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Abstract
Gluten is a mixture of storage proteins in wheat and occurs in smaller amounts in other cereal grains. It provides favorable
structure to bakery products but unfortunately causes disease conditions with increasing prevalence. In the human gastrointestinal
tract, gluten is cleaved into proline and gluten rich peptides that are not degraded further. These peptides trigger immune
responses that might lead to celiac disease, wheat allergy, and non-celiac gluten sensitivity. The main treatment option is a
gluten-free diet. Alternatively, using enzymes or microorganisms with gluten-degrading properties might alleviate the disease.
These components can be used during food production or could be introduced into the digestive tract as food supplements. In
addition, natural food from the environment is known to enrich the microbial communities in gut and natural environmental
microbial communities have high potential to degrade gluten. It remains to be investigated if food and environment-induced
changes in the gut microbiome could contribute to the triggering of gluten-related diseases.

Key points
• Wheat proteins, gluten, are incompletely digested in human digestive tract leading to gluten intolerance.
• The only efficient treatment of gluten intolerance is life-long gluten-free diet.
• Environmental bacteria acquired together with food could be source of gluten-degrading bacteria detoxifying undigested
gluten peptides.
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Introduction

Gluten is a mixture of grain storage proteins in cereal grains. The
major gluten source in the human diet is wheat, domesticated
approximately 10,000 years ago when hunter-gatherers settled in
the Middle East. Since then, wheat has been an integral part of
the Western type of diet. The dough made from wheat flour has
unique baking qualities which provides it with advantages over
other crops in temperate regions. The properties of wheat dough
depend on the major grain endosperm storage proteins, which
together form the “gluten” protein fraction. The major compo-
nents of gluten are responsible for providing “viscoelasticity”
while making leavened bread, but also unleavened bread, cook-
ies, pasta, and many other food products. As a consequence, the

total protein concentration in the grain is the most widely applied
criteria for wheat baking quality, and an important factor in the
price of wheat (Barneix 2007).

Despite 10,000 years of coexistence, gluten-rich food is
new for humans—we lack the enzymes that can fully degrade
gluten proteins. As a consequence, consumption of wheat
products may trigger an autoimmune enteropathy, celiac dis-
ease (CD), in genetically susceptible individuals. The genetic
predisposition depends on the human leukocyte antigen
(HLA) type, specifically the DQ2 or DQ8 alleles (Van Heel
et al. 2007; Dubois and Van Heel 2008). However, it has been
shown that only 3% of genetically susceptible persons devel-
op the disease; therefore, possessing a predisposing HLA risk
allele is necessary but not sufficient to develop CD (Pozo-
Rubio et al. 2012; Chibbar and Dieleman 2019). A constant
increase in the prevalence of CD has been well documented,
and while some of this increase can be attributed to improve-
ments in the complex diagnostic procedures (Kelly et al.
2015), it is also evident that the prevalence of CD is growing
worldwide. This can be related to changes in our diet and
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environmental factors: the increased quantity of ingested glu-
ten, infant feeding patterns, the spectrum of intestinal infec-
tions, and gut microbiota colonization (Mustalahti et al. 2010;
Dydensborg et al. 2012; Chan et al. 2017; Dydensborg Sander
et al. 2019). Moreover, new diseases related to wheat con-
sumption have emerged such as wheat allergy (WA) and
non-celiac gluten sensitivity (NCGS) (Inomata 2009; Sapone
et al. 2011; Pietzak 2012). Together with CD, these disorders
are referred to as gluten intolerance.

The only effective way for CD treatment is a life-long
gluten-free diet. The products that have been specially proc-
essed to reduce the gluten content can be labeled “gluten-free”
if the total gluten content is below 20 mg/kg. Maintaining a
gluten free diet is problematic, because it is often not commer-
cially accessible to everyone (Newberry 2019). In addition,
small amounts of the gluten components can still be present
in food due to either inefficient processing or cross-contami-
nation. Therefore, alternative strategies are needed.

Recent research has shown that gluten and gluten-derived
peptides can be degraded by peptidases from different
sources. These peptidases can either be used to produce
gluten-free foods from gluten-containing raw materials
(Rizzello et al. 2007), or they have been suggested as an oral
therapy for CD, in which dietary gluten is hydrolyzed by
coingested peptidases already in the mouth or stomach, thus
preventing CD-specific immune reactions in the small intes-
tine. Oral enzyme therapy is considered a promising candidate
to assist gluten-free diet (Plugis and Khosla 2015). Glutenases
used for this purpose originate from environmental species of
bacteria, fungi, plants, and insects.

A promising approach involves relying on living microor-
ganisms to alleviate the gluten-triggered conditions. Here, we
review potential microbes that could be used for this purpose
and discuss the sources that could be relevant for enrichment
of food with gluten-degrading microbes.

