the Gibbs plane, the sum ∑i θi for all components i including
the solvent must equal zero, because ∑i ϕi(x) must equal unity
at every position x. One may wonder why we did not choose
the location of the Gibbs dividing plane such that the excess of
the solvent is zero. The reason is that, for a symmetric system
(A1000 + B1000), the concentration of solvent in both bulk
phases is equal, while at the interface the concentration of
solvent is higher than in bulk to reduce unfavorable interactions
between A and B.13,37,38 Therefore, for such a system, the
excess of solvent will always be positive and, in fact,
independent of the position of the Gibbs plane. Since our
computations start from (and include) the symmetric case, we
choose not to use the definition of zero interfacial excess of
solvent.
It is important to realize that the amount of polymer

adsorbed depends on the volume available to the polymer in
the bulk phase due to the influence of the translational entropy
of the polymers.39 This effect depends on polymer bulk
concentration and the polymer length (distribution) and
therefore may be a factor in polydisperse systems. Experiments
have shown that this effect is most important when the polymer
solution is dilute.39 In our experiments, the polymer
concentration is close to the overlap concentration so that we
expect this effect to be small. This is also true for the self-
consistent field calculations carried out, and it was explicitly
verified that the bulk volume (the number of lattice layers) was
always chosen large enough so that all properties (adsorptions,
density profiles) are independent of the number of lattice
layers.
The interfacial tension γ is equal to the excess grand potential

Ωex per unit area A, which is in turn derived from the excess
Helmholtz free energy Fex obtained from the SCF computa-
tions. It is given by1,40

∑γ μ= Ω = −
⎛
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i
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where μi is the chemical potential and Ni
ex is the excess number

of molecules of type i.

■ RESULTS AND DISCUSSION
In this section, results from our experiments and self-consistent
field computations are described and discussed. First, phase
diagrams and results for the interfacial tensions are presented.
Subsequently, interfacial density profiles are shown and
discussed in terms of the interfacial excess of the components.
Finally, the relation between interfacial excess and interfacial
tension is discussed in terms of the Gibbs adsorption equation.
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Phase diagrams from experiments and SCF computations are
shown in Figure 2 for a mixture of polymers A and B. In the
experiments, the mass density of the pure polymers is about 1.5
g cm−3;41 therefore, the range of the mass fraction axes in
Figure 2a is directly comparable to the range of the volume
fraction axes in Figure 2b. When additionally a smaller variant
of polymer A is introduced to the system, the binodal is shifted
away from the vertical axis in the phase diagram. This indicates
that, although small polymer A does preferentially situate in the
A-rich phase, significant amounts of small polymer A do remain
in the B-rich phase. The agreement between experiment and
SCF computations is near-quantitative. As evidenced from
Figure 2b, we remain well below the concentrations where a
system of only small polymer A and (large) polymer B would
phase separate, as the compatibility generally increases with
decreasing polymer molar mass.7

In Figure 3, corresponding interfacial tensions are shown as a
function of the tie-line length L (defined graphically in Figure
2a). There is a modest difference in the absolute magnitudes of
the tension between experiment and theory, but the trends are
almost quantitatively the same: a systematic decrease of about
10% of the tension occurs upon addition of a small polymer for
systems of equal tie-line length. For the SCF computations, the

tension of the system composed of only small polymer A and
large polymer B is also shown as a reference, and the interfacial
tension is about 40−50% lower in that scenario. This is
consistent with the observation that the interfacial tension
decreases with decreasing degree of polymerization at fixed tie-
line length.42,43

The interfacial tension is further investigated in Figure 4,
where the ratio of the tension γ with respect to the tension γ0 of
the system containing only two large polymers is plotted for the
SCF computations. Interestingly, while for the system A300 +
B1000 the relative tension increases with increasing tie-line
length, for the system A1000 + A300 + B1000 the relative tension
decreases. In other words, it appears that the effect of
polydispersity on the interfacial tension as modeled by the
addition of the smaller polymer component is stronger at larger
tie-line lengths and that, in this sense, the effect is quantitatively
different from just a decrease in the average degree of
polymerization. This point is addressed in more detail in a
later part of this section. It is not possible to create a plot such
as in Figure 4 with the same accuracy for the experiment
results, but we estimate that on average γ/γ0 ≈ 0.89, very
similar to the SCF computations.

