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HELP‑DKT: an interpretable 
cognitive model of how students 
learn programming based on deep 
knowledge tracing
Yu Liang1,2*, Tianhao Peng1, Yanjun Pu1 & Wenjun Wu1

Student cognitive models are playing an essential role in intelligent online tutoring for programming 
courses. These models capture students’ learning interactions and store them in the form of a set 
of binary responses, thereby failing to utilize rich educational information in the learning process. 
Moreover, the recent development of these models has been focused on improving the prediction 
performance and tended to adopt deep neural networks in building the end‑to‑end prediction 
frameworks. Although this approach can provide an improved prediction performance, it may 
also cause difficulties in interpreting the student’s learning status, which is crucial for providing 
personalized educational feedback. To address this problem, this paper provides an interpretable 
cognitive model named HELP‑DKT, which can infer how students learn programming based on 
deep knowledge tracing. HELP‑DKT has two major advantages. First, it implements a feature‑rich 
input layer, where the raw codes of students are encoded to vector representations, and the error 
classifications as concept indicators are incorporated. Second, it can infer meaningful estimation of 
student abilities while reliably predicting future performance. The experiments confirm that HELP‑
DKT can achieve good prediction performance and present reasonable interpretability of student skills 
improvement. In practice, HELP‑DKT can personalize the learning experience of novice learners.

Currently, an increasing number of novice students choose to learn programming online, especially via Mas-
sive Open Online Courses (MOOCs). In such a scenario, a crucial problem is how to facilitate students to learn 
programming (HELP) via intelligent tutoring. In this paper, this problem is denoted as the HELP problem.

A programming language can be decomposed into a list of concepts, which can be recognized as knowledge 
components (KCs). Every programming exercise involves multiple concepts or KCs, which can be represented 
in the form of a Q-matrix1. To address the HELP problem, it is needed to build an interpretable cognitive model 
that can determine students’ mastery level of KCs by mining their learning trajectories in programming exer-
cises. A knowledge tracing (KT)  model2 is commonly adopted in the online-teaching domain because it can 
predict the probability of answering the next exercise correctly. Recently, the deep knowledge tracing (DKT)3,4, 
where a deep neural network-based cognitive model is used for learning how to program, has been proposed. 
Despite its good prediction performance, this approach can cause difficulties in interpreting the students’ learn-
ing status on each of the programming concepts. Specifically, there have been two major factors contributing to 
the interpretation problem.

First, the current implementation of the DKT-based model for programming courses captures student’s 
learning interactions through programming exercises and saves them in the form of a set of binary responses. 
Such binary sequences merely indicate whether a student’s code could run the test cases of an exercise correctly 
or not but fail to utilize rich features of source codes in the learning process. However, these features of each run 
of a student’s program may include the success number of test cases, the source code, and all errors in the source 
code. The feature-rich information enables extending the original DKT model to improve both prediction and 
interpretability performances. For instance, the abstract syntax tree (AST) of a source code can be transformed 
into the input vectors of the DKT model by encoding the source code to a vector representation via embedding 
in the natural language processing (NLP)5.

Second, the black-box nature of the DKT model makes it difficult to present explainable prediction results to 
instructors of programming courses. An instructor not only concerns about whether students can successfully 
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finish their homework passing all test cases for an exercise but also wants to know about every student’s abil-
ity level on each of the programming concepts. For instance, when a student’s code fails to pass test cases, the 
instructor would like to check the errors in the student’s code and identify his understanding level of certain 
particular concepts, e.g., strings or conditionals. In this way, the instructor could diagnose the student’s weakness 
in mastering the programming concepts and provide personalized teaching strategies for him.

In order to solve the HELP problem, this paper proposes a HELP-DKT model that aims at incorporating 
feature-rich input vectors and providing personalized conceptual-level skill assessments for students. In the 
proposed model, student’s conceptual skills in programming are represented in the form of a Q-matrix, and the 
corresponding cognitive elements are designed as an extra layer over the DKT model. This structural change 
in the HELP-DKT model design improves both predictive accuracy and interpretability. By precisely identify-
ing programming errors in every student’s code, the HELP-DKT model can infer students’ skills on each of the 
concepts and track temporal skill changes over the sequence of code submissions. The experimental results 
confirm that the proposed HELP-DKT model has excellent performance and visualization ability in displaying 
dynamic changes in students’ skills.

