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The limited ability of articular cartilage to self-repair has motivated the development

of tissue engineering strategies that aim to harness the regenerative potential of

mesenchymal stem/marrow stromal cells (MSCs). Understanding how environmental

factors regulate the phenotype of MSCs will be central to unlocking their regenerative

potential. The biophysical environment is known to regulate the phenotype of stem cells,

with factors such as substrate stiffness and externally applied mechanical loads known

to regulate chondrogenesis of MSCs. In particular, hydrostatic pressure (HP) has been

shown to play a key role in the development and maintenance of articular cartilage. Using

a collagen-alginate interpenetrating network (IPN) hydrogel as a model system to tune

matrix stiffness, this study sought to investigate how HP and substrate stiffness interact

to regulate chondrogenesis of MSCs. If applied during early chondrogenesis in soft IPN

hydrogels, HP was found to downregulate the expression of ACAN, COL2, CDH2 and

COLX, but to increase the expression of the osteogenic factors RUNX2 and COL1. This

correlated with a reduction in SMAD 2/3, HDAC4 nuclear localization and the expression

of NCAD. It was also associated with a reduction in cell volume, an increase in the average

distance between MSCs in the hydrogels and a decrease in their tendency to form

aggregates. In contrast, the delayed application of HP to MSCs grown in soft hydrogels

was associated with increased cellular volume and aggregation and the maintenance

of a chondrogenic phenotype. Together these findings demonstrate how tailoring the

stiffness and the timing of HP exposure can be leveraged to regulate chondrogenesis of

MSCs and opens alternative avenues for developmentally inspired strategies for cartilage

tissue regeneration.

Keywords: HDAC4, bioreactor 3D cell culture, mechanobiolgy, interpenetrating polymer network, tissue

engineering

INTRODUCTION

The avascular, aneural and alymphatic nature of cartilage tissue hinders its ability to self-repair,
leading to progressive joint damage following injury (Bernhard and Vunjak-Novakovic, 2016).
To date, neither conventional cartilage repair treatments such as microfracture or autografting, or
regeneration strategies such as autologous chondrocytes implantation (ACI) (Brittberg et al., 1994)
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can predictably restore the damaged tissue to its original
state. Major limitations of these applications include donor-
site morbidity, lack of integration and dedifferentiation of
chondrocytes during in vitro expansion (Huey et al., 2012; Moran
et al., 2014; Mumme et al., 2016). Tissue engineering strategies
that aim to recapitulate aspects of mesenchymal condensation
and cartilage development represent promising new approaches
for joint regeneration (Lalan et al., 2001; Bernhard and Vunjak-
Novakovic, 2016; Occhetta et al., 2018). Developmentally,
cartilage formation begins with mesenchymal condensation
leading to chondrogenic differentiation of mesenchymal cells
(Wu et al., 2013). In response to cell condensation, a dense matrix
is produced, serving as a cartilage anlage, which will lead to the
formation of both articular cartilage and subchondral bone (Liu
et al., 2017). In the context of a developmentally inspired strategy
for cartilage tissue engineering, mesenchymal stem/stromal cells
(MSCs) represent a promising cell source due to their ease of
isolation and expansion and capacity to give rise to different
musculoskeletal tissues (Mardones et al., 2015; Occhetta et al.,
2018). MSC differentiation depends on cues present within the
local environment, and while much attention has focused on
soluble factors to direct their chondrogenic differentiation, less
attention has been given to physical stimuli such as substrate
rigidity and external mechanical forces (Kelly and Jacobs, 2010;
Thorpe et al., 2010; Steward and Kelly, 2014; O’Reilly and Kelly,
2016; Foyt et al., 2019).

Lineage commitment of MSCs can be regulated by the
elasticity of the substrate and its topography (Engler et al., 2006;
Guilak et al., 2009; Jaalouk and Lammerding, 2009; Huebsch
et al., 2010; Romanazzo et al., 2012; Murphy et al., 2014; Foyt
et al., 2018). These studies have typically explored the role of
substrate stiffness on MSC fate in 2D culture systems (Evans
et al., 2009; Holle and Engler, 2011; Evans and Gentleman, 2014),
however the role of matrix stiffness in directing differentiation
in a 3D hydrogel environment is more complex, with factors
such as hydrogel degradation also playing a role (Khetan et al.,
2013). In general, higher hydrogel stiffnesses have been shown
to promote osteogenesis, while adipogenesis is supported when
their stiffness decreases (Huebsch et al., 2010). In the context
of chondrogenesis, a stiffness mimicking the rigidity of healthy
articular cartilage (0.5 MPa) has been shown to enhance the
expression of SOX9, ACAN and COL2 in primary chondrocytes
and ATDC5 cells (a chondrogenic cell line) grown on 2D
substrates (Allen et al., 2012). However, chondrogenesis of
human MSCs has been shown to be supported by much softer
substrates (∼1 kPa) (Park et al., 2011), with factors such as the
local oxygen tension also influencing cellular response to altered
substrate rigidity (Foyt et al., 2019).

