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Abstract: This paper aims to present computer modeling of synaptic plasticity and memory in the
CA3-CA1 hippocampal formation microcircuit. The computer simulations showed a comparison of a
pathological model in which Alzheimer’s disease (AD) was simulated by synaptic degradation in
the hippocampus and control model (healthy) of CA3-CA1 networks with modification of weights
for the memory. There were statistically higher spike values of both CA1 and CA3 pyramidal
cells in the control model than in the pathological model (p = 0.0042 for CA1 and p = 0.0033 for
CA3). A similar outcome was achieved for frequency (p = 0.0002 for CA1 and p = 0.0001 for CA3).
The entropy of pyramidal cells of the healthy CA3 network seemed to be significantly higher than
that of AD (p = 0.0304). We need to study a lot of physiological parameters and their combinations of
the CA3-CA1 hippocampal formation microcircuit to understand AD. High statistically correlations
were obtained between memory, spikes and synaptic deletion in both CA1 and CA3 cells.
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1. Introduction

Neural models can be divided into connectionist or biophysical types, both of which have been
included in experiments of brain network simulations conducted to understand the fundamental
mechanisms of Alzheimer’s disease (AD). Neurons are used to create models of brain processes
connected with associative memory formation caused by the increasing significance of synaptic
connections and simple spatiotemporal integration in this phenomenon [1–3].

The biophysical neural model exerts the particular biophysical features of a single neuron (noted as
a spiking neuron), and these features contain the physiological impact of neuromodulation, including
bursting and spiking. Spiking neuron cells are framed based on proper experimental data received in
ion channel properties. The ion channels transmit a presynaptic neurotransmitter action into membrane
depolarization and repolarization, the consequence of which is the firing of action potentials [4–8].
These models seem to be connected networks of spiking neurons whose role is to simulate the features
of individual neurons and associated occurrences. According to Menschik et al. [9], they are biological
analogs of the connectionist neural models and could take part in simulations of memory dysfunctions
such as AD; however, the use of theta and gamma oscillations, cholinergic neuromodulation, diversity

Molecules 2019, 24, 1909; doi:10.3390/molecules24101909 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-9127-7368
http://www.mdpi.com/1420-3049/24/10/1909?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24101909
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 1909 2 of 15

of neuron types and input patterns are required [9–12]. It is used only to present the maintenance of a
small set of neurons. The connectionist neural model is less demanding and needs fewer simulation
details than a biophysical one. In general, neural models have been evolved to simulate the functions
of the hippocampus with regard to memory formation. It is proven that both of those models clearly
present some universal behaviors depending on the manipulations of network factors. In addition to
artificial neural networks, there are useful tool simulations of pyramidal cells, CA1 and CA3 of the
hippocampus, which support the diagnostics of AD [13–16].

In the neural networks on the high level of biological realism, the computation with the timing
of individual spikes (action potentials) must be used. And after arrival of an action potential at
the excitatory synapse we have an embarrassment of riches in which synaptic plasticity does occur.
The biological neurons such as pyramidal cells in the hippocampus or cortex show various types
of long-term synaptic potentiation (LTP) or depression (LTD) with presumably dendritic locations
of their mechanisms throughout the N-methyl-D-aspartate (NMDA) glutamate receptors [17–19].
As for computational models of a neuron, since biological plausibility and computational efficiency
are contradictory objectives, the possible detailed models of those processes are not suitable for the
building of large scale networks [20–22]. As such, the most frequently used rule is the spike time
dependent plasticity (STDP) being completed with details of intracellular calcium turnover [23–25].
STDP allows both the increase and decrement of synaptic weights in dependency of succession of
presynaptic and postsynaptic spikes.