The main contributions of this work can be summarized as follows:

• A program embedding is proposed for encoding source codes to vector representations, and error classifica-
tions are incorporated as concept indicators into a personalized Q-matrix. Using rich-feature input vectors, 
the HELP-DKT model can describe learning trajectories of students in a fine-grained way, achieving highly 
accurate predictive performance.

• An extra cognitive layer is introduced in the DKT framework to create a fully-connected interaction between 
the hidden skill state of the DKT and the personalized Q-matrix. Therefore, the HELP-DKT is capable of 
inferring student abilities on the conceptual level and presenting visualized interpretations of dynamic change 
in students’ skills to course instructors.

• To facilitate further research, the code and relevant dataset have been published in the following URL: 
https:// github. com/ liang yubuaa/ HELP- DKT. A detailed description about how to use the code and dataset 
is provided in this page.

The rest of the paper is organized as follows. An overview of the related work is presented in “Related work” 
section. In “Methods and experiments” section, the details of the proposed methods are given, and the imple-
mentations and experiments of the proposed model are provided. In “Results and discussion” section, the results 
of the experiment are described and discussed. Lastly, the conclusions and future work directions are given in 
“Conclusions” section.

Related work
Student cognitive model. In an intelligent tutoring system for programming courses, a student cognitive 
model has been often needed to describe students’ cognitive states during their studying. Early research efforts in 
this field highlighted observable gaps between students’ understanding of core programming concepts and their 
capability of applying these concepts to the construction of simple  programs6. Therefore, modeling the learning 
process of novice students in programming courses involves describing the temporal development of multiple 
latent cognitive skills.

Prior research efforts have mostly adopted Bayesian knowledge tracing (BKT) models, item response theory 
(IRT) based models or some other user behavior analysis models to build student models.  Papers7,8 are based 
on gated recurrent unit (GRU) model while  papers9,10 are focus on solving the link prediction task. These work 
propose good prediction models. However, a limitation with these work is that they do not fully leverage the 
students’ historical attempt dataset.

The Bayesian knowledge tracing (BKT)2 provides an effective way to model temporal development of cognitive 
skills using the Bayesian inference with a hidden Markov model. However, the conventional BKT model-based 
 approach11 is not suitable for programming courses because it does not support a multi-dimensional skill model 
and requires additional algorithms to create a Q-matrix.

Some of the related studies adopted the IRT extensions for student’s skills modeling in programming courses. 
Yudelson et al.12 used a variant additive factors model (AFM) to infer students’ knowledge states when solving 
Java programming exercises. Rivers et al.13 analyzed the students’ Python programming data by fitting learning 
curves using the AFM to identify which programming concepts were the most challenging for students to master 
the Python programming. The advantage of the mentioned AFM-based methods over the BKT-based methods 
is their capability to tackle scenarios of multi-dimensional skills. However, both mentioned methods regard 
students’ programming trajectories as sequences of binary responses while ignoring rich features embedded in 
different versions of students’ codes during the submission attempts.

Our previous  work14 aimed to address the above-mentioned issue and adopted the conjunctive factor model 
(CFM)15 to establish a better cognitive relationship based on students’ learning data. The core concept of the CFM 
is a boolean Q-matrix, which is a pre-required matrix for describing the relationship between items and skills. The 
limitation of the CFM is that it does not treat multiple skills in one item differently, which might lead to inaccurate 
skill assessment. The CFM was extended to the personalized factor model(PFM) by using programming error 
classification as a cognitive skill representation. By introducing this modification, the predictive performance 
of the CFM for learning to program has been significantly improved. Both CFM and PFM are shallow model, 
and their main limitation is that they cannot handle large datasets.

Recently, a number of deep neural network-based KT models have been proposed. The Deep-IRT16 is an 
extended DKT model, which has been inspired by Bayesian deep learning. The Deep-IRT can achieve better 
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prediction performance than shallow structured models, but it lacks personalized descriptions of students in the 
input layer due to fixed, binary Q-matrix designed by experts. In online program teaching, Wang et al.4 used a 
recurrent neural network (RNN) and focused on students’ sequences of submissions within a single programming 
exercise to predict future performance. The main shortcoming of the DKT model is poor interpretability caused 
by the black-box nature of a deep neural network. Also, it does not specify the probabilistic relationship between 
latent skills and student codes in the form of a Q-matrix, which makes it hard for instructors to understand the 
analysis results of the DKT.