Gluten

Wheat is currently the most important crop in the world and
together withmaize and rice accounts for over 70% of the total
production of cereals. About 95% of the wheat grown world-
wide is hexaploid, with most of the remaining 5% being tet-
raploid durum wheat, also termed pasta wheat, which is most-
ly cultivated in the dryMediterranean region. Hexaploid bread
wheat (Triticum aestivum L. ssp. aestivum) derives its three
genomes (A, B, and D) from three diploid wild ancestors:
Triticum urartu (AA), an unknown close relative of
Aegilops speltoides (BB), and Ae. tauschii (DD) (Marcussen
et al. 2014). The initial allopolyploidization event is hypothe-
sized to have involved the A and B genome donors, giving rise
to tetraploid emmer wheat (T. turgidum; AABB). This species
subsequently hybridized with the D genome donor Ae.

tauschi i to form modern hexaploid bread wheat
(AABBDD). Durum wheat Triticum turgidum L. spp.
dicoccum, genome AABB is derived from the ancient T.
turgidum (AABB) (Mefleh et al. 2019). Therefore, the wild
emmer wheat is the progenitor of both cultivated hexaploid
bread wheat and tetraploid pasta wheat.

Although the protein content in cereal grains is relatively
low (about 10–20% of dry weight), in modern wheat, 80–
90% of the total protein is gluten (Bromilow et al. 2017). The
precise number of different gluten proteins present in mature
seeds can vary, but is probably between 50 and 100.
Traditionally, gluten proteins have been classified into roughly
equal fractions according to their solubility in alcohol–water
solutions (e.g., 60% ethanol): the soluble gliadins and the insol-
uble glutenins (Obsborn 1924). However, based on their com-
position, both gliadins and glutenins can be referred to as pro-
lamins. The gliadins comprise monomeric subunits which are
further classified into α-, γ-, and ω-gliadin fractions. The
glutenins comprise two groups of subunits, high molecular
weight (HMW) and low molecular weight (LMW) glutenin
subunits, which form alcohol-insoluble polymers stabilized by
inter-chain disulfide bonds. However, amino acid sequences
show that gliadins and glutenin subunits are related.
Therefore, a new classification divides all prolamins into three
groups in relation to structural and evolutionary relationships:
sulfur-rich (S-rich); sulfur-poor (S-poor); and high molecular
weight (HMW) prolamins (Shewry and Tatham 1990;
Shewry and Halford 2002) (Table 1.). A characteristic of all
prolamins is the presence of large domains of short repetitive
peptide sequence motifs dominated by proline and glutamine
residues. An important feature is the presence of cysteine resi-
dues that link prolamin proteins through intra- or intermolecular
disulfide bonds, forming a continuous network in dough.

In addition to wheat, a prolamin fraction also exists in
related cereal grains that belong to the family Poaceae such
as rye (Secale cereale) (secalin), barley (Hordeum vulgare)
(hordein), and oat (Avena sativa) (avenin) albeit in much low-
er quantities. The sequences within these proteins are similar,
but unique bread making properties are provided only by
wheat gluten and to a limited extent rye gluten.

Gluten-related disorders

The extensive proline- and glutamine-rich repeated sequences
of wheat seed storage proteins are responsible for bread quality,
yet unfortunately play a crucial role in triggering hypersensitiv-
ity reactions such as celiac disease (CD), wheat allergy (WA),
and non-celiac gluten sensitivity (NCGS) (Scherf et al. 2016).

Celiac disease

Celiac disease (CD) is an autoimmune enteropathy caused by
genetic and environmental factors with an estimated
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worldwide prevalence of about 1% of the global population
(Mustalahti et al. 2010). The symptoms are malabsorption,
steatorrhea, weight loss, or growth failure (Kelly et al.
2015). Ingested food proteins are usually digested into amino
acids, dipeptides, and tripeptides by gastric, pancreatic, and
brush border proteases. Proline-rich sequences of prolamines
are partially resistant to enzymatic degradation in the gastro-
intestinal tract that results in relatively long peptide fragments.
These undigested proline- and glutamine repetitive peptide
fragments pass through the epithelial barrier of the small in-
testine and reach the lamina propria where transglutaminase
(tTG) deaminates the selected glutamine residues, thereby en-
hancing their affinity to the HLA receptors, DQ2, and DQ8
(Schuppan 2000). The presentation of peptides to HLA-DQ2/
DQ8 protein subunits on the surface of antigen-presenting
cells (APC) in the presence of gluten-specific T cells induces
both adaptive as well as an innate immune response in CD
patients. The characteristics of CD are crypt hyperplasia, in-
creased infiltration villous atrophy, increased lymphocyte in-
filtration and the stimulation of CD4+ T cells against gluten
epitopes, and the production of tTG targeting autoantibodies
(Dewar et al. 2004).

All gluten proteins (gliadin and glutenin from wheat,
hordein from barley, secalin from rye, and avenin from oat)
possess their own sets of toxic and immunogenic peptides (or

epitopes) with distinct immunogenicity. However, gliadin
peptides are known to be the most toxic and numerous, spe-
cifically derived fromα- and γ-gliadin: the strongest and most
common adaptive response to gluten is directed toward anα2-
gliadin fragment of 33 amino acids in length containing six
partially overlapping immunodominant CD epitope regions
(Shan et al. 2002; Camarca et al. 2009) (Figs. 1 and 2). α-
gliadins genes from diploidAegilops tauschii (DD) introduced
six types of α a-gliadins (named 1–6) into the currently used
hexaploid wheat (AABBDD) (Ozuna et al. 2015; Schalk et al.
2017). Distinct types ofα-gliadins differ mainly in the number
of repeat blocks that contain the interspersed motifs PFPPQQ
and PYPQPQ. Only type 1 α-gliadins contain the full
immunodominant 33-mer epitopes.