Figure 2. Effect on the phase diagram of adding a small polymer to a mixed solution of two larger polymers. (a) Phase diagrams from experiments on
mixed aqueous solutions of dextran (labeled as polymer A) and gelatin (polymer B). The systems consist of dextran (70 kDa) with gelatin (100 kDa)
in a 1:1 mass ratio and dextran (70 kDa) plus dextran (20 kDa) with gelatin (100 kDa) in a 2:1:2 mass ratio. The points indicate the measured
coexisting phases, and the curves are to guide the eye. (b) Phase diagrams from self-consistent field computations for polymers A (degree of
polymerization MA = 1000 and/or 300) and B (MB = 1000) in a theta solvent, with interaction parameter χAB = 0.05. The systems consist of two
large polymers (A1000 + B1000, 1:1 global volume fraction ratio), two large polymers plus small polymer (A1000 + A300 + B1000, 2:1:2), and one small
plus one large polymer (A300 + B1000, 1:1, shown as a reference).

Figure 3. Effect of a small polymer on the interfacial tension of a mixed solution of two larger polymers from (a) experiments and (b) self-consistent
field computations. The systems are the same as those in Figure 2.
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In order to investigate whether the addition of small
polymers to a high molar mass system leads to a higher or
lower interfacial tension, one should in some way take the fact
into account that the phase diagram itself depends on the
polymer chain length. Therefore, to account for the shift in the
location of the critical point, we elected to compare results at
equal tie-line length. We found that the small polymers adsorb
at the interface, leading to a small but significant lowering of the
interfacial tension consistent with our self-consistent field
calculations. Still, it could be questioned whether the tie-line
length is the most appropriate way of comparing different
systems. Another method would be to scale the polymer
concentrations with their critical concentrations, for instance,
but this requires a very precise determination of the polymer

concentrations at the critical point to avoid systematic errors.
This is, however, experimentally especially difficult. The tie-line
length has the advantage that it does not require normalization
and is easily accessible experimentally for our system.
Additionally, comparing systems at equal tie-line length ensures
that on average the concentration differences across the
interface are the same, ensuring that the density profiles (and
interfacial widths) are similar.
We now turn our attention to the interfacial density profiles

and the corresponding interfacial excesses of the various
components. Density profiles from SCF computations are
shown in Figure 5a for a tie-line length of L = 0.070. It is clear,
especially in the top and bottom panels, that the polymers are
depleted from the interface and that there is a local excess of
solvent. The reason for this phenomenon lies in the fact that
unfavorable contacts between polymers A and B at the interface
are reduced in this way. The result is also that the interfacial
tension is significantly reduced compared to the hypothetical
scenario in which the density of solvent across the interface
would be constant.13,37,38 It is also clear that small polymer A,
when in both the absence and presence of large polymer A,
shows much weaker partitioning over the two phases.
Additionally, the phase that is enriched in small polymer A
contains more solvent due to the higher osmotic pressure of the
smaller polymer.
By normalizing all volume fractions such that they are zero in

one bulk phase and unity in the other bulk phase (ϕ̅i(x) =
[ϕi(x) − ϕi(∓∞)]/[ϕi(±∞) − ϕi(∓∞)]), it becomes
apparent that, for the system A1000 + A300 + B1000, the small
polymer A extends significantly into the B-rich phase. For

Figure 4. Interfacial tensions γ from Figure 3b of systems A1000 + A300
+ B1000 and A300 + B1000 relative to the tension γ0 of the system of two
large polymers A1000 + B1000.