In addition to matrix stiffness, other biophysical stimuli such
as compression and hydrostatic pressure (HP) have also been
shown to regulate chondrogenesis of stem cells (Kelly and Jacobs,
2010; Steward and Kelly, 2014). In vivo, the removal of physical
cues has been associated with the arrest of embryogenesis
(Martin et al., 2009; Behrndt et al., 2012). Thus, in order to
drive development, mechanical signals must be presented in an
appropriate spatial and temporal manner in combination with
biochemical cues (Kumar et al., 2017). Hydrostatic pressure, a

loading modality that results in little or no cellular deformation,
is a key regulator of chondrogenesis (Pattappa et al., 2019).
HP has been shown to play a role in regulating chondrogenic
differentiation during limb development, while the application
of physiological frequencies and magnitudes of HP (up to 12
MPa) promotes an increase of cartilage matrix synthesis and
regulates hypertrophy (Soltz and Ateshian, 2000; Angele et al.,
2003; Carter and Wong, 2003; Elder and Athanasiou, 2009;
Huey et al., 2012; Giorgi et al., 2014; Saha et al., 2016; Pattappa
et al., 2019). In the presence or absence of exogenous TGF-β,
cyclic HP has been shown to enhance chondrogenesis of MSCs
(Miyanishi et al., 2006; Vinardell et al., 2012a; Carroll et al., 2013;
Zellner et al., 2015), with the cellular response to such signals
also depending on the stiffness of the surrounding substrate
(Steward et al., 2012a, 2014b). Understanding the interplay
between matrix stiffness and extrinsic mechanical cues such as
HP will be critical to the development of tissue engineering
strategies aiming to use MSCs to generate phenotypically stable
articular cartilage.

Despite HP emerging as a key mechanical stimuli for the
development and maintenance of articular cartilage, tissue
engineering strategies using MSCs that successfully integrate
this regulatory cue have yet to be established (Elder and
Athanasiou, 2009). The goal of this study was to investigate
how HP, substrate stiffness and TGF-β3 interact to regulate
chondrogenesis of MSCs. To this end, this study examined
the combined effect of HP and substrate stiffness in the
presence of TGF-β3 on the chondrogenic commitment of MSCs
seeded within collagen/alginate interpenetrating networks (IPN)
hydrogels (Gillette et al., 2008, 2010; Branco da Cunha et al.,
2014). The initial hypothesis of this study was that HP combined
with TGF-β3 stimulation would enhance chondrogenesis of
MSCs embedded in a soft 3D IPN, while it would help rescue the
chondrogenic phenotype in MSCs seeded in the stiffer matrix.
This study found that the early application of HP inhibited the
condensation of MSCs and suppressed the expression of key
chondrogenic markers. In contrast, the delayed application of
HP promoted cellular condensation and the maintenance of a
chondrogenic phenotype in MSCs maintained in a soft hydrogel.
These findings demonstrated how diverse biophysical cues can
be integrated to regulate chondrogenesis of MSCs and open
alternative avenues for developmentally inspired strategies for
cartilage tissue regeneration.

MATERIALS AND METHODS

Experimental Design
This study was designed to examine the role of HP and substrate
stiffness on the chondrogenic differentiation of MSCs in a 3D
culture model. Initially, MSCs seeded IPNs were stimulated
with cyclic HP for 7 days in presence of chondrogenic medium
containing TGF-β3. In a second set of studies, 3D IPNs were first
cultured for 7 days in chondrogenic medium (containing TGF-
β3), followed by 1 week of culture in chondrogenic medium and
HP stimulation. All study groups consisted of a hydrostatically
loaded group (HP) and a free-swelling unloaded control (FS).
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Cell Isolation and Culture
Porcine bone marrow-derived MSC were isolated from the
femora of 4 months old porcine donors (50 kg) within 2 h
of sacrifice and expanded in culture. Following colonies
formation, MSCs were trypsinized, counted and seeded at a
density of 5.000 cells cm−2 in culture flasks (Nunclon; Nunc,
VWR) maintained in growth medium (GM) composed of
high-glucose Dulbecco’s modified eagles medium (hgDMEM
Glutamax) supplemented with 10% v/v fetal bovine serum (FBS),
penicillin/streptomycin (100U ml−1) (all GIBCO, Invitrogen)
and expanded to passage 3 in a humidified atmosphere
at 37◦C and 5% CO2. Trilineage Potential assays were
used to determine pluripotency and one donor was selected
(Supplementary Figure 1). For differentiation studies, MSC
were supplemented with chondrogenic differentiation media
(CDM) composed of hgDMEM, penicillin/streptomycin (100U
ml−1), 100 µg ml−1 sodium pyruvate, 40 µg ml−1 L–proline,
1.5mg ml−1 bovine serum albumin, 4.7 g µl−1 linoleic acid, 1X
insulin-transferrin-selenium, 50 µg ml−1 L–ascorbic acid−2–
phosphate (all Sigma–Aldrich), 100 nM dexamethasone (Sigma–
Aldrich) and 10 ng ml−1 TGF–β3 (R&D Systems). Cells were
cultured in CDM for 7 or 14 days at 5% pO2, in a humidified
atmosphere at 37◦C and 5% CO2.