Program vector embeddings. Methods for vectorizing programs have many similarities with the rep-
resentation learning methods, such as the vector embedding technique presented  in5. In the program analysis 
domain, Piech et al.17 introduced a neural network method, which encoded programs as a linear mapping from 
an embedded precondition space to an embedded postcondition space. Peng et al.18 proposed a novel “coding 
criterion” to build vector representations of nodes in ASTs, which have provided great progress in program 
analysis. BigCode19 is a tool that can learn AST representations of given source codes with the help of the Skip-
gram  model20.

The above-mentioned methods have achieved good results, which has enlightened us to make the best use 
of vector embeddings that include rich information. This approach offers the possibility of using program codes 
as the input of deep learning models, especially student cognitive models.

Automated program repair. In online programming education, many tools have been adopted to repair 
student error codes automatically. These tools are collectively referred to as automated program repair (APR) 
tools. For instance, Qlose21 is an approach used to repair students’ programming attempts in the education field 
automatically. This approach is based on different program distances. The AutoGrader22 is a tool that aims to 
find a series of minimal corrections for incorrect programs based on the program synthesis analysis. This tool 
requires course teachers to provide basic materials, such as a list of potential corrections based on known expres-
sion rewrite rules and a series of possible solutions for a certain problem. Gulwani et al.23 proposed a novel APR 
technique for introductory programming assignments. The authors used the existing correct students’ solutions 
to fix the new incorrect attempts. A limitation of this solution is that it cannot provide educational feedback to 
students and instructors.

The above-presented tools aim at fixing the wrong codes or getting the right repair results, but they neither 
examine the error types of students in detail nor try to integrate the outputs with the student cognitive model. 
However, these error types contain rich information that reflects the student’s weakness, which is very useful in 
the intelligent tutoring field.

Methods and experiments
Program vector embeddings. Creating vector embeddings for student codes is necessary to incorporate 
features of source codes into the DKT model. These vector embeddings represent the characteristics and struc-
tural features of students’ code submissions of programming exercises. This paper presents a three-step method 
for program vector embeddings, inspired by  NLP5 domain.

Step 1 The first step in code vectorization is to gain an abstract syntax tree (AST) from a source code. The 
AST is a compressed tree for representing a program structurally. In an AST of a program, a node (e.g., vari-
able, constant, and statement) corresponds to a program component. Thus, an AST can capture the entire 
structural information of a program and can be mapped back into it. Furthermore, because of the finite number 
of types and nodes in an AST, it can be vectorized.

Step 2 The second step is to generate node vectors in ASTs. In this step, each node in ASTs is trained and map 
to a real-valued vector, which contains each feature of the node. Inspired by BigCode  tools19, the Skip-gram 
 model20 is used to compute node vectors. The principle of this model is to use the currently known nodes to pre-
dict the context of them. Finally, the skip-gram model outputs a Huffman tree, where each leaf node represents 
a certain program component.

Step 3 The final step is to generate the whole program vector assembled by node vectors. Compared to the 
NLP domain, the node vector is analogous to the word vector while the program vector is similar to the sentence 
vector. In the NLP domain, common strategies of learning sentence representations are to compute the average 
or the weighted average of pre-trained word vectors (e.g., word2vec, TF-IDF). On the basis of these strategies, 
a new method is proposed to update the vector representation of each node recursively based on the structural 
and frequency information of that node and its direct children in the AST. Particularly, the updating process of 
a node vector is given by Eqs. (1–3). It should be noted that the updating process is executed from bottom to top, 
where the vector representation of the root node is regarded as a vector representation of the whole program.

