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Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into mature
oligodendrocytes (OLs) to generate new myelin sheaths. While OPCs are distributed
uniformly throughout the gray and white matter in the developing and adult brain, those
in white matter proliferate and differentiate into oligodendrocytes at a greater rate than
those in gray matter. There is currently lack of evidence to suggest that OPCs comprise
genetically and transcriptionally distinct subtypes. Rather, the emerging view is that
they exist in different cell and functional states, depending on their location and age.
Contrary to the normal brain, demyelinated lesions in the gray matter of multiple sclerosis
brains contain more OPCs and OLs and are remyelinated more robustly than those in
white matter. The differences in the dynamic behavior of OL lineage cells are likely to
be influenced by their microenvironment. There are regional differences in astrocytes,
microglia, the vasculature, and the composition of the extracellular matrix (ECM). We will
discuss how the regional differences in these elements surrounding OPCs might shape
their phenotypic variability in normal and demyelinated states.
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INTRODUCTION

Oligodendrocyte precursor cells (OPCs), also known as NG2 glia or polydendrocytes, are uniformly
distributed throughout the gray and white matter of the adult central nervous system (CNS).
They are lineage committed precursor cells whose primary known function is to differentiate into
mature oligodendrocytes (OLs) that myelinate axons and enable fast saltatory conduction of action
potentials. OPCs express the cell surface proteins NG2 and platelet-derived growth factor receptor
alpha (PDGFRα), which are downregulated during their terminal differentiation into postmitotic
oligodendrocytes. The term NG2 cells or NG2 glia is used synonymously with OPCs, regardless of
whether the cell differentiates into an OL or continues to exist as an OPC for an extended period of
time, as currently evidence is lacking that OPCs comprise cells with dichotomous OL differentiation
dynamics.
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OPCs arise from discrete germinal zones in the embryo
and continue to be generated from the subventricular zone
in the mature CNS. Despite the reports that nearly all OPCs
are in active cell cycle state in the adult brain (Rivers et al.,
2008; Psachoulia et al., 2009; Kang et al., 2010), OPCs are
heterogeneous in their proliferative rate. In the normal rodent
CNS, OPCs proliferate and differentiate into OLs at a higher rate
in the white matter than in the gray matter (Hill and Nishiyama,
2014; Boshans et al., 2020; Nishiyama et al., 2021; Figure 1, left).
Myelination continues throughout life beyond developmental
myelin production and appears to be finely tuned to the local
neural network (Monje and Karadottir, 2020; Nishiyama et al.,
2021; Pease-Raissi and Chan, 2021).

Damage to myelin occurs in demyelinating diseases such as
multiple sclerosis (MS; Lassmann, 2019). Poor remyelination
of chronic MS lesions could result from failure of OLs to
myelinate axons (Chang et al., 2002) or defects in OPCs
(Jäkel et al., 2019; Yeung et al., 2019). Based on the OL
dynamics in the normal brain, one would predict that MS lesions
in the white matter would be more efficiently remyelinated.
Contrary to this prediction, OL dynamics during remyelination
in MS is more robust in gray matter lesions (Peterson
et al., 2001), despite a higher density of OPCs and OLs
in normal appearing white matter than in normal appearing
gray matter of MS brains (Strijbis et al., 2017). In this mini
review, we will discuss how the regional heterogeneity of
the microenvironment surrounding OL lineage cells might
contribute to their region-specific behavior in normal and
pathological states.

REGIONAL HETEROGENEITY OF OL
LINEAGE CELLS

It has been debated as to whether OPCs represent a
heterogeneous cell population (Dimou and Simons, 2017;
Foerster et al., 2019; Boshans et al., 2020). Unlike neurons which
can be classified into functionally and transcriptionally distinct
cell types, OPCs exhibit a spectrum of phenotypes that varies
with the age and anatomical location. Below are examples of the
phenotypic variability among OPCs and an emerging hypothesis
that these differences represent different cell and functional
states rather than transcriptionally distinct subtypes.