3D IPN Fabrication and Culture
The collagen-alginate 3D IPNs were prepared starting by 1ml
of 6mg ml−1 ice-cold collagen type I solution (from rat tail,
Corning), which had the latter addition of 400 µl of 10×
RPMI (Sigma–Aldrich) and 350 µl of collagen neutralization
buffer (0.1M HEPES and 1M sodium bicarbonate dissolved
in PBS) to reach pH 7.4. At this point, a volume of 400 µl
of MSCs previously trypsinized and resuspended in GM (5 ×

10−6 cells ml−1), was gently mixed to the neutralized collagen
solution. Finally, 2ml of 3.5% alginate solution (UP LVG, batch#
BP-0907-02, viscosity = 198 mPa∗s, Pronova matrix) were
thoroughly mixed, pipetted into a custom-made mold and placed
in incubation for 4 h to allow cell spreading before the addition
of the crosslinker (20mM CaCl2 dissolved in hgDMED). Finally,
the elasticity of the IPNs was tuned by exposing the samples to
the crosslinker for either 40min (soft 3D IPNs) or 150min (stiff
3D IPNs). After the incubation time, the 3D IPNs samples were
removed from the mold, rinsed in fresh hgDMEM and incubated
in GM for 12 h at 5% pO2, in a humidified atmosphere at 37◦C
and 5% CO2.

Application of Cyclic Hydrostatic Pressure
The schematic in Figure 1A shows the preparation of the samples
for the HP loading experiments. Cell-laden IPN hydrogels
were prepared and left to equilibrate overnight in GM. The
next day, the IPN samples were encapsulated, evenly spaced,
in a 2% agarose (A2790, Sigma–Aldrich) block to provide
protection from handling damage and inserted into heat-
sealed, gas-permeable, water-tight, sterile bags (EVO120, Quest
Biomedical, UK) with 3mL of medium per construct, removing
the air via a needle free port. Before the loading experiment,
samples were incubated for 24 h in starvation media [hgDMEM,
penicillin/streptomycin (100 U/mL) and 0.5% FBS (Gibco)]
for cell cycle synchronization. Cyclic HP was applied via a

water filled, custom-made bioreactor within a 37◦C incubator
as described previously (Carroll et al., 2013). The sealed bags
exposed to HP were placed into the pressure vessel, while the
free swelling controls were placed into an open water bath next
to the pressure vessel. HP was applied at an amplitude of 2
MPa and a frequency of 1Hz for a duration of 4 h per day, for
7 consecutive days (or 14 days when specified). The bags were
returned to a culture incubator (37◦C, 5%CO2, 5% pO2) between
loading periods and suspended separately in an upright position
for homogenous gas transfer.

Live/Dead Assay
Viability of MSCs embedded into IPN hydrogels was investigated
before the media change to CDM or at the end of the
culture period by using a live/dead assay solution consisting
of Calcein-AM (1mM) and Propidium Iodide (0.1mM)
prepared in phenol-red free DMEM (hgDMEM, GIBCO).
Briefly, samples were rinsed in PBS, immersed in the staining
solution for 1 h at 37◦C. Then, samples were rinsed twice
with phenol-red free hgDMEM and left in warm phenol-red
free hgDMEM before imaging. Live imaging was performed
using a confocal microscope (Leica Confocal Microscopy TCS
SP8) using 490/515 nm (excitation/emission) for Calcein-AM
(Life Technologies) and 535/617 nm (excitation/emission) for
propidium iodide. Maximum intensity projection images were
obtained using FIJI software.

Immunostaining
Immediately after HP stimulation/culture period, samples were
fixed with 4% PFA by direct injection of the solution into the
bags. Samples were left for 1 h at +4◦C. Gels were then rinsed
in PBS, removed from the culture bag and the agarose block
discarded. The retrieved gels were next incubated overnight in
30% w/v sucrose solution at+4◦C. The samples were then placed
in a mix of 50% v/v of a 30% w/v sucrose solution, and 50%
v/v OCT (Tissue-Tek) for 5 h at +4◦C. Finally, the samples
were placed in OCT and frozen in a isopentane (Sigma–Aldrich)
bath previously chilled in liquid nitrogen and stored at −80◦C.
Sections of 40µm were cut with a cryostat (Leyca CM 1860)
and mounted on glass slides (VWR) previously custom-coated
with gelatin (Sigma-Aldrich), left to dry for 30min and stored
at −20◦C until stained. Cryoslices were left to re-equilibrate at
room temperature for 5min while single slices boundaries were
drawn with a pap-pen (Ted Pella). Samples were permeabilized
in 0.5% v/v Triton-X-100 (Sigma–Aldrich), rinsed once in PBS
and incubated in blocking buffer containing 5%w/v BSA (Sigma–
Aldrich) before the incubation with the primary and secondary
antibodies (Table 1 for complete list of reagents). Samples were
mounted with 2.5 µl of ProLong gold antifade (Thermo Fisher
scientific) on each slice of sample, covered with a coverslip
(VWR) and left to cure for 1 h at room temperature and then
overnight at+4◦C.