Wheat allergy

Wheat flour-triggered IgE-mediated food allergy is one of the
top eight food allergies reported 0.2–1.0% globally
(Cianferoni 2016). Wheat allergy (WA) is classified as a clas-
sic food allergy that is induced by wheat (not only gluten)
intake and involves subtypes such as immediate wheat allergy,
baker’s asthma, wheat contact dermatitis, and wheat-
dependent exercise-induced anaphylaxis (Roszkowska et al.
2019). WA typically develops in childhood during early

Table 1 Classification of gluten prolamins from wheat, barley, rye, and oat, based on Shewry and Halford (2002), Wieser and KoeHler (2012), and
Shewry (2019)

Type of gluten prolamins Partial amino acid
composition (mol %)

Components State Repetitive unit Proportion of
prolamin
fraction (%)

Grain species

HMW prolamins 30–35% glutamine,
10–16% proline,
15–20% glycine,
0.5–1.5% cysteine,
0.7–1.4% lysine

HMW subunit of glutenin Polymeric QQPGQG;
GYYPTSPQQ

6–10% Wheat

D-hordein Polymeric QQPGQG 2–4% Barley

HMW secalin Polymeric QQPGQG 2% Rye

S-rich prolamins 30–40% glutamine,
15–20% proline,
2–3% cysteine,
<1% lysine

γ-gliadin Monomeric PQQPFPQ 70–80% Wheat
α-gliadin Monomeric QPQPFP; PQQPY

B- and C-type LMW
subunit of glutenin

Polymeric QPQQPFP

B-hordein Monomeric QQPFPQ 80% Barley
γ-hordein Polymeric QPQQPFP

γ-secalins Poly/Monomeric (Q)QPQQPFP 80% Rye

S-poor prolamins 40–50% glutamine,
20–30% proline,
0–0.5% lysine,
0 cysteine,
1 cysteine residue
in D-type LMW
subunit

ω-gliadin Monomeric PQQPFPQQ 10–20% Wheat
D-type LMW subunits

of glutenin
Polymeric PQQPQQ

C-hordein Monomeric PQQPFPQQ 10–15% Barley

ω-secalin Monomeric QPQQPFP 10–15% Rye

Other gluten prolamins 23–29% glutamine,
8–10% proline,
6.5–8.5% valine,
3.5–5% cysteine

Avenin Monomeric PFVQQQQ a Oat

S-rich, sulfur-rich; S-poor, sulfur-poor; HMW, high molecular weight; LMW, low molecular weight; a, 10–20% of total proteins (Anderson 2014)
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infancy and is frequently outgrown between the ages of 3 and
5 (Patel and Volcheck 2015).

IgE-mediated food allergies have been associated with sen-
sitization to particular cereal storage prolamins or the non-
gluten proteins within wheat, α-amylase inhibitors,
thioredoxin, lipid transfer protein, profilin, and serpin, among
others (Matsuo et al. 2015). A major allergenic protein from
wheat is the ω5-gliadin repetitive region that consists almost
entirely of the peptides FPQQQ and QQIPQQ (Battais et al.
2005; Denery-Papini et al. 2011). Other prolamins have been
described to contain IgE binding epitopes including ω1, 2-
gliadins, α-gliadins, γ- gliadins, LMW, and HMW subunits
of glutenin (Denery-Papini et al. 2011; Battais et al. 2005).

Non-celiac gluten sensitivity

Non-celiac gluten sensitivity (NCGS) may be defined as a
gluten (wheat)-dependent disorder with symptoms similar to
CD (abdominal pain, discomfort, bloating, altered bowel hab-
it, and fatigue) but with mostly normal small intestinal histol-
ogy and lack of anti-tTG autoantibodies. Prevalence of NGCS
is highly variable 0.63–6.0% (although it is difficult to esti-
mate because the condition lacks specific biomarker(s))
(Sapone et al. 2012). Its pathogenesis is still not clear; gluten
triggers an innate immune response in NCGS and provokes an
additional adaptive immune response with increased expres-
sion of IL-6, IL-21, IL-17, and IFN-γ. NCGS is more fre-
quently diagnosed in adults rather than in children (Volta et
al. 2014). Symptoms disappear after starting on a gluten-free
diet and appear again after a gluten challenge within a few
hours or a couple of days (Catassi et al. 2013; Barbaro et al.
2018).

Peptidases able to degrade gluten

There is no cure for gluten intolerance disorders and the only
treatment option is avoiding gluten in food, although even this
does not eliminate all the symptoms. Providing enzymes able
to degrade gluten and the immunogenic peptides is being in-
vestigated as a complementary treatment option. Peptidases
can be used to eliminate gluten from food material (review
Scherf et al. 2018). In addition, peptidases given as oral ther-
apy have been tested to alleviate gluten-related conditions
(Cerf-Bensussan et al. 2007; Tye-Din et al. 2010; König et
al. 2017).