OPC Distribution Does Not Always Parallel
OL Distribution
While OPCs are distributed throughout the CNS, their density
is higher in white matter than in gray matter (Dawson et al.,
2000, 2003; Terai et al., 2003). One determinant of OPC
density could be the necessity to generate OLs. Consistently,
OPC density is low in CNS regions where unmyelinated axons
predominate such as the molecular layer of the cerebellar
cortex (Givogri et al., 2002; Sun et al., 2018). However, in
other regions the distribution of OPCs does not match that
of OLs. For example, in the neocortex OPC are distributed
uniformly throughout all cortical layers, whereas myelinating
OLs are more abundant in deeper cortical layers (Tomassy et al.,
2014). Curiously, OPCs exist in relatively high density in some

circumventricular organs (Terai et al., 2003; Zilkha-Falb et al.,
2020), where capillaries are fenestrated and their density is high
(Gross et al., 1986), suggesting a possible non-progenitor role
for OPCs. Indeed, OPCs are involved in feeding and body
weight control by modulating leptin-sensing of leptin receptor-
expressing neurons in the arcuate nucleus that extend their
dendrites into the adjacent median eminence (Djogo et al.,
2016).

Higher Rate of OPC Proliferation and OL
Differentiation in White Matter
OPCs in white matter proliferate and generate OLs at a greater
rate than those in the gray matter (Figure 1, left; Dawson
et al., 2003; Dimou et al., 2008; Psachoulia et al., 2009; Kang
et al., 2010; Zhu et al., 2011; Young et al., 2013). In slice
culture, OPCs in the white matter of the developing corpus
callosum and cerebellum proliferate more robustly in response to
exogenous PDGF AA than those in the neocortex and cerebellar
cortex, despite similar levels of PDGFRα (Hill et al., 2013).
When OPCs are isolated from adult gray and white matter
and transplanted into gray and white matter of recipient adult
mice (Vigano et al., 2013), those from the white matter but
not gray matter differentiate robustly into OLs in the host
gray matter, whereas those from both gray and white matter
differentiate into OLs in the host white matter, suggesting both
intrinsic and environmental influences. In slice culture, homo-
and heterotopic transplantation of 300-µm3 explants or isolated
explant cultures indicated that the proliferative response of
OPCs to PDGF AA is determined by signals within the 300-
µm3 microenvironment around the OPCs (Hill et al., 2013). A
recent follow-up study demonstrated that neuropilin-1 (Nrp1),
a co-receptor for PDGFRα, is expressed by microglia adjacent
to OPCs in white but not gray matter and trans-activates
PDGFRα on OPCs (Sherafat et al., 2021), providing an example
of a regional microglial difference affecting OPC dynamics (see

FIGURE 1 | Schematic showing the change in OL dynamics from normal to
demyelinated lesion. (A) (left, light blue). OPC proliferation and OL
differentiation occurs more robustly in the white matter (corpus callosum) than
in the gray matter (neocortex) of normal adult brain. (B) (right, gray). In MS,
OPC recruitment and OL differentiation occurs more robustly in gray matter
lesions compared with white matter lesions. The extent of OPC proliferation
and OL differentiation is indicated by the number of cells. Arrows indicate
differentiation into myelinating OLs. The thickness of the arrows indicates the
extent of differentiation. OLs, oligodendrocytes; OPCs, oligodendrocyte
precursor cells; MS, multiple sclerosis.
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section ‘‘Regional Heterogeneity of Microglia Affects OL Lineage
Cells’’ below).

OPCs Are Transcriptionally Homogeneous
Single-cell RNA-sequencing (scRNA-seq) has revealed multiple
subtypes of OLs, but OPCs are more transcriptionally
homogeneous and fail to cluster into transcriptionally distinct
subtypes (Zeisel et al., 2015; Marques et al., 2016; Tasic et al.,
2016). In scRNA-seq of OPCs from different ages, the OPC
cluster that expresses genes involved in mitosis segregates from
the other two clusters found, which express similar transcripts
but appear in postnatal day 7 (P7) and juvenile/adult CNS,
respectively (Marques et al., 2018). These clusters are not
sufficiently distinct to allow classification of OPCs into distinct
subpopulations but may represent different cell states described
in the next section.