RNA Isolation and Gene Expression
Analysis
The gels were washed once in PBS, mechanically digested and
then incubated with 1ml of alginate dissolving buffer (0.055M
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FIGURE 1 | The inhibitory effect of early HP stimulation on chondrogenesis of MSCs. Schematics depicting (A) the sample preparation procedure and (B) the

experimental design. (C) Qualitative analysis of MSC viability after 7 days of dynamic culture. Live cells stained in green, dead cells in red. Scale bar 100µm.

(D) Chondrogenic gene expression levels relative to the SOFT FS group. MSCs were cultured for 7 days in presence of chondrogenic factors and HP stimulation. FS,

Free Swelling group; HP, Hydrostatic Pressure group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

sodium citrate, in 0.03 EDTA, 0.15M NaCl, pH 6.8 (all Sigma–
Aldrich) for 10min at 37◦C. Samples were then centrifuged for
2min at 10,000 rpm, rinsed in PBS and centrifuged for 2min
at 14,500 rpm. The resulting pellets were lysed with 350 µl of
RLT buffer containing 1% β-Mercaptoethanol with the latter
addition of 540 µl of RNA-free water and 10 µl of Protease

K solution (Qiagen) and kept for 10min at 55◦C. Total RNA
was extracted using the RNeasy Mini Kit (Qiagen) following
manufacturer instructions, snap frozen in liquid nitrogen and
stored at−80◦C. Polymerase chain reaction (PCR) with a high
capacity cDNA reverse transcription kit (Thermofisher) was
conducted to transcribe 300 ng of RNA from each sample into
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cDNA. After cDNA quantification with Qubit ssDNA Assay kit
(Thermofisher), levels of gene expression were measured with
real-time PCR (ABI 7500-fast, Applied Biosystems) using SYBR
green master mix (Applied Biosystems) and porcine specific
primers (Table 2). The relative quantity of each sample was
calculated with the Pfaffl (2001) method with reference to 18 S
and B2M and expressed as fold change to the control group
(specified in each figure legend). Efficiency of all primer pairs
were calculated by serial dilutions of cDNA reverse transcribed
from RNA isolated from day 7 porcine MSC pellets cultured
in CDM.

Image Quantification
Samples were imaged the day after the staining with a Leica
SP8 scanning confocal microscope (equipped with lasers for 405,

TABLE 1 | List of antibodies and toxins.

PRIMARIES

Rabbit polyclonal anti-NCAD 1:150 Abcam ab18203

Rabbit polyclonal anti-SMAD 2/3 1:200 Santa Cruz sc8332

Rabbit monoclonal anti-VIMENTIN 1:500 Abcam ab92547

Rabbit polyclonal anti-HDAC4 1:200 Santa Cruz sc11418

SECONDARIES

Goat anti-rabbit Alexa-488 1:500 Thermo Fisher a11008

Goat anti-mouse Alexa-488 1:500 Thermo Fisher a21202

Goat anti-mouse Alexa-594 1:500 Thermo Fisher a21203

Phalloidin-iFluor 647-cytopainter 1:1500 Thermo Fisher ab176759

DAPI 0.1 µg ml−1 Thermo Fisher D1306

488, 552, and 638 nm and 3PMT detectors) with X 10, 20, or
X 40 (1.3 numerical aperture, oil-immersion) objective lens. Z-
stack images were acquired with an interval of 1µm, using the
same exposure, gain and offset values for all conditions in the
same experiment. Pictures were taken from three random areas
of each sample. These parameters were set based on positive
controls expressing the protein of interest, and negative controls
obtained by omitting the primary antibody. SMAD 2/3, HDAC 4
nuclear quantification and NCAD cytosolic quantification were
calculated using a custom-made code for FIJI 3D Image Suite for
the 3D mask generation, followed by the formula:

∑f

nuc
/Vnuc or

∑f

cyto
/Vcyto

Where
∑f

nuc and
∑f

cyto represent the sum of the background-
corrected intensity values for the voxels in the nuclear and
cytoplasmic region respectively, while Vnuc and Vcyto the volume
of the corresponding regions.

Statistical Analysis
Statistical analyses were performed on three independent trials
using one- or two-way analysis of variance (ANOVA) followed
by Tukey post-hoc test [GraphPad Prism 6.0 statistical software
(GraphPad Software)]. Significance was accepted at a level of p
< 0.05. Numerical and graphical results are presented as mean±

standard deviation.