Figure 5. Density profiles from self-consistent field computations for a mixed solution of two large polymers (A1000 + B1000), a small and a large
polymer (A300 + B1000), and two large polymers mixed with one small polymer (A1000 + A300 + B1000, 2:1:2 volume ratio). The profiles are centered
around the Gibbs dividing plane (dashed vertical lines) located such that the interfacial excesses of polymers A and B are equal. The tie-line length is
L = 0.070 in all cases. The interfacial tension is γ = 9.74, 4.47, and 8.82 μN m−1 (top to bottom). The density profiles are expressed as (a) volume
fractions and (b) normalized volume fractions (ϕ̅i(x) = [ϕi(x) − ϕi(∓∞)]/[ϕi(±∞) − ϕi(∓∞)]).
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Figure 6. Interfacial excesses from self-consistent field computations for a mixed solution of two large polymers (A1000 + B1000), a small and a large
polymer (A300 + B1000), and two large polymers mixed with one small polymer (A1000 + A300 + B1000, 2:1:2 volume ratio). (a) Definition of the Gibbs
dividing plane (dashed vertical lines), using the profiles for the system A1000 + A300 + B1000 from Figure 5a as an example. The Gibbs plane is located
such that the excess (filled regions) of polymers A1000 and A300 in total is equal to that of polymer B1000. (b) The interfacial excess θi as defined in eq
5 for each component, computed from density profiles such as those in part a with the Gibbs dividing plane as indicated.

Figure 7. Contributions to the interfacial tension according to the Gibbs adsorption equation, from self-consistent field computations for a mixed
solution of two large polymers (A1000 + B1000), a small and a large polymer (A300 + B1000), and two large polymers mixed with one small polymer
(A1000 + A300 + B1000, 2:1:2 volume ratio). (a) Contribution to the change ∂γ/∂L of the interfacial tension with tie-line length, according to −Γi(∂μi/
∂L). (b) Integrated contributions to the interfacial tension, −∫ Γi(∂μi/∂L) dL.
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Figure 5a, the result of this procedure is shown in Figure 5b. It
turns out that the profile of A300 is shifted about 2.4 nm (or
eight lattice layers) toward the B-rich phase with respect to
A1000; this shift is only weakly dependent on the tie-line length.
(A quantitative way to arrive at this number is by computing
the first moment of the derivative of ϕi(x) with respect to
position, x1,i = [∫ −∞

+∞ xϕi′(x) dx]/[∫ −∞
+∞ ϕi′(x) dx].)

It is interesting to investigate this in more detail by
determining the interfacial excess θi of all components as
defined in eq 5 and sketched in Figure 6a. The result is shown
in Figure 6b as a function of the tie-line length. The interfacial
excess of solvent is always positive; therefore, the excess of the
polymers is, in total, always negative. Compared to the system
A1000 + B1000, the magnitudes of the excesses are somewhat
smaller for A300 + B1000. When both A1000 and A300 are present,
the small component shows positive adsorption, in line with the
reasoning in the previous paragraph, at the expense of a slightly
reduced adsorption of solvent. Naturally, the exact magnitude
of the interfacial excess depends on the precise definition of the
Gibbs plane; however, the (relative) trends remain similar, as
the sum of the excesses θi must remain zero.
At first glance, it may seem surprising that the system

partially exchanges a positive excess of solvent for a positive
excess of small polymer to decrease the interfacial tension. After
all, according to the Gibbs adsorption equation

∑γ μ= − Γd d
i

i i
(8)

the change of the interfacial tension is proportional to the
adsorption density Γi, in units of number of molecules per unit
area. If the decrease in θi for the solvent is similar to the
increase for the small polymer, then the decrease in Γi for the
solvent is orders of magnitude larger than the increase for the
small polymer (see eq 6, where MS = 1 andMA300

= 300). It may
therefore appear that this exchange should only increase the
interfacial tension, but obviously, from Figure 3, we know that
the tension must decrease. To resolve this apparent contra-
diction, we consider the implications of the Gibbs adsorption
equation in more detail.
Let us consider the dependence of the interfacial tension as a

function of the position in the phase diagram, i.e., as a function
of the tie-line length L. According to eq 8, this leads to

∑γ μ∂
∂

= − Γ
∂
∂L Li

i
i

(9)