Enzymes that cleave the peptide bond are called peptidases
or proteases. These enzyme names are often used as syno-
nyms. Here, we call this class of enzymes peptidases. In the
digestive tract, peptidases are responsible for cleavage of
ingested proteins. Gluten-related health problems arise from
the inefficiency of peptidases to degrade the immunogenic
epitopes. Most peptidases, even those with low specificity,

are unable to hydrolyze peptide bonds formed by proline res-
idues due to the cyclic structure and the special constraints it
exerts on the peptide backbone structure. The N-terminal
amine of proline lacks a hydrogen, and the side chains are
typically in the cis conformation. These properties impair the
susceptibility of X↓P bonds (between any amino acid “X” and
proline residue “P”) to proteolytic cleavage.

There are several peptidases from different classes that
have been shown to degrade proline and gluten-rich prolamine
molecules with varying efficiently. Peptidases can either act
only near the ends of polypeptide chains (exopeptidases EC
3.4.11-19), or amidst polypeptide chains (endopeptidases EC
3.4.21-24 and EC 3.4.99). Here, we focus on endopeptidases
that are more effective at gluten degradation than exopepti-
dases (Table 2). We use the classification of peptidases
employed by MEROPS (http://merops.sanger.ac.uk.), a
comprehensive database containing information on peptidase
sequence, structure, substrates, and inhibitors (Rawlings et al.
2018).

Metallopeptidases

Family M4. Elastase (E.C.3.4.24.26) Among metallopeptidases
that degrade gluten, elastase LasB has gained significant at-
tention because it is an extracellular metallopeptidase excreted
from Pseudomonas aeruginosa that has been isolated from
human feces (Wei et al. 2015) and the duodenum of CD pa-
tients (Caminero et al. 2016). P. aeruginosa is an opportunis-
tic human pathogen that requires elastase to degrade mucins
and surfactant proteins (Kuang et al. 2011) and exogenous
flagellin which acts to prevent flagellin-mediated immune rec-
ognition (Casilag et al. 2015). Elastase LasB also efficiently
hydrolyses gluten molecules, but produces a multitude of
shorter immunogenic peptides that could activate gluten-
specific T-cells in CD patients. It has been shown in germ-
free mice that Lactobacillus rhamnosus and Lactobacillus
fermentum isolated from the duodenum of non-CD humans
degrade gluten peptides produced by P. aeruginosa pepti-
dases thereby reducing their immunogenicity (Caminero et
al. 2016). The peptidase activity was provided by the exopep-
tidases (of other peptidase families, not metallopeptidases)
that Lactobacillus spp. often produce.

Serine peptidases

Most of the gluten-degrading bacterial peptidases described so
far belong to the serine family of proteases.

Family S8. Subtilisin Peptidase family S8 contains the serine
endopeptidase subtilisin and its homologs that cleave after the
XPX↓ motif. Most of these enzymes are inefficient against
many immunogenic gluten sequences.
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However, the enzyme fromRothia spp. is active against the
33-mer immunogenic peptide. Rothia aeria is a commensal
bacterium that inhabits the human oral cavity and is active
over much of the intestinal pH range (pH 3–10)
(Zamakhchari et al. 2011). Rothia subtilisins are unique in that
they cleave both XPQ↓ and LPY↓.

Two S8 subtilisins from Bacillus licheniformis, subtilisin A
(sold by Sigma) and the food-grade Nattokinase (extracted
from a dietary food supplement), degrade the immunogenic
gliadin-derived 33-mer peptide and the immunodominant epi-
topes recognized by the R5 (QQPFP and related sequences)
and G12 (QPQLPY) antibodies. Nattokinase abolishes the R5

epitopes but is less effective in eliminating the G12 epitopes
(Wei et al. 2016).

Family S9, Serine-carboxyl peptidase (sedolisin,
E.C.3.4.21.100) Soil Actinomycete Actinoallomurus A8 pro-
duces extracellular sedolisin that has optimal pH around 3.
This enzyme cleaves both F↓P and Q↓L in the 33-mer as well
as intact gliadin proteins. Its recombinant active form has been
produced in Streptomyces lividans TK24, a strain generally
regarded as a safe (GRAS) and a source of proteins for human
alimentary use (Cavaletti et al. 2019).

Fig. 1 The resistance of gliadin to human proteolytic enzymes causes
inflammation in human small intestine. Partially digested gliadin
fragments cross the epithelium and reach the lamina propria. The most
toxic fragment contains 33 amino acid residues mostly proline and
glutamine. This peptide can bind to DQ2 molecules directly on the

surface of antigen presenting cells (APC) (Qiao et al. 2005). Tissue
transglutaminase (tTG) deaminates the glutamine residues to glutamic
acid, thereby enhancing their affinity to the HLA receptor DQ2, that
activates gliadin-specific T-cells. The result is chronic inflammation of
the intestinal mucosa
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Many natural sedolisins are not very efficient in degrading
gluten; however, it has been demonstrated that their properties
can be improved by engineering. Kumamolisin from
Alicyclobacillus sendaiensis, with an optimal pH around 3,
is a serine-carboxyl peptidase (S53) with collagenase activity
(Tsuruoka et al. 2003). After molecular engineering of
kumamolisin to shift its cleavage specificity from P↓R or
P↓K to P↓Q, a mutant termed Kuma030 with high proteolytic
activity against gluten was obtained (Gordon et al. 2012).