Different Cellular and Functional States of
OPCs
OPCs in gray and white matter exhibit different
electrophysiological properties shaped by the density of voltage-
dependent Na+ and K+ channels (Nav and Kv, respectively;
Chittajallu et al., 2004; Clarke et al., 2012; Larson et al., 2016).
A recent comprehensive analysis of Nav, Kv, and glutamate
receptor expression and membrane properties of individual
OPCs in the cortex and corpus callosum at different ages
revealed unique patterns as a function of age and location
(Spitzer et al., 2019). When these data are projected against
other cellular properties and transcriptional profiles, some
correlations emerge. For example, proliferative OPCs have
a higher Nav density, and NMDAR expression coincides
temporally with OL differentiation. From these analyses,
Karadottir and colleagues propose that OPCs can exist in
several different states that include: (1) naive state with no
voltage-dependent ion channel expression; (2) proliferative
state with high Nav density and a transcriptomic profile of
mitotic cells; (3) state primed for OL differentiation with
high NMDAR density and higher transcripts for OL and
myelin genes; and (4) quiescent state with reduced Nav
and NMDAR density (Kamen et al., 2021). These states
are likely to be affected by their local environment. It is
currently not known what specific signals drive them to
transition from one state to another, the level of plasticity
and convertibility among different states, and how the
different OPCs states in turn influence the local neural
network.

HETEROGENEITY OF THE PERICELLULAR
ENVIRONMENT AROUND OL LINEAGE
CELLS

Many excellent reviews have been published on how neuronal
activity influences OL lineage cell behavior. Here, we will discuss
how non-neuronal elements might affect the behavior of OL
lineage cells. Recent studies have revealed regional heterogeneity
of astrocytes andmicroglia. Furthermore, the vascular supply and
vascular mural cell function are also likely to contribute to the

different behavior of OL lineage cells in the cortex and corpus
callosum.

Regional Heterogeneity of Astrocytes
Affects OL Lineage Cells
Astrocytes are involved in a variety of functions from
homeostasis of extracellular K+ and glutamate to the regulation
of synapses (Khakh and Sofroniew, 2015), and they influence
OL development and function in a variety of ways (Barnett and
Linington, 2013; Lundgaard et al., 2014; Tognatta et al., 2020). In
response to a variety of insults, astrocytes become reactive and
upregulate different sets of transcripts depending on the nature
of the insults (Escartin et al., 2021). Transcriptional profiling
showed that cortical astrocytes are enriched in genes required
for cholesterol metabolism, and gray matter astrocytes support
in vitro myelination more than 2-fold compared with white
matter astrocytes (Werkman et al., 2021). Cholesterol is critical
for myelination (Saher et al., 2005). Since cholesterol does not
cross the blood-brain barrier, cholesterol must be made available
to OLs autonomously by biosynthesis in OLs and by horizontal
transfer from astrocytes (Camargo et al., 2017). In mice with
experimental autoimmune encephalitis (EAE), astrocytes express
lower levels of transcripts necessary for cholesterol biosynthesis
(Itoh et al., 2018), and astrocytes from MS brains have lower
expression of cholesterol biosynthesis genes.

By contrast, astrocytes from the white matter of normal
young adult rats express extracellular matrix (ECM) genes more
abundantly than gray matter astrocytes (Werkman et al., 2020;
Figure 2). ECMgenes enriched in whitematter astrocytes include
ECM genes that are upregulated in reactive astrocytes, such
as CD44 and collagen genes though they are expressed at a
lower level in normal white matter (Zamanian et al., 2012).
CD44 is a receptor for the large extracellular proteoglycan
hyaluronan which inhibits OL maturation (Buser et al., 2012).
Thus, astrocytes from adult white matter appear to be less
supportive of myelination compared to those from gray matter.
By contrast, those in the gray matter appear to metabolically
supportive of OLs and myelin production.

Regional Heterogeneity of Microglia
Affects OL Lineage Cells
Microglia and border-associatedmacrophagesmake up the tissue
macrophages of the CNS (Prinz et al., 2021). Microglia exhibit
regional heterogeneity in their morphology and density (Lawson
et al., 1990). They are highly plastic cells that switch from a
resting homeostatic phenotype to an activated phagocytic state
triggered by a variety of insults including MS lesions (Lassmann
et al., 2001). In experimentally induced demyelination, activated
microglia initially contribute to demyelination (Marzan et al.,
2021) but are subsequently replaced by repair-promoting
microglia (Lloyd et al., 2019). Microglia not only sense pathology
but also play essential roles in normal development and
homeostatic processes, such as neurogenesis, synaptic pruning,
and regulation of neuronal activity (Butovsky and Weiner, 2018;
Thion et al., 2018; Badimon et al., 2020).