By taking the (numerical) derivative of the chemical potential
μi, known from the SCF computations, with respect to the tie-
line length L, we can assess the relative importance of the
excess of each component. After multiplication with −Γi, we
find the relative contribution of each component to ∂γ/∂L. The
result of this procedure is shown in Figure 7a.
For the polymers, ∂μi/∂L > 0, because μi increases with ϕi as

the systems are in thermodynamic equilibrium and ϕi in turn
increases with L. Combined with a negative excess, this results
in a positive contribution to the change ∂γ/∂L of tension with
tie-line length. There is one important exception, however: the
small polymer in the system A1000 + A300 + B1000 shows positive
adsorption and therefore contributes negatively to the increase
of the tension with the tie-line length (Figure 7a, bottom
panel).
In contrast, as the concentration of solvent decreases with

increasing L, we have that ∂μS/∂L < 0. This means that, even

though the solvent shows a positive interfacial excess, it still has
a positive contribution to the increase of γ with tie-line length,
just as for the polymers. Additionally, because the solvent has a
very large volume fraction by comparison, the relative change of
ϕS with L is small, and by extension, ∂μS/∂L is so small that the
solvent hardly contributes to ∂γ/∂L, see Figure 7a, even though
|Γi| is orders of magnitude larger for the solvent than for the
other components. This negligible change in the chemical
potential of the solvent is the reason why the positive excess of
A300 decreases the interfacial tension and that, in fact, this
positive excess exists in the first place.
One may verify that the interfacial tension in Figure 3b is

reproduced when eq 9 is integrated numerically from the
critical point, where γ = 0 and L = 0,

∫ ∫∑γ γ μ
= ∂

∂ ′
′ = − Γ

∂
∂ ′

′
⎛
⎝⎜

⎞
⎠⎟L

L
L

L
L( ) d d

L

i

L

i
i

0 0 (10)

One of the advantages of calculating γ using eq 10 is that it
provides a means to analyze the contribution of each
component to the tension separately (see Figure 7b). First, it
is noted that all contributions to γ scale in the same way near
the critical point, i.e., γ ∝ Lμ/β ∝ L3, where the exponents μ and
β are equal to their mean-field values μ = 3/2 and β = 1/2, as
expected.1 Second, it is apparent that the contributions of the
two large polymers and solvent are very similar for the systems
in the top and bottom panels of Figure 7b, and therefore not
strongly affected by the presence of the small polymer.
It is also visible that the negative contribution of A300 to the

interfacial tension increases relatively with tie-line length. This
is likely driven by a continued increase in the interfacial excess
θi of the small polymer in Figure 6b (bottom panel) at larger
tie-line lengths, while the excess of the other components
gradually levels off. We believe that this elucidates the
mechanism for the phenomenon observed in Figure 4, where
the relative tension γ/γ0 decreased with the tie-line length for
the system of two large polymers with one small polymer: the
adsorption of the small polymer is most pronounced at larger
tie-line lengths.
The self-consistent field calculations have shown that the

decrease in interfacial tension is related to a weak but positive
adsorption of the smaller polymer, which leads us to believe
that this effect is behind the same decrease observed in
experiments. Therefore, it would be interesting to understand
this enhanced adsorption also on a molecular level. In that case,
one should consider many molecular factors such as the
adsorption enthalpy, the loss of translational entropy, the
entropy associated with the dangling chain ends, etc. Since
these effects all depend on polymer chain length, concentration,
and composition, such a molecular description is rather
complicated for the system at hand, and we leave it for future
work.

■ CONCLUSIONS
We have investigated solutions of two incompatible polymers A
and B containing a fraction with significantly lower degree of
polymerization using experiments and self-consistent field
computations. Phase diagrams from both experiments and
theory show that the fraction of smaller polymer participates
weakly in the phase separation. Comparing systems at equal tie-
line length, a decrease in the interfacial tension is observed. An
analysis based on the Gibbs adsorption equation of our self-
consistent field computations shows that this decrease is driven
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by positive adsorption of the small polymer and that the effect
is most prominent at larger tie-line lengths. We believe that our
approach may serve as a model to comprehend better the effect
of polydispersity, a ubiquitous phenomenon in practical
systems, on the interfacial structure and interfacial tension of
incompatible polymer solutions.
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