Family S9, subfamily S9A, prolyl oligopeptidase (POP,
E.C.3.4.21.26) These enzymes are specific for cleavage after
proline residues, thus making this group of peptidases very
synergistic with human digestive proteases. The S9A subfam-
ily of enzymes are also referred to as prolyl endopeptidases
(PEP). These enzymes have been extensively studied and are
already being developed for medicinal claims. POP from the
bacterium Sphingomonas capsulata (SC-PEP) (cleaves after
P) has been combined with the barley cysteine endopeptidase
PEP-B2 (cleaves after glutamine) to form a combined enzy-
matic activity that attacks the immunogenic peptides after the
most frequent amino acid residues (P and Q). This formula-
tion, developed under the name Latiglutanase, is expected to
provide synergy and create a more active medication
(Lähdeaho et al. 2014).

Generally, POP hydrolyses oligopeptides that consist of
less than 30 residues (Camargo et al. 1997). However, POP
from the thermophilic archaeon Pyrococcus furiosus has been
shown to cleave larger substrates (Harwood et al. 1997; Harris

et al. 2001). The Sphaerobacter thermophilus enzyme also
seems to cleave full intact gluten molecules, although the en-
zymatic assay was performed in a complex mixture that also
contains malt (Shetty et al. 2017). The POP studied so far
originate from a wide range of environmental bacteria and
archaea from phyla/class: Actinobacteria (Cellulomonas sp.),
Bacteroidetes (Flavobacterium meningosepticum ,
Chryseobacterium taeanense), Alphaproteobacteria
(Sphingomonas capsulata) , Deltaproteobacter ia
(Myxococcus xanthus), Chloroflexi (Sphaerobacter
thermophilus), and Euryarchaeota (Pyrococcus furiosus)
(Table 2). All these enzymes can detoxify the 33-mer peptide
but differ in their hydrolytic activity and stability under in
vitro artificial gastrointestinal conditions (acidic pH, pancre-
atic proteases, andmembrane peptidases of the small intestinal
mucosa).

Based on a bioinformatic analysis, Kaushik and
Sowdhamini (2014) showed that POP are widely distributed
in all classes of bacteria and archaea with diverse domain
architectures. Several of the proteins contain signaling pep-
tides for export, which suggests their periplasmic or extracel-
lular location (Table 2).

Unfortunately, the strains that produce promising POP en-
zymes cannot be used in the food industry because of their
environmental origin. Lactic acid bacteria are food-grade and
have beneficial gut properties and resistance to harsh gut con-
ditions. Recombinant Lactobacillus casei strains were con-
structed to deliver POP from M. xanthus to the gut. It was
found that the strain that secretes POP into the extracellular
medium more effectively degrades the 33-mer oligopeptide
compared to the strain that retained POP to the intracellular
environment. The probable reason is that the extracellular en-
zymes can directly attack the peptide and do not require up-
take events prior to cleavage (Alvarez-Sieiro et al. 2014).
Another group used Lactococcus lactis as delivery vector for
secreting F. meningosepticum POP into the growth medium
(Lim et al. 2017).

Other enzymes of nonhuman origin

It is expected that gluten degradation occurs in environments
where gluten occurs naturally, i.e., in cereal plant grains and in
organisms who use it as a food source. Endogenous cereal
proteases that hydrolyze storage proteins, including gluten,
are synthesized during germination. The well-studied cysteine
endopeptidase B2 of barley cuts at glutamine residues and
prefers intact proteins as a substrate (Bethune et al. 2006;
Osorio et al. 2019). A combination of the barley cysteine
endopeptidase EP-B2 with the bacterial POP from F.
meningosepticum-PEP has been proven to be effective in de-
toxifying gluten proteins. Site saturation mutagenesis effec-
tively increased the thermostability of F. meningosepticum-
PEP, which should allow it to maintain its enzymatic activity

Fig. 2 Proteolytic processing of the type 1 α2-gliadin. A 33-mer peptide
fragment is resistant to the proteolytic enzymes in the human gastrointes-
tinal tract. This peptide is the largest and most toxic degradation product.
It contains six partially overlapping immunodominant CD epitopes that
induce gluten-specific immune responses and intestinal inflammation
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in the core of bread during baking, where temperatures gen-
erally do not exceed 100°C (Osorio et al. 2020).

Gluten-degrading peptidases are also found in organisms
involved in the decomposition of organic matter. Family S28
prolyl endopeptidases from the fungus Aspergillus niger and
edible mushroom in the family Physalacriaceae, Flammulina
velutipes, are unique in the serine peptidase family because
they have endopeptidase activity that cleaves after XP (Edens
et al. 2005; Stepniak et al. 2006; Kang et al. 2013; Schulz et al.
2018). Aspergillus niger AN-PEP is active between a pH of 2
and 8, with an optimal activity between pH 4 and 5. It is not
degraded by pepsin, and thereby remains functional in the
stomach (Stepniak et al. 2006; Mitea et al. 2008). It has been
shown that AN-PEP significantly degrades most gluten in the
stomach before it enters the duodenum (Salden et al. 2015).
Capsules containing the AN-PEP enzyme have beenmarketed
for over a decade, although the health effects have been dis-
puted (Krishnareddy et al. 2017).