TABLE 2 | List of specific primers for real time PCR.

Gene name Gene full name Forward/Reverse T(◦C) in use T(◦C) predicted Gene ID Gen bank no.

B2M Beta-2-microglobulin F:5′ ACTGAGTTCACTCCTAACG 3′ 60 54.2 397033 NM_213978

R:5′ TGCAGCATCTTCATAATCTC 3′ 58

18S Ribosomal protein S18 F:5′ CAACACCACATGAGCATATC 3′ 60 59 396980 NM_213940

R:5′ AGAAGTTCCAGCACATTTTG 3′ 59.4

ACAN Aggrecan F:5′ CACCCCATGCAATTTGAG 3′ 60 62.6 397255 NM_001164652

R:5′ AGATCATCACCACACAGTC 3′ 55.5

SOX9 SRY-box 9 F:5′ GACTGCTGAATGAGAGCGAGA 3′ 60 59.87 396840 NM_213843.2

R:5′ GAAGATGGCGTTGGGAGAGAT 3′ 59.86

CDH2 Cadherin 2 F:5′ AGGTTTGCCAGTGTGACTCC 3′ 60 60.18 100515322 XM_021096205.1

R:5′ TCTCGGCGCTTCATCCATAC 3′ 59.97

COL1 Collagen type I alpha 1 chain F:5′ TAGACATGTTCAGCTTTGTG 3′ 60 56.4 100738123 XM_021067153

R:5′ GTGGGATGTCTTCTTCTTG 3′ 57.1

COL2 Collagen type II alpha 1 chain F:5′ CGACGACATAATCTGTGAAG 3′ 60 58.3 397323 XM_001925959

R:5′ TCCTTTGGGTCCTACAATATC 3′ 59.3

COLX Collagen type X alpha 1 chain F:5′ CCAACATCCAGAATCCATC 3′ 60 60.04 448809 NM_001005153

R:5′ GTAGGTGTTTGGTATTGCTC 3′ 59.3

RUNX2 Runt related transcription factor 2 F:5′ CCAACAGAGGCATTTAAGG 3′ 60 59.7 100155806 XM_003482202

R:5′ CCAAAAGAAGTTTTGCTGAC 3′ 59
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RESULTS

The Early Application of Cyclic Hydrostatic
Pressure Inhibits the Chondrogenic
Commitment of MSCs
To understand the role of HP in regulating the initiation
and progression of chondrogenesis, MSCs were encapsulated
within soft (5.2 ± 0.7 kPa) or stiff (17.5 ± 1.8 kPa) 3D IPN
hydrogels and subjected to HP and TGF-β3 (10 ng/ml within
the culture media) stimulation. In agreement with our previous
findings, the softer 3D IPNs were more supportive of MSC
chondrogenic differentiation. To facilitate construct handling
during the loading phase, the 3D IPN samples were embedded
into agarose blocks, placed into cell-culture bags and loaded at
a frequency of 1Hz for 4 h/day at 2 MPa (Figure 1A). A first
set of studies were conducted in presence of TGF-β3 for 7 days
(Figure 1B), while in the second set of studies MSCs were first
cultured for one week in presence of TGF-β3, followed by a week
of HP stimulation in presence of the same chondrogenic factor
(Figure 1B). Sample handling and HP loading didn’t cause any
detrimental effect on cell viability (Figure 1C, day 7+HP+TGF-
β3). In free swelling conditions, higher expression of ACAN,
COL2, CDH2 and COLX were observed in the softer hydrogels
after 1 week of culture (Figure 1D). However, the application
of TGF-β3 + HP stimulation reduced the expression of ACAN,
COL2, CDH2 and COLX when MSCs were encapsulated within
the softer IPN hydrogels (Figure 1D). In the stiffer hydrogels,
HP reduced the expression of CDH2 and COLX (Figure 1D).
The already low levels of ACAN and COL2 expression in the stiff
hydrogels were not further reduced by the application of HP.

The suppression of chondrogenesis following the immediate
application of HP to the soft hydrogels correlated with a
reduction in the nuclear levels of SMAD 2/3 (Figure 2A) and a
minor reduction in NCAD expression (Figure 2B). An opposite
effect was observed in the stiffer hydrogels, where the application
of HP was observed to increase nuclear SMAD 2/3 levels
(Figure 2A) and total NCAD (Figure 2B) secretion, although the
overall levels of both proteins remained lower when compared to
the soft hydrogels.