Recent studies suggest that there are region-specific
interactions between microglia and OL lineage cells. The
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FIGURE 2 | The pericellular microenvironment affecting OPC dynamics under different conditions. (A) (upper left box, pale blue). Early postnatal brain (B) (upper
right box, light blue). Normal adult brain (C) (lower right box, gray). Demyelinated lesions in MS brain or experimentally demyelinated lesions. OL lineage cells and
their protein products (PDGFRα, MMP9) are depicted in shades of blue. Microglia and their products (Nrp1, TNF-α) are indicated in shades of pink. Astrocytes and
their products (cholesterol, ECM) are indicated in orange/brown. Blood vessels and their products (BDNF, FGF) are in red. Arrows indicate differentiation into
myelinating OLs. The thickness of the arrows indicates the extent of differentiation. The thick myelin in the gray matter in (C) represents successful remyelination. The
gray myelin in the white matter in (C) represents failure to remyelinate in white matter. The depiction is meant to illustrate examples of the differences and is not
meant to be a comprehensive illustration. ECM, extracellular matrix; FGF, fibroblast growth factor; BDNF, brain-derived neurotrophic factor; PDGFRα, platelet-derived
growth factor receptor alpha; MMP9, matrix metalloproteinase-9; Nrp1, neuropilin-1; TNF-α, tumor necrosis factor alpha.

early postnatal (P1-P8) corpus callosum contains amoeboid
microglia, also referred to as the ‘‘fountain of microglia’’. These
are morphologically distinct from the ramified microglia in
the cortex and have the transcriptional signature of activated
phagocytic cells (Hagemeyer et al., 2017; Figure 2). They are
likely to correspond to the phagocytic microglia seen by electron
microscopy that were seen to have ingested ‘‘spongioblasts’’,
which are likely to have been OPCs (Ling, 1976). Depletion
of microglia with an antagonist to colony stimulating factor
1 receptor (CSF1R) during the first postnatal week reduces the
number of OPCs and OLs (Hagemeyer et al., 2017). Another
study showed that a similar population of activated microglia
in the early postnatal corpus callosum that express CD11c
secrete insulin-like growth factor 1 (IGF1) and play a critical
role in developmental myelination (Wlodarczyk et al., 2017).
Subsequently published two scRNA-seq studies revealed a
microglial subtype that exists in the postnatal white matter that

is transcriptionally distinct from developing cortical microglia or
adult resting/homeostatic microglia (Hammond et al., 2019; Li
et al., 2019). These cells have been termed axon-tract-associated
microglia (ATM; Hammond et al., 2019) or proliferative-
region-associated microglia (PAM; Li et al., 2019). They express
CD68 and other newly identified signature genes such as
Spp1 and Clec7A.

Independently, we have shown that activated microglia in the
postnatal white matter (ATM/PAM) but not ramified microglia
in the cortex express neuropilin-1 (Nrp1), a co-receptor for
vascular endothelial cell growth factor (VEGF; Pellet-Many et al.,
2008) as well as PDGFRα (Ball et al., 2010; Sherafat et al.,
2021). After a demyelinating injury, Nrp1 is strongly upregulated
on activated microglia, and microglial Nrp1 deletion severely
compromises OPC recruitment and subsequent remyelination
(Sherafat et al., 2021). Furthermore, exogenous Nrp1 promotes
PDGF AA-mediated OPC proliferation, most potently under
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conditions of limited amounts of PDGF AA, and exogenous
Nrp1 increases tyrosine phosphorylation of PDGFRα on OPCs
(Sherafat et al., 2021), suggesting that Nrp1 on ATM/PAM
activates PDGFRα on adjacent OPCs in trans (Figure 2).
While the mechanism that causes the ATM/PAM to adopt
an activated phenotype in the early postnatal corpus callosum
remains unknown, apoptosis of early-born ventrally derived
OPCs (Orduz et al., 2019) or a sudden local drop in OPC
density due to their rapid OL differentiation could trigger their
appearance. Future studies could be directed toward elucidating
the molecular signaling mechanisms that lead to the emergence
of ATM/PAMs in the developing white matter in the context of
a homeostatic process for maintaining the correct level of myelin
and myelinating cells in the CNS. In demyelinated lesions, the
tissue-damaging pro-inflammatory effects of activated microglia,
including secretion of inflammatory cytokines such as tumor
necrosis factor alpha (TNF-α) are offset by the repair-promoting
functions of microglia in a finely coordinated fashion (Lloyd
et al., 2019; Figure 2).