For Tenebrio molitor, Rhizopertha dominica, and related
cereal-feeding insects, the main dietary proteins are the stor-
age proteins of cereal grains. Post-glutamine cleaving pepti-
dases were isolated from the midgut of the pest, Tenebrio
molitor (yellow mealworm) (Goptar et al. 2013). POP from
the gastrointestinal system of the beetle R. dominica cleaves
proline-rich peptides from wheat and barley in P↓Q and P↓Y
(Mika et al. 2015).

Gluten-degrading bacteria in human
digestive tract

There are thousands of bacterial species that inhabit the hu-
man digestive tract. Several of these bacteria can potentially
degrade gluten and a healthy microbiome composition could
modulate the symptoms of gluten-related diseases.

It ought to be noted that the microbiome composition is
mostly investigated by the 16S rRNA gene marker. Because
different strains of the same bacterial species can have very
different proteolytic activities, 16S-based studies must be
complemented with cultivation and metagenomics-based ap-
proaches to assess proteolytic activity. In addition, the 16S
rRNA-based approaches have shown that the bacterial com-
munities are very different in different parts of the digestive
tract. Here, we discuss the gluten-degrading potential of these
different communities.

Oral cavity

The digestion of food starts in the oral cavity and it has been
shown that bacteria from the oral cavity have the capacity to
degrade gluten. There are approximately 800 prokaryotic spe-
cies in the oral cavity, of which 70% were found to be culti-
vable (Verma et al. 2018). Rothia spp., Actinomyces

odontolyticus, Neisseria mucosa, and Capnocytophaga
sputigena were found to have the highest activity against gli-
adin or the 33-mer immunogenic peptide (Fernandez-Feo et
al. 2013). Rothia spp. enzymes have been studied in more
detail (see above). Although their activities are quite low, the
high abundance of Streptococcus sp. could still substantially
contribute to the overall gliadin-degrading capacity in the hu-
man mouth (Aas et al. 2005; Fernandez-Feo et al. 2013). The
bacterial strains studied to date have considerably different
peptidase activities, which suggests that efficient gluten deg-
radation can be achieved in combination. Approximately, 1 l
of saliva, which contains a diverse collection of aerobic and
anaerobic bacteria, is produced on a daily basis (Maukonen et
al. 2008). Saliva contains a high amount of proline-rich pro-
teins; the degradation of which most likely starts by the sub-
tilisins produced by oral bacteria (Messana et al. 2008;
Helmerhorst et al. 2008). Therefore, it is probable that some
of these bacteria can also contribute to the degradation of
gluten. Saliva is swallowed and thereby also provides sub-
strates for bacteria in the lower digestive tract.

Stomach

The pH of the stomach after a meal is in the range of 2–4. This
vastly restricts the bacterial groups that can be active in the
stomach or even pass its harsh conditions alive. In stomach,
the microbial density is ca 102 to 104 cfu/ml. The gastric mi-
crobiota is diverse and includes species from the genera
Streptococcus, Propionibacterium , Lactobacillus ,
Staphylococcus, Prevotella, Veillonella, Rothia, and
Haemophilus (Delgado et al. 2013; Nardone and Compare
2015). Although there are no studies on the capacity of stom-
ach bacteria to degrade gluten, it has to be noted that Rothia
spp. can have activity at low pH and therefore could be in-
volved in gluten degradation in the stomach.

Small intestine

The degradation of nutrients continues in the duodenum, jeju-
num, and ileum of the small intestine.Many degradation prod-
ucts are absorbed in the small intestine, which also performs
strong immunomodulatory functions. In line with this, CD is
triggered in the small intestine. The conditions in the duode-
num can also be harsh for certain bacteria because it contains
high levels of human proteases and bile acids. This is probably
the reasonwhy the bacterial count is lower in duodenum (101–
105 CFU/ml) and rises in the jejunum (104–107 CFU/ml) and
ileum (103–108 CFU/ml) (O’Hara and Shanahan 2006; Leser
and Mølbak 2009; Zoetendal et al. 2012). The physiological
bacterial communities within the small intestine are difficult to
study because of the need to take biopsy is needed. Therefore,
only one study has been published to date that assesses the
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gluten degradation potential of bacterial communities in small
intestine. This work is restricted to the duodenum.

Bacteria from biopsy samples from the duodenum were
investigated for their activity when degrading intact gluten
and the 33-mer peptide (Herrán et al. 2017). This study
showed that 15 bacterial species from genera Actinomyces,
Bacillus, Lactobacillus, Prevotella, Pseudomonas, and
Stenotrophomonas were able to hydrolyze the 33-mer.
Additionally, bacteria that showed extracellular gluten-
degrading activity were as follows: Bacillus licheniformis, B.
subtilis, B. subtilis/amyloliquefaciens, Bacillus pumilus, L.
casei/paracasei, Pseudomonas aeruginosa, S. aureus, S.
epidermidis, Stenotrophomonas maltophilia, Streptococcus
salivarius/thermophilus, and Virgibacillus pantothenticus.
Overall, 60% of the bacteria identified were Lactobacilli.
Because of their auxotrophy for numerous amino acids,
Lactobacilli hydrolyze proteins through the action of their
proteolytic system in order to get the amino acids required
for their growth. Lactobacilli mostly produce cell wall at-
tached exopeptidases that are relatively inefficient in eliminat-
ing gluten and gluten-derived peptides (Scherf et al. 2016).
Still, L. helveticus has serine endopeptidases that belong to
the subtilisin family that break down larger proteins into
oligopeptides that are transported into the cytoplasm
(Griffiths and Tellez 2013). Subsequently, the internalized
peptides, 2 to 9 amino acid residues, are degraded into amino
acids by the combined action of numerous internal peptidases
that vary depending on the species (Savijoki et al. 2006;
Raveschot et al. 2018). No single Lactobacillus strain pos-
sesses all the peptidases required to degrade toxic gluten olig-
omers. Gluten, and its shorter immunogenic peptides, can be
degraded by a combination of bacteria with complementary
peptidase activities (Francavilla et al. 2017).