Early HP Stimulation Suppresses MSCs
Condensation and Is Associated With
Osteogenesis and Cytosolic HDAC4
Localization
To understand the mechanism of HP mechanotransduction, this
study next sought to analyze morphological changes in MSCs
cultured in soft and stiff hydrogel environments and exposed
to TGF-β3 and HP. The intermediate filament architecture, in
particular the vimentin network of MSCs, has been shown to
remodel under the action of HP (Steward et al., 2012a; Stavenschi
and Hoey, 2019). Although assessed only qualitatively, vimentin
seemed to form a less interlaced network when exposed to HP
and this correlated with a decreased cell sphericity (Figure 3A).
Surprisingly, the volume of cells seeded into a soft 3D IPN
reduced significantly under HP stimulation, while such changes
in cell size were not observed in the stiffer hydrogels (Figure 3A).

Furthermore, following the application of HP cell aggregation in
the soft matrix was impaired, while no evident effect on cellular
aggregation was observed in the stiffer 3D IPN (Figure 3B).
Although HP didn’t significantly affect the tendency of cells to
aggregate/condense in the stiffer 3D IPN, the average distance
between single cells increased in both soft and stiff hydrogels after
HP stimulation (Figure 3B).

To further investigate how HP impaired MSCs
chondrogenesis, the expression of key osteogenic and
hypertrophic markers was next studied. HDAC4 is known
to be a potent regulator of chondrocyte hypertrophy by
inhibiting RUNX2 expression (Pei et al., 2009; Studer et al.,
2012). Nuclear HDAC4 levels were higher in soft gels compared
to stiff gels. The early application of HP was observed to reduce
HDAC4 nuclear localization in MSCs encapsulated in both soft
and stiff hydrogels (Figure 4A). Furthermore, the application of
HP enhanced the expression of RUNX2 and COL1 in the soft
hydrogels, while no significant effect was observed in the stiffer
gels (Figure 4B).

A Delayed Exposure to HP Enhances
Chondrogenesis of MSCs
To assess whether a delayed exposure to HP would enhance
the chondrogenic differentiation of MSCs, cells were cultured
for 1 week in free swelling chondrogenic conditions (+TGF-
β3), followed by a week of HP stimulation in the same media
conditions. In this case, the application of HP had no (positive or
detrimental) effect on the expression of SOX9, ACAN and COL2
in MSCs encapsulated within the soft 3D IPN, although it did
suppress the expression of COLX. In contrast, HP enhanced the
expression of SOX9, ACAN, and COL2 in MSCs encapsulated
within the stiffer matrix which was previously found to be
less supportive of a chondrogenic phenotype (Figure 5A).
From a morphological standpoint, HP promoted cell volume
expansion in the softer 3D IPN, but not in the stiffer hydrogel
(Figure 5B). Surprisingly, an increase in cell aggregation with the
application of delayed HP was only observed in the softer matrix
(Figures 5C,D).

DISCUSSION

It has been previously demonstrated by our lab that physiological
levels of cyclic HP stimulation have beneficial effects on
the long term chondrogenic commitment of bone marrow
derived MSCs (Meyer et al., 2011; Carroll et al., 2013; Steward
et al., 2014b). However, the mechanism by which matrix
stiffness and HP interact to regulate MSC commitment remains
poorly understood. This study confirms that a biomaterial able
to facilitate cell-cell interactions and aggregation over time
creates a supportive environment for MSC chondrogenesis,
and that applying cyclic HP one week after the initiation
of chondrogenesis can further enhance this process and
promote a more stable cartilage phenotype. In contrast, the
application of HP at the onset of MSC differentiation inhibited
chondrogenesis and promoted a more osteogenic phenotype. In
these studies, early HP stimulation was associated with vimentin
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FIGURE 2 | The influence of HP on nuclear SMAD 2/3 and NCAD levels in MSCs cultured within soft and stiff IPN hydrogels. Confocal analysis of MSCs cultured for 7

days in presence of TGF-β3+HP. Cells stained for nuclei (blue), actin (magenta) and (A) SMAD 2/3 (gray) or (B) NCAD (cyan). Scale bars, 10µm. Quantitative analysis

of confocal images to determine the fold change of (A) the nuclear content of SMAD 2/3 and (B) NCAD expression. *p < 0.05, **p < 0.01, ****p < 0.0001.

remodeling, cell volume restriction and a reduced degree of cell
condensation. In contrast, when MSCs were allowed to first
initiate chondrogenic differentiation in free swelling conditions
(i.e., one week of TGF-β3 supplementation), the application of
HP no longer suppressed chondrogenesis. Indeed, such a delayed
mechanical stimulation was found to enhance cell aggregation,
suppress markers of hypertrophy in the soft 3D IPN and enhance
the expression of chondrogenic genes in the stiff hydrogels. These
findings highlight that cyclic HP can directly modulate MSC fate
in a manner that depends on substrate stiffness and timing of HP
exposure. Altogether these studies provide a novel platform for

MSCs differentiation analysis and may open new possibilities to
develop loaded-assisted cartilage tissue engineering strategies.