Regional Heterogeneity of Brain
Microvessels and the Oligovascular Niche
Evidence is accumulating for a functional interplay between OL
lineage cells and the vasculature (Figure 2). In the developing
CNS, OPCs migrate along blood vessels (Tsai et al., 2016), and
factors from endothelial cells such as fibroblast growth factor 2
(FGF2) and brain-derived neurotrophic factor (BDNF) promote
OPC survival and proliferation (Arai and Lo, 2009). Reciprocally,
under pathological conditions such as inflammation, OPCs
secrete matrix metalloproteinase-9 (MMP9), which increases
blood-brain barrier permeability and in turn trigger further tissue
damage such as demyelination (Seo et al., 2013). This has led
to the concept of the ‘‘oligo-vascular niche’’, which extends the
original concept of the ‘‘neurovascular niche’’ to include OL
lineage cells. Recent findings suggest that there is reciprocal
signaling between OPCs and vascular mural cells (Miyamoto
et al., 2014; Kishida et al., 2019), and that neuronal activity affects
myelination through altered cerebral blood flow (Swire et al.,
2019).

In rat, the capillary density of the cortex is 3–5 times
greater than that of the white matter and correlates with glucose
utilization (Borowsky and Collins, 1989; Figure 2). As pial
capillaries perforate the cortex during embryonic development,
they bring with them meningeal mesenchymal tissue which
remains in the adult as the Virchow-Robin complex (Marin-
Padilla, 2012). These regional differences in the capillary network
could contribute to the regional differences in the functions
of OL lineage cells. We recently reported that 94% of OPC
processes have close contact with blood vessels in the neocortex
of adult mice, and conversely 92% of the vascular segments are
contacted by OPC processes (Pfeiffer et al., 2021), suggesting
a significant functional interaction between OPCs and vascular
mural cells. It remains to be determined whether there are
regional differences in the extent of physical relation between
OPCs and the vasculature and the functional significance of the
OPC-vascular contacts.

REGIONAL HETEROGENEITY IN MS
LESIONS

Since the original description of patients withMS by Jean-Martin
Charcot1 in 1868 and an earlier drawing by Sir Robert Carswell
in 18382, MS has been known as a disease that affects the
white matter, causing demyelination and subsequent scarring
and atrophy. More recent studies indicate that MS also affects the
gray matter (Brownell and Hughes, 1962). Myelin basic protein
immunohistochemistry revealed frequent cortical demyelinated
lesions in autopsied brains from active (Peterson et al., 2001)
and chronic (Albert et al., 2007) MS patients. Cortical lesions
are more commonly seen in a subpial location and contain
fewer inflammatory cells. Furthermore, the extent of cortical
demyelination is significantly greater in patients with secondary
progressive disease of long duration and in primary progressive
MS, and pathological hallmarks for neuronal degeneration and
apoptosis are present in cortical lesions (Peterson et al., 2001).
The subpial cortical demyelination occurs specifically in MS
and not in other conditions similar inflammatory mediators and
oxidative tissue damage are involved (Junker et al., 2020).

Despite the widespread nature of cortical demyelination,
remyelination is significantly greater in cortical lesions than in
white matter lesions, particularly in chronic lesions (Albert et al.,
2007). This is accompanied by a greater abundance of OPCs
and OLs in cortical lesions compared to white matter lesions
(Albert et al., 2007; Chang et al., 2012; Figure 1). Curiously, the
converse is true for normal-appearing tissues inMS brains, where
OPCs andOLs are found in greater numbers in normal appearing
white matter than in normal appearing gray matter (Strijbis et al.,
2017), similar to their distribution in normal rodent brains.