Colon

Colonic bacteria are characterized by studying feces. The es-
timated bacterial count in feces is ca 1010–1012 CFU/ml, and
the number of cultivable species is estimated to be over 1500
(O’Hara and Shanahan 2006; Lagier et al. 2016).

Early work with human gut contents by Macfarlane iden-
t i f i ed feca l bac t e r i a wi th p ro t eo ly t i c ac t iv i ty :
Propionibacterium, Clostridium, Streptococcus, Bacillus,
and Staphylococcus. Extracellular proteases were formed by
Streptococcus faecalis ST6, Propionibacterium acnes P6,
Clostridium perfringens C16, C. bifermentans C21, and C.
sporogenes C25 (Macfarlane and Allison 1986; Macfarlane
et al. 1988; Gibson et al. 1989).

In 2014, Caminero et al. (2014) identified gluten-degrading
activity in strains from Bacillus licheniformis, B. subtilis, B.
pumilus, Bifidobacterium longum, Clostridium sordellii, C.
perfringens, C. botulinum/sporogenes, C. butyricum/
bei jer incki i , Enterococcus faecal is , E. faecium ,

Propionibacterium acnes, Pediococcus acidilactici,
Paenibacillus jamilae, Staphylococcus epidermidis, S.
hominis, and Stenotrophomonas maltophilia.

The importance of the prolamin degrading activity in colon
is questionable because the damaging activity of gluten-
derived epitopes already occurs in the duodenum.

Probiotics in CD

Currently, there is no clear understanding of the role of the gut
microbiota in CD. Several studies have reported changes in
the composition of gut microbiota, “intestinal dysbiosis,”,in
CD patients compared to healthy subjects (Nadal et al. 2007;
de Palma et al. 2012; Cheng et al. 2013). A balanced compo-
sition of the human commensal microbiota has been consid-
ered crucial for the development of a healthy immune system;
however, it is not clear if intestinal dysbiosis is the cause or
effect of CD (Chibbar and Dieleman 2019). Probiotics have
been considered as a strategy to modulate the gut microbiome
in CD patients. Probiotics can influence gluten intolerance by
digesting the gluten proteins to non-immunogenic small poly-
peptides, maintain the intestinal barrier by preventing immu-
nogenic polypeptides from accessing the mucosa, and by reg-
ulating the immune system. The potential of several probiotics
has been investigated. De Angelis and others reported the
potential benefits of a probiotic cocktail with eight strains
(VSL#3), Bifidobacterium breve, Bifidobacterium infantis,
acidophilus, Lactobacillus plantarum, Lactobacillus casei,
Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus
thermophilus, and Bifidobacterium longum, which decreased
wheat-induced discomfort (De Angelis et al. 2006). It ought to
be noted that the probiotic cocktail was added during the food-
processing step and could produce predigested and thus toler-
able gliadins that increase the palatability of gluten-free prod-
ucts. Importantly, as mentioned above, individual
Lactobacillus strains are not capable of complete detoxifica-
tion of gluten-derived peptides (Francavilla et al. 2017). The
same is true for VSL#3; individual probiotic strains were in-
adequate to break down gliadin compared to the efficiency
with a pool of strains (De Angelis et al. 2006; Harnett et
al. 2016).

Bifidobacterium spp. has been shown to modulate a proin-
flammatory milieu of CD in several in vitro studies (Medina et
al. 2008; Lindfors et al. 2008; Laparra et al. 2012).
Bifidobacterium spp. also helped to restore the healthy per-
centage of the mainmicrobial components (Quagliariello et al.
2016). It would be prudent to study the effects of
Bifidobacterium spp. on CD in further clinical studies.

It is expected that probiotics will not provide a rapid cure
for complex diseases such as CD, but rather alleviate the se-
verity and symptoms. More studies are needed that specifical-
ly address how the gut microbiome can modulate or alter the
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course of the disease. We expect that probiotics will probably
need to be combined with long-term dietary changes.