The early application of HP, combined with TGF-β3
supplementation, was associated with a decrease in cell
aggregation and a downregulation in chondrogenic markers
within the soft 3D IPN. This correlated with a reduction in the
nuclear levels of SMAD 2/3 and a reduced production of NCAD.
In vitro, MSCs chondrogenic differentiation is elicited by cell
condensation, which is mediated by NCAD (Kwon et al., 2018).
However, as cells become chondrogenic, the expression of NCAD
decreases (Kwon et al., 2018). Cells undergoing condensation
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FIGURE 3 | HP stimulation inhibits MSCs aggregation. (A) Confocal analysis of MSCs cultured for 7 days in presence of TGF-β3 and HP. Cells stained for nuclei

(blue), actin (magenta) and vimentin (green). Scale bar, 10µm. Graphs reporting the values of sphericity and volume of single cells embedded into 3D IPN. (B) Average

percentage of cell aggregates per field of view after 7 days of culture and cell-cell distance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

activate the SMAD2/3 complex, which translocates to the nuclear
compartment where it regulates SOX9 expression, which in
turn controls the transcription of the major cartilage matrix
proteins COL2 and ACAN (Woods et al., 2007). In this study,
the application of HP reduced the mRNA levels of ACAN,
COL2 and COLX in MSCs maintained in a soft matrix to levels
comparable to that in a stiffer, unloaded, environment. The early
application of HP to the stiffer 3D IPN, which is an inherently less
chondro-supportive environment, was unable to trigger a more
robust chondrogenic response, despite increases in SMAD2/3
nuclear localization.

Both matrix stiffness and HP were observed to play a role in
vimentin remodeling and the morphology of the encapsulated
MSCs. It is know that vimentin architecture changes upon HP
stimulation, both in 2D and 3D cell culturemodels (Steward et al.,
2012b; Stavenschi and Hoey, 2019), and it has been hypothesized
that HP could induce its depolymerisation(Steward et al., 2012b;

Pattappa et al., 2019). In vivo, vimentin increases cytoplasmic
elasticity and plays a role in the alignment of cell traction forces
needed for directed mesenchymal migration; from rheology
measurements, its network is known to be easily deformable
and able to withstand high strains without breaking (Janmey
et al., 1991; Guo et al., 2013; Costigliola et al., 2017). The early
application of HP was also found to reduce cellular volume in
the soft hydrogel environment. Cellular size control has been
shown to be a robust modulator of MSC and chondrocyte
fate. MSC volume expansion has been correlated to osteogenic
differentiation, whilst chondrocyte confinement is associated
with reduced secretion of cartilage matrix proteins and the
promotion of a more catabolic phenotype (Lee et al., 2017, 2019).
The results of this study suggest a possible interplay between
vimentin pressure-induced changes and cell volume adaptation,
although further studies are required to firmly established such
a link. A deeper understanding of the interdependency of
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FIGURE 4 | HDAC4 nuclear localization in MSCs is responsive to HP stimulation. (A) Evaluation of HDAC4 localization and nuclear content. Cells stained for nuclei

(blue), actin (magenta) and HDAC4 (yellow). Scale bar, 10µm. (B) Day 7 gene expression relative to SOFT FS group. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.

vimentin remodeling, cell volume adaptation and cell migratory
behavior would be of benefit in developing loading-inducedMSC
differentiation strategies.

The nuclear localization of HDAC4 was found to depend
on both substrate stiffness and hydrostatic pressure, suggesting
HDAC4 shuttling during chondrogenesis is sensitive to such
mechanical cues. It is known that mechanical perturbations
can alter the state of the nucleus and in some cases physical
signals reach the nucleus before soluble cues (Wang et al., 2009;
Aragona et al., 2015; Driscoll et al., 2015). For instance, fluid
flow induced shear stress has been shown to modulate chromatin
condensation and increase nuclear stiffness in endothelial cells
(Deguchi et al., 2005). Twisting the cytoskeleton via magnetic
beads has been shown to cause direct force transmission to
the nucleus and elicit local chromatin remodeling (Iyer et al.,
2012). Histone deacetylases (HDACs) participate in epigenetic

regulation by keeping the chromatin in a highly packed form,
wrapped around histones (Haberland et al., 2009). In particular,
HDAC4 is a potent regulator of chondrocytes hypertrophy
and its nuclear transport is initiated by TGF-β through the
activation of SMADs complexes (Vega et al., 2004; Studer et al.,
2012; Wang et al., 2014). Subcellular relocation of HDAC4 can
be modulated by physical signals; indeed compressive loading
of chondrocytes has been shown to induce HDAC4 nuclear
import and gene regulation (Chen et al., 2016). Although the
role of HP on HDAC4 shuttling is not clear in the literature,
our findings suggest that both a stiffer substrate and early
HP exposure might inhibit the nuclear import of HDAC4.
HP stimulation was associated with reduced nuclear HDAC4
in MSCs encapsulated within both soft and stiff hydrogels,
although increases in RUNX2 and COL1 were only observed
in the softer hydrogels, confirming the detrimental effect of
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FIGURE 5 | Delayed exposure to HP enhances chondrogenesis. (A) Gene expression analysis of MSCs cultured for 1 week in presence of TGF-β3 followed by 1

week of HP and TGF-β3. (B) Graphs reporting single cell volume after 14 days of culture. (C) Representative images of cell aggregates and (D) their quantification.