(1)pn = vecn · e
tdn

(2)cn =

m
∑

i=1

cntni
cntn

· vecni

(3)vecn
′
= tanh

(

1

m+ 1
pn +

m

m+ 1
cn

)
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In Eqs. (1–3), vecn denotes the original vector representation of a node n in an AST A ; node n1, n2, . . . , nm are m 
direct children of the node n and vecn1 , vecn2 , . . . , vecnm are the corresponding original vector representations, 
which are calculated in Step 2; cntn denotes the total number of nodes under n in A (i.e., the position informa-
tion of n in A ); tdn is the TF-IDF value of n, reflecting its frequency information in the AST; pn stands for the 
comprehensive information of n multiplied by its vector representation and TF-IDF value (Eq. 1); cn indicates 
the information of m direct children of n, which represents the sum of the weighted vectors (Eq. 2). The weights 
( cntni
cntn

 ) are weighted by the number of nodes under ni ; vecn ′ is the updated vector representation of the node n, 
which represents the weighted average of the comprehensive information of node n ( pn ) and its m children nodes 
( cn ) (Eq. 3). The weights are set to 1

m+1 and m
m+1 , and function tanh(·) is used to normalize the result.

Personalized Q‑matrix. To represent the conceptual skills in the HELP-DKT model, a Q-matrix is used 
to describe the relationship between the programming concepts in the form of KCs and every programming 
 exercise1. In the Q-matrix, a cell value of one at row i and column j indicates that exercise i involves concept j; 
otherwise, it is set to zero. The definition of the Q-matrix enables to distinguish different exercises.

To distinguish different students for the purpose of personalization, the details of student codes are deter-
mined. An effective APR tool similar to the one described  in14 is proposed. Using this tool, wrong student 
codes can be fixed, and the correct repair results can be obtained. The APR tool mainly includes two steps, 
which are as follows. In the first step, for a given programming assignment, the tool can automatically cluster 
the AST form of the correct student codes using dynamic program analysis. In each cluster, one of the grouped 
codes is randomly selected as a specification. In this way, all specifications can be seen as a solution space of 
the assignment. In the second step, given a wrong student attempt, the tool starts to run a repair procedure on 
the student submission against all source code specifications and automatically finds the optimal match in the 
solution space. Thus, the proposed tool can generate minimal repair patches for a wrong attempt and identify 
the corresponding error types. Moreover, this tool can accurately associate error types with the major concepts 
of a programming language (e.g., Python). Finally, the error types show the student’s misunderstanding level of 
certain programming concepts or low cognitive skills of applying these concepts to constructing the program 
components. Based on the feature-rich output of the APR tool, a personalized Q-matrix denoted as P-matrix 
in the following is constructed. The same as for a Q-matrix, rows of P-matrix stands for a student’s attempts to 
solve exercises while columns represent the programming concepts. Specifically, a cell value of one in row i and 
column j suggests that not only attempt i involves concept j but also a student has applied j correctly. A cell value 
of zero means the opposite. In this way, the P-matrix associates exercises, concepts, and students, thus achieving 
the property of personalization. Clearly, an attempt is successful if and only if the corresponding P-matrix’s row 
equals the relevant Q-matrix’s row; that is, the student has mastered all the concepts involved in the exercise.

Figure 1.  The illustration of buggy and correct attempts and the corresponding rows in the Q and P matrices. 
(a) Buggy attempt B1. (b) Row for B1 in Q-matrix. (c) Row for B1 in P-matrix. (d) Repair result for B1. (e) 
Correct attempt C1. (f) Row for C1 in Q-matrix. (g) Row for C1 in P-matrix.
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To explain the relationship between attempts and their relevant Q/P-matrix better, an example is given in 
Fig. 1. Figure 1a shows a buggy attempt B1, and Fig. 1e displays the correct attempt C1; both attempts relate to 
the same program problem, which is in this case calculating the area of a triangle. This problem involves five 
major concepts, which are constants (co), variables (va), operators (op), strings (st), and expressions 
(ex). Thus, by definition of the Q-matrix, the rows corresponding to B1 and C1 in the Q-matrix are the same, 
as shown in Fig. 1b,f. After repairing B1 using the proposed APR tool, the repair results shown in Fig. 1d are 
obtained. The result shows that the APR tool can accurately identify the error types of B1. Based on the repair 
result, the row corresponding to B1 in the P-matrix can be obtained, as shown in Fig. 1c. However, C1 includes 
no error, so the corresponding row in the P-matrix is the same as that in the Q-matrix, as shown in Fig. 1g.