Natural sources of gluten-degrading bacteria

CD is an autoimmune disease triggered by gluten and most
probably other environmental factors not yet defined. CD
prevalence has increased over time in geographical regions
characterized by a Western lifestyle (Catassi 2015). In
Western society, the gut microbiome has changed when com-
pared to the traditional societies. The “Biodiversity hypothe-
sis” states that interaction with diverse and abundant environ-
mental microbiota is important for the prevention of immune-
mediated non-communicable diseases (von Hertzen et al.
2011; Hanski et al. 2012). There are a rising number of studies
that show that a living environment, and changes therein, like-
ly shape the skin as well as the composition of gut microbiota
and are important for the development of a normal immune
system and protection from immune-mediated diseases
(Seiskari et al. 2007; Stein et al. 2016; Lehtimäki et al. 2017;
Hui et al. 2019). For example, diverse vegetation around
homes, particularly shrubs and non-woody flowering plants,
and the coverage of built areas are associated with health-
related changes in gut microbiota composition (Parajuli et al.
2020). The effect of environmental bacteria on allergies has
been associated with their immunomodulatory effects
(Nurminen et al. 2018; Ottman et al. 2019; Roslund et al.
2020).

Empirical studies have implicated bacteria as the dominant
contributor to proteolytic activity in soils (Watanabe and
Hayano 1993; Nguyen et al. 2019). Bacterial isolates from
Bacillus, Pseudomonas, and Flavobacterium-Cytophaga
have been shown to be important agents of proteolysis and
act as the main sources of soil peptidase activity (Bach and
Munch 2000; Vranova et al. 2013). Given the nature of nitro-
gen limitation in most soils and aquatic environments, the
ability to readily break down high molecular weight protein-
aceous material into amino acid precursors for cell growth or
energy generation would be highly favorable (Geisseler et al.
2010; Kolton et al. 2013).

Root vegetables are in direct contact with soil and share
some of the surrounding microbiome. We have recently
shown in an in vitro study that bacteria that originate from
root vegetables can degrade gluten and detoxify the toxic im-
munogenic CD epitopes at 37°C under microoxic conditions
(Kõiv et al. 2020). Bacteria with strong extracellular protease
activity were identified as Bacillus pumilus, Bacillus cereus,
Bacillus subtilis, Bacillus circulans, Bacillus licheniformis,
Bacillus psychrosaccharophilus, Clostridium bifermentans,
Clostridium sporogenes, and Clostridium subterminale. Four
bacterial strains belonging to the species Bacillus pumilus,
Clostridium subterminale, and Clostridium sporogenes

produce peptidases with post-proline cleaving activity that
successfully neutralized the toxic immunogenic epitopes.
The bacterial groups identified as 33-mer and gluten degrades
are similar or even identical to the bacteria degrading these
substrates in duodenum and feces (described above in the
“Gluten-degrading bacteria in human digestive tract” section).
Therefore, it is possible that these strains are introduced to the
gastrointestinal tract together with food. Currently, it is not
possible to estimate if these bacteria inhabit the gastrointesti-
nal tract stably, perhaps with specific required dietary sub-
strates, or are constantly introduced with food.

It is not known if the observed peptidase activity is provid-
ed by one enzyme or a mixture of several enzymes. As men-
tioned above, B. pumilus and C. sporogenes isolated from
duodenum and feces hydrolyze both the 33-mer, and have also
proteolytic activity against intact gluten proteins (Macfarlane
et al. 1988; Caminero et al. 2014; Herrán et al. 2017). Both
bacteria produce several peptidases that degrade other proline
and glutamine-rich proteins such as keratin (7.5% proline and
12% glutamine) (Ionata et al. 2008; Fellahi et al. 2016). The
complete degradation of keratin to single amino acids requires
the synergistic action of (at least) three kinds of peptidases,
namely endo-, exo-, and oligo-peptidase (Qiu et al. 2020). It is
probable that the natural degradation of gluten also occurs by
a combination of different enzymes although this hypothesis
requires further investigation. It is also probable that gluten
degradation activity can be achieved by enzymes that usually
degrade certain proline-rich proteins such as keratin, collagen,
and elastin. It is described above that elastase from P.
aeruginosa can degrade gluten. The gluten-degrading activity
of human gastrointestinal elastases has also been described
(Gutiérrez et al. 2017).

The human digestive tract is saturated with easily accessible
sources of nitrogen for bacteria. Therefore, only a fewmicrobes
that colonize the digestive tract “waste” energy on the produc-
tion of extracellular proteases. Environmental bacteria are more
active in using extracellular proteases and, when introduced
into the gut, could provide beneficial proteolytic activity.

In addition, opportunistic pathogens sometimes produce
high levels of peptidases that could also degrade gluten (P.
aeruginosa, Stenotrophomonas maltophilia, C. perfringens,
Enterococcus faecalis, E. faecium) (Caminero et al. 2014;
Caminero et al. 2016). CD is largely a contemporary disease.
It has been noted that oral microbiomes from hunter-gatherers
and traditional farmers reveal shifts in commensal balance and
pathogen load linked to diet: species found preferentially in
hunter-gatherers included microbes often considered as oral
pathogens, despite their hosts’ apparent good oral health
(Lassalle et al. 2018). It is possible that also in contemporary
diets, microbes considered as opportunistic pathogens can
contribute to degradation of gluten-derived peptides.

In conclusion, the enzymatic food supplements and
probiotics are being developed to alleviate the symptoms of
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gluten intolerance. In addition, natural bacterial communities
from food could also facilitate detoxification of gluten.
Complete gluten degradation is a complex process that can
be achieved with assistance of various combinations of en-
zymes produced by a wide range of microorganism, including
bacteria. These bacterial communities could facilitate adapta-
tion to our consumption of crop products that were introduced
rather recently to humankind.
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