What makes OPCs in the gray matter more competent to
respond to demyelinated lesions and promote repair? Some
observations suggest inherent differences between OPCs in
the cortex and white matter in their ability to respond to
inflammatory and recruitment signals. For example, OPCs
isolated from rat gray matter are more immature and are
less responsive to the inhibitory effects of inflammatory
cytokines such as interferon gamma (IFN-γ) and TNF-α on
OL differentiation (Lentferink et al., 2018). It is also interesting
to note that OPCs that develop later from dorsal germinal
zones are recruited more robustly to demyelinated lesions
than ventrally derived OPCs (Crawford et al., 2016). A recent
scRNA-seq study on OL lineage cells from the white matter
of postmortem brain from MS patients revealed a significant
reduction in the number of cells with the gene expression profiles
of OPCs and intermediate cells that are between OPCs and newly
formed premyelinating OLs (Jäkel et al., 2019). Perhaps, gray
matter OPCs that have not gone through as many rounds of
replication as white matter OPCs suffer less from replicative
senescence. A transcriptomic comparison between OL lineage

1Charcot JM. Leçons de 1868; Manuscrits des leçns de JM Charcot.:
Fonds numérisé Charcot. Bibliothèque de l’Université Pierre & Marie Curie
(http://jubilotheque.upmc.fr/subset.html?name=collections&id=charcot).
2Pathological Anatomy Illustrations of the Elementary Forms of Disease, London:
1838. https://www.gla.ac.uk/myglasgow/library/files/special/exhibns/month/
oct2003.html.
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cells in gray and white matter MS lesions may provide some
answers to this.

On the other hand, there is quite strong evidence that
suggests that environmental factors play a major role in shaping
OL lineage cell dynamics that differ between gray and white
matter MS lesions. White matter MS lesions contain more
extensive reactive astrogliosis and more abundant inhibitors
of myelination such CD44 and hyaluronan, many of which
are produced by astrocytes (Chang et al., 2012). In addition,
inflammatory cells including leukocytes and microglia are more
prevalent in white matter lesions and provide an importance
source of ECM proteins that hinder myelin repair (Ghorbani
and Yong, 2021). After acute demyelination in the white
matter, the ability of activated microglia and macrophages to
successfully undergo efflux of ingested cholesterol influences
the efficiency of subsequent remyelination, and this declines
with age (Cantuti-Castelvetri et al., 2018). Furthermore,
sterol synthesis in phagocytes is necessary to activate LXR
signaling to trigger cholesterol efflux and promote resolution
of inflammation and subsequent myelin repair (Berghoff et al.,
2021).

Intriguingly, the distribution of cortical lesions appears to
coincide with the distribution of the vascular supply (Kidd
et al., 1999). The meninges have recently been shown to contain
a supply of glial progenitor cells that migrate into the CNS
parenchyma and contribute to oligodendrogliogenesis (Dang
et al., 2019). These progenitor cells from the meninges could be
a more efficient source of remyelinating OLs for subpial cortical
MS lesions than the neural progenitor cells in the subventricular
zone. Future studies may be directed toward understanding how
the meningeal inflammatory infiltrates in cortical MS lesions
affect the ability of meningeal progenitor cells to migrate into the
cortex and contribute to myelin repair. The greater abundance of

blood vessels in the cortex and their associated Virchow-Robin
space could play an important pathophysiological role in the
dynamics of OL lineage cells in the demyelinated cortex.

CONCLUDING REMARKS

Despite the phenotypic variation of OPCs in different
neuroanatomical regions, there has so far been no definitive
evidence that OPCs can be segregated into distinct subtypes
based on permanent changes in gene expression. Rather, OPCs
weave in and out of different cell and functional states depending
on their physiological context and microenvironment. The
specific signals that cause OPCs to alter their functional states
have yet to be elucidated. All the elements surrounding OPCs,
including neurons, non-neuronal cells, vascular cells, and the
ECM exert specific effects on OPC dynamics, and the nature of
these signals can change dramatically under certain pathological
conditions.
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