HELP‑DKT framework. The DKT is extended by introducing the program vector embeddings and P-matrix 
into the DKT and combining them as feature-rich student’s historical interactions. Besides, an extra cognitive 
layer is added to the DKT structure to obtain students’ ability levels. The framework of the HELP-DKT model is 
presented in Fig. 2, where it can be seen that it involves four major parts: integrating program vector embeddings 
and P-matrix as the input layer, tracking students’ latent cognitive status by an LSTM network, determining stu-
dents’ mastery levels, and making a prediction. The HELP-DKT first receives a sequence of student’s interactions 
and then predicts the probability of answering the next exercise correctly and finally presents the student ability 
on each concept over time. To explain the HELP-DKT model better, a pseudo code is given in Algorithm 1.

Figure 2.  Framework of the HELP-DKT model.
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Integrating program vector embeddings and P-matrix. As mentioned previously, the program vector embed-
dings and P-matrix contain rich information about student’s submissions. Therefore, the program vector embed-
dings and P-matrix are integrated as the input layer of the HELP-DKT model to encode students’ abilities on the 
conceptual level and achieve a better prediction performance. The input layer is organized as follows:

First, considering that the answer has a certain influence on the change in the student ability level, the 
n-dimensional one-hot encoding program vector is extended to the 2n-dimensional vector in order to distinguish 
the correct vector from the wrong one, as given in Eq. (4). Second, the extended code vector vect is multiplied 
with its corresponding P-matrix pt at time t and used as the input kt of the LSTM network, as given in Eq. (5); kt 
contains both the vector embeddings and features related to the programming exercises, students, and concepts.

Tracking student latent cognitive status by LSTM. An LSTM denotes a special RNN, which can learn long-term 
dependencies over students’ learning trajectories. The core of the LSTM is the cell state, which flows through the 
entire network. The LSTM can add and remove data from the cell state controlled by using the gate structure, 
which is designed to protect and control the cell state and information flow. Thus, the hidden state ( ht ) can be 
obtained, and it is determined by the cell state ( ct ) and the output gate ( ot , which can be expressed as:

In the proposed model, the gates of the LSTM are used to simulate student’s learning and forgetting processes. 
This structure can track students’ latent cognitive status from the hidden state ht of the LSTM network, which 
represents the output of the cell state.

Getting student ability on conceptual level. Due to the black-box nature of the LSTM model and a lack of regu-
larization of inherent learning cognitive constraints, the hidden state ht in the DKT cannot accurately represent 
the temporal change of student’s skill levels in the process of improving the source codes. To present interpreta-
tion of skill dynamics better and retain high prediction performance simultaneously, the DKT is extended by 
introducing an extra cognitive mapping in the form of a fully-connected layer to output the student ability levels 
st explicitly, which can be expressed as follows:

(4)vect =

{

[v1, v2, . . . , vn, 0, 0, . . . , 0], if correct

[0, 0, . . . , 0, v1, v2, . . . , vn], if wrong

(5)kt = vect · pt

(6)ht = f (ot , ct)

(7)st = sigmoid(W · ht)
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First, because the dimension of ht is determined by data and training goals of the LSTM, the fully-connected 
layer W is used to resize ht so that the dimension of st can equal the total number of programming concepts. In 
this way, each element stj of st corresponds to concept j. The sigmoid function is used as an activation function of 
the fully-connected layer to scale each stj in the range of (0,1) and to infer the student’s ability level on concept 
j at time step t.

Making prediction. Based on the student’s ability level st , the HELP-DKT can compute the probability yt that a 
student completes the exercise correctly at time step t as follows:

where ⊗ represents the mask operation, and φ represents multiplication of each element of a vector; the factor θ 
indicates the difficulty level of a concept, and θ is post labeled by domain experts, who may find different knowl-
edge components of varying difficulty after reviewing the students’ submissions. First, θ is subtracted from St 
to obtain the difference between the student’s mastery level and the concept’s difficulty level. If this difference is 
positive, it is considered that the student is capable of applying this concept correctly. Then, the mask operation 
is used to select all concepts involved in the exercise according to the corresponding Q-matrix ( qt ) so as to avoid 
the influence of concepts unrelated to the exercise. For instance, assume st = [s1, s2, s3, s4] ,, and qt = [1, 0, 1, 0] ; 
then, the masking result wt = (st − θ)⊗ qt is [s1 − θ1, s3 − θ3] . The factor of α is set to 10.0 for a practical reason 
so that the maximum prediction result for a particular problem is close to 1.0, which means that the student 
has mastered the knowledge component. For instance, if the student ability is not scaled, the maximum value 
that can be obtained is sigmoid(1− 0.5) = sigmoid(0.5) = 0.62 . And when α is used, the maximum value that 
can be obtained is sigmoid(10.0 ∗ (1− 0.5)) = sigmoid(5) = 0.99 . After processing by the sigmoid activation 
function, each element of yt can be computed as a probability that the student can apply a concept correctly at 
time t. Finally, based on the assumption that the probability yt of an attempt success depends on the probability 
of mastering all concepts associated with the particular programming exercise, each element of yt is multiplied 
to generate the prediction result yt.