Cells stained for actin (magenta). Scale bar 100µm, *p < 0.05, **p < 0.01, ****p < 0.0001.

early HP on chondrogenic differentiation in this model system.
It is possible that MSCs grown in the soft 3D IPN might be
more sensitive to HDAC4 shuttling than cells experiencing
a stiffer environment, which already demonstrated lower
levels of nuclear HDAC4. Although these findings linked

for the first time the role of substrate stiffness and HP as
possible regulators of HDAC4 during MSC chondrogenic
differentiation, more investigations would be needed to
understand how these physical stimuli interact to control
HDAC4 behavior.
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The delayed application of HP was associated with increased
cellular aggregation for MSCs grown in soft hydrogels and an
upregulation of SOX9, ACAN and COL2 in cells encapsulated
within stiffer matrices. The delayed application of HP was also
found to reduce the expression of COLX in MSCs encapsulated
within soft 3D hydrogels. At this stage of differentiation (day
14) a reduction of COLX may be indicative of this mechanical
stimulus suppressing hypertrophy and progression along an
endochondral pathway (Caron et al., 2012). The dynamics of
cellular condensation within these IPN hydrogels may play a key
role in determining the temporal response of chondrogenically
primed MSCs to HP. It has been previously shown that MSCs
cultured in the form of pellets positively responded to HP
stimuli (Miyanishi et al., 2006). MSCs cultured as pellets are
forced to aggregate at the onset of chondrogenesis. In contrast,
MSCs encapsulated in hydrogels are initially relatively isolated,
but in response to TGF-β3 stimulation begin to undergo
chondrogenesis. As part of this process, and particularly in the
soft IPN that supports robust chondrogenesis, MSCs began to
form aggregates within the hydrogel. It is possible that early
stimulation with HP might have suppressed MSC aggregation
[especially for our low seeding density relative to other 3D
hydrogel studies (Wagner et al., 2008; Meyer et al., 2011; Steward
et al., 2012a, 2014a; Carroll et al., 2013)], whilst delaying HP to
first allow MSCs to condensate might have supported the more
beneficial response to this mechanical stimulus that is typically
reported in the literature. Interestingly, the delayed application
of HP to MSCs maintained in soft matrices promoted cellular
volume expansion, while a reduction in cell volume was observed
for MSCs kept in the stiffer hydrogels. Previous studies have
linked the confinement of chondrocyte volume to an inhibition
of cartilage matrix production (Lee et al., 2017). Although not
directly examined, it is possible that volume regulation plays a key
role in the mechano-transduction of HP, however this hypothesis
needs further examination.

A limitation of this study, from a translational perspective,
is our use of porcine MSCs as a model system to explore how
hydrostatic pressure regulates the initiation and progression
of stem cell chondrogenesis. The capacity of porcine MSC to
undergo chondrogenesis has been demonstrated in previous
studies (Thorpe et al., 2012; Vinardell et al., 2012b; Daly et al.,
2016) (see also Supplementary Figure 1). MSCs of porcine
origin have been suggested to provide a useful animal model
system to evaluate tissue engineering strategies (Ringe et al.,
2002), since their genetics, anatomy and physiology are similar
to humans (Vacanti et al., 2005). Another advantage of using
relatively young, healthy porcine MSCs for such studies is
that they typically possess a consistent, predictable phenotype
when exposed to differentiation factors, which facilitates the
exploration of how biophysical cues such as hydrostatic pressure
regulate their fate. Future studies should, however, confirm
the findings of this study using human MSCs. A key part of
such a study would be to explore the extent of donor-to-donor
variability in the response of MSCs to mechanical cues such as
HP, which was not undertaken in this study. Finally, an analysis

of the long-term phenotypic stability of chondrogenically primed
MSCs that are co-stimulated with HP is warranted, as such cues
could help promote a stable chondrogenic phenotype.

To conclude, in presence of TGF-β3, the application of
2 MPa of HP for 4 h per day applied at the onset of
chondrogenesis (from day 0 to day 7 of culture) generally
inhibited cellular condensation and MSC chondrogenesis. In
contrast, the application of HP from day 7 to day 14 of culture
generally enhanced chondrogenesis of MSCs. Although the
supplementation of a supra-physiological level of TGF-β3 is a
potent regulator ofMSC chondrogenesis, mechanical stimulation
can positively or negatively modulate its effect depending on the
timing of its application. In the context of cartilage regeneration,
this study demonstrates that physical stimuli such as matrix
stiffness and HP are fundamental regulators of MSC fate, whose
interaction must be carefully considered to successfully engineer
functional cartilaginous tissues.
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