Dataset. The following experiments are designed to evaluate the HELP-DKT model. The experimental data 
were collected from a Python Programming Introductory course hosted on a MOOC platform (https:// www. 
educo der. net) intended for learning a variety of programming languages. The dataset includes 9,119 source 
codes completed by novice students in six programming assignments. These assignments are arranged as step-
by-step challenges for students. All challenges are designed based on ten basic Python concepts, which are: 
constants (co), variables (va), operators (op), strings (st), expressions (ex), lists (li), tuples (tu), 
dictionaries (di), conditionals (cd), and input/output (io). The difficulty levels of these concepts are 
marked by the field experts. The values of co, va and op are set to 0.3, the values of st, ex, li and tu are set to 
0.4, and the values of di, cd and io are set to 0.5. It should be noted that students are allowed to submit multiple 
attempts for each challenge. Therefore, the dataset contains multiple intermediate versions of code submissions 
made by a student for each challenge, which can be used to infer the cognitive process of mastering the key pro-
gramming concepts. The overview of the dataset is described in Table 1.

Experiments. Generating program embeddings. Using the proposed method, vector embeddings of all 
programs in the dataset can be easily generated. First, the source codes are encoded to a 10-dimensional vector 
representation, and then the experiment is conducted to verify the effectiveness of the obtained program vectors.

As mentioned above, the program vector represents structural information of source codes. Therefore, for the 
codes of the same challenge, the structures are similar, and the corresponding vector embeddings should also be 
similar. On the contrary, the code vectors of different challenges should show apparent differences. All vectors 
are categorized into six clusters that correspond to six challenges in the dataset, and then a 2D visualization of 
the result is generated.

As presented in Fig. 3, programs of the same challenge are clustered into the same category and labeled with 
the same color. In contrast, programs of different challenges are grouped into different categories and labeled with 
different colors. The experimental result proves the previous conclusion that the vector embeddings generated 
by the proposed method contain all structural information on the original programs. Meanwhile, the vectors 
can effectively reflect the similarities and differences between the original programs.

Task definitions. To validate the HELP-DKT model, three different tasks, including Task A (next-challenge), 
Task B (next-attempt), and Task C (comprehensive analysis), are defined. All three tasks are designed for the 
purpose of verifying the improvement in the prediction accuracy and interpretability by using the proposed 
model.

• Task A: Next-challenge Based on all code vectors submitted by a student over time T = [vec1, vec2, . . . , veck] 
for one programming challenge, the model predicts whether the student will successfully complete or fail 
the next challenge within specified number of attempts.

• Task B: Next-attempt At each time step t ≤ k , based on all previous code vectors submitted by a student 
before time step t (including time step t) over time T = [ vec1 , vec2 , ..., veck ] for one programming challenge, 
the model predicts whether the student will successfully complete or fail the current challenge at time step 
( t + 1).

(8)yt = φ(yt) = φ
(

sigmoid
(

α · (st ⊗ qt − θ)
)

)

https://www.educoder.net
https://www.educoder.net
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• Task C: Comprehensive Analysis At each time step t ≤ M , where M =
∑n

i=1 ki , ki represents the number of 
student’s attempts on challenge i, and M represents the total number of student’s attempts on all the chal-
lenges, based on t previous code vectors submitted by one student over time T = [ vec11 , vec12 , ..., vec1k1 , vec21 , 
..., vec2k2 , ..., vecn1 , ..., vecnkn ], where vecij represents the code vector on the ith challenge at the jth attempt, 
the model predict whether the student will successfully complete or fail the challenge at time step ( t + 1).

To sum up, Task A can be regarded as follows. For a given trajectory of a student’s practice of the previous 
challenge, it is predicted whether a student can learn new concepts of the next challenge. Further, Task B can be 
seen as providing real-time feedback to teachers since it predicts whether a student can complete the current 
challenge on the next attempt. Task C involves longer trajectories than Tasks A and B, so it is suitable for modeling 
students’ ability to implement all knowledge components while predicting the performance in the next attempt.

Implementation. The input vector and P-matrix are implemented to the LSTM network using the proposed 
methods. First, the 10-dimensional code vector is transformed into a 20-dimensional vector according to the 
one-hot encoding rule defined by Eqs. (4) and (5). It should be noted that the dimension of the code vector is 
equal to the number of programming concepts. Therefore, the code vector multiplied by the P-matrix is used as 
the input of the LSTM network.

Before training, parameters of the LSTM network are initialized to zeros, and parameters of the fully-con-
nected layer are initialized uniformly in range (− 0.05, 0.05). All model parameters are optimized during the 
training process by minimizing the cross-entropy loss.

The model is trained using the Adam optimization with a learning rate of 0.01, a batch size of 32. Since all 
the input sequences are of different lengths, certain measures are conducted to ensure that sequences are of the 

Table 1.  Dataset overview.

Challenge Topic # Students # Programs # Correct # Incorrect Concepts

C-1 String concatenation 608 1038 591 447 VA, OP, ST, EX, IO

C-2 Modifying a list 553 2188 553 1635 CO, VA, OP, EX, LI, IO

C-3 Calculating quantities 452 788 446 342 CO, VA, OP, EX, IO

C-4 Sorting elements 312 1977 312 1665 VA, EX, TU, IO

C-5 Computing factorials 188 2236 188 2048 CO, VA, OP, ST, EX, CD, IO

C-6 Modifying a dictionary 72 892 72 820 CO, VA, ST, EX, DI, IO

Figure 3.  The clustering result of program embeddings. Each dot represents a program vector. The size of dots 
is proportional to the number of programs included in the same vector embeddings; six colors represent six 
challenges. Programs of the same challenge are grouped into the same category, while programs of different 
challenges are grouped into different categories.
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same length. Namely, sequences a the length less than the maximum length are padded with zeros to fill up the 
remaining time steps. Also, masking is used in the loss computing process. The dataset is split on the student 
level, and the codes submitted by one student are all either in the training set or all in the test set. Thus, codes 
submitted by the same student do not repeatedly appear in the training and test sets. Eighty percent of the stu-
dents’ codes are used as the training set, and the remaining 20% are used as the test set.

Specifically, task A predicts whether a student will successfully complete or fail the next challenge within 
a specified number of attempts. Therefore, a hyperparameter try_num is defined and set to three to decide on 
labels of sequences of task A. If the attempt number of the next new challenge is no more than try_num , it is 
assumed the student will successfully complete the next new challenge, and the label of the current sequence 
is set to one (i.e., correct). In contrast, if the attempt number of the next challenge is larger than try_num , the 
current sequence label is set to zero (i.e., failure).

Results and discussion
Prediction results. For the purpose of comparison, the DKT model and Deep-IRT model are used as base-
line models and compared with the proposed model under the same dataset. All the three models are imple-
mented using the PyTorch library on the same computer with four NVIDIA TESLA V100-SXM2 32GB GPUs. 
The experimental results are shown in Table 2. To compare the performances of the HELP-DKT and baseline 
models, five training and evaluation processes are conducted. In this study, the average and standard deviation 
of the area under the ROC curve (AUC) and the accuracy (ACC) are used as evaluation metrics. The larger the 
AUC or ACC score is, the better the model’s prediction performance is. The AUC is a robust overall measure 
that has been commonly used to evaluate the performance of binary classifiers because it avoids the supposed 
subjectivity in the threshold selection process.

The results show that the proposed HELP-DKT model performs better than the DKT and Deep-IRT models 
in terms of the AUC and ACC indexes on each task. Such outstanding performance is attributed to the feature-
rich input, including program vector embeddings and P-matrix. For Tasks A and B, the proposed model achieves 
higher prediction accuracy than for Task C. The main reason is that the input sequences of Task C are longer 
than those of Tasks A and B, which can increase the difficulty of correct prediction.

Case study. To demonstrate the HELP-DKT’s interepretability in analyzing dynamics of student’s abilities 
at the conceptual level, one student is randomly selected, and his abilities and learning trajectory of Task C are 
analyzed, as shown in Fig. 4. This student has completed all six challenges after a different number of attempts. 
The student has completed the challenges of “String concatenation” (C-1), “Modifying a list” (C-2), “Calculat-
ing quantities” (C-3), and “Sorting elements” (C-4) in a few attempts. Still, the student has struggled with the 
challenges of “Computing factorials” (C-5) and “Modifying a dictionary” (C-6), and has attempted to solve each 
of them at least ten times. Based on the inference of the HELP-DKT model, the temporal skill change at the 
conceptual level in the student’s long learning trajectory can be obtained.

As shown in Fig. 4, the prediction transition is smooth, and the changing trend of student ability is in line with 
the learning status on the whole. For instance, the ability level of the concept expressions is high for the first 
several time steps; the color of the curve is green, which indicates that the student masters this concept; thus, it 
is likely that the student listens carefully in class. However, the student’s ability starts to fluctuate after continu-
ously failing in solving challenge C-2 in the first six attempts. When the student tries to answer challenge C-4 
but does not use expressions to construct programming statements correctly, the ability curve of this concept 
turns to red, which indicates that the student does not handle expressions well. This can be because C-4 sorting 
algorithm demands higher mastery of the expressions concept. After continuing to tackle the challenge and 
finally succeeding to solve it, the student’s ability level shifts back to green color. Based on the results, the student 
has spent more attempts on challenges C-5 and C-6 than on the other challenges. Namely, as challenges become 
more complex, the student’s ability curve fluctuates more from the learning trajectory. Each time the student 
answers a challenge correctly, the ability curve of expressions increases. Clearly, the change in the student’s abil-
ity reflects whether the concept is applied correctly in solving the challenge. After completing all six challenges, 
the ability curves on each concept achieve levels that are higher than their initial levels, which confirms that the 
student has mastered all the concepts through the practice with the challenges.

By visualizing the trends of each student’s abilities at the conceptual level over time, rich information can be 
provided to instructors to analyze students’ mastery of key concepts and to identify common cognitive prob-
lems that occurred in programming exercises. The ability curves in Fig. 4 can enable course instructors to take 
personalized instructional intervene for novice learners and provide them with valuable feedback to help them 
to improve their skills in basic programming.

Table 2.  Prediction performances of the HELP-DKT, DKT, and Deep-IRT models.

HELP-DKT DKT Deep-IRT

AUC ACC AUC ACC AUC ACC 

Task A 0.907 ± 0.007 0.853 ± 0.010 0.6862 ± 0.009 0.6448 ± 0.013 0.8344 ± 0.007 0.7898 ± 0.005

Task B 0.876 ± 0.011 0.875 ± 0.009 0.8661 ± 0.006 0.6950 ± 0.014 0.8061 ± 0.015 0.7069 ± 0.007

Task C 0.821 ± 0.019 0.863 ± 0.013 0.8160 ± 0.017 0.7087 ± 0.009 0.8172 ± 0.018 0.8058 ± 0.016
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Conclusions
In this study, a DKT-based cognitive model named the HELP-DKT intended for online programming courses is 
proposed. The proposed model adopts a rich-feature input layer by representing source codes of students’ submis-
sions as vector embeddings and incorporates the error classifications as concept indicators into the personalized 
Q-matrix. Besides, the HELP-DKT introduces an additional cognitive layer in the basic DKT structure to infer 
accurate estimation of students’ abilities at the conceptual level and to present explainable temporal change in 
the conceptual skills of students. The proposed model is verified by experiments, and experimental results show 
that the proposed HELP-DKT model can achieve better interpretability and higher prediction performances than 
the DKT and Deep-IRT models. In future work, the HELP-DKT model will be evaluated using larger datasets, 
and the other state-of-art deep cognitive models will be explored beyond the DKT framework.

Data and code availability
The code and relevant dataset have been published in the following URL: https:// github. com/ liang yubuaa/ 
HELP- DKT.
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