2. Materials and Methods

The simulated microcircuit model of CA3-CA1 network is presented in Figure 1. This model
consists of 4 CA3 pyramidal cells (PCs), 2 CA3 basket cells (BCs), 1 CA3 oriens-lacunosum/moleculare
cell (O-LM cell), 4 CA1 PCs, 2 CA1 BCs, and 1 CA1 O-LM cell. The simplified morphology of neural
cells includes a soma, a portion of the axon and both apical and basal dendrites. All properties of neural
cells used in the experiment were based on features reported in the literature [4,26–30]. Modeling of
AD consisted of turning off one connection after the other from EC2 to the CA3 pyramidal neurons, to
inhibitory interneurons (basket cells) as well as the mossy fibers synapses on CA 3 pyramidal cells
(Supplementary Materials: Video AD: CA3-CA1 network simulation of Alzheimer disease-pathology
model, Video healthy-control model: CA3-CA1 network simulation of healthy). For further details,
see Figure 2.

2.1. CA3 Cells

Every CA3 pyramidal cell, CA3 basket cell and CA3 O-LM cell are constructed with compartments
and every dendrite has a synapse, which is either excitatory or inhibitory. Excitatory inputs in stratum
lucid dendrites are received from CA3 pyramidal cells, EC2 and dentate gyrus (DG). Excitatory
connections are received by their distal dendrites from EC2 and by medium dendrites from DG
granule cells’ mossy fibers. Inhibitory impulses come from connections in the medial septum of their
somas. Each O-LM cell receives excitatory and inhibitory connections. The first ones are received
from active CA3 pyramidal cells in their basal dendrites, and the second ones from the medial septum.
The mathematical formalism of the models was based on our previous studies [31–33].
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Figure 1. (a) The CA3-CA1 hippocampal formation microcircuit. On the top is the CA3 region and 
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Figure 1. (a) The CA3-CA1 hippocampal formation microcircuit. On the top is the CA3 region and CA1 is at the bottom. Major cell types and their connectivity:
pyramidal (P1–P8), basket (B1–B4), OL-M (1–2) cells, mossy cell (MC). T1–T6 represent GABAergic cells in the medial septum-diagonal band (MS-DB) region. Every
CA1, CA3 pyramidal cells, basket and O-LM cells consist of 16 compartments in which each dendrite has an excitatory or inhibitory synapse (example–pyramidal cell
on the left at bottom). (b) Example–pyramidal cell. Red excitatory, green inhibitory inputs. Pyramidal cell model configuration with color filled postsynaptic regions
according to values of LTP at the end of simulation.
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P1 16Hz 16Hz 16Hz 16Hz * * * * * * * * * * * *

P2 16Hz 32Hz 32Hz 32Hz * * * * * * * * * * * *

P3 16Hz 16Hz 16Hz 16Hz * * * * * * * * * * * *

P4 32Hz 32Hz 32Hz 32Hz * * * * * * * * * * * *

B1 16Hz 16Hz 16Hz 32Hz * * * * * * * * * MS-DB MS-DB MS-DB 

B2 16Hz 16Hz 16Hz 32Hz * * * * * * * * * MS-DB MS-DB MS-DB 

O-LM 1 * * * * * * * * * * * * * MS-DB MS-DB MS-DB 

P5 50Hz 50Hz 44Hz 40Hz * * * * 40Hz 40Hz 34Hz 34Hz 44Hz * * *

P6 50Hz 50Hz 44Hz 44Hz * * * * 40Hz 40Hz 34Hz 34Hz 44Hz * * *

P7 50Hz 50Hz 44Hz 44Hz * * * * 40Hz 40Hz 34Hz 34Hz 34Hz * * *

P8 32Hz 32Hz 32Hz 32Hz * * * * 50Hz 50Hz 40Hz 40Hz 44Hz * * *

B3 44Hz 40Hz 44Hz * * * * * * * * * * MS-DB MS-DB MS-DB 

B4 44Hz 40Hz 44Hz 40Hz * * * * * * * * * MS-DB MS-DB MS-DB 

O-LM 2 * * * * * * * * * * * * * MS-DB MS-DB MS-DB 

Time [s] 1 2 3 4 5 6 7 8 9

Synaptic deletion [%] 4% 8% 12% 15% 19% 23% 27% 31% 35%

Synapses

Legend:

P1-P4: CA1 pyramidal cells
P5-P8: CA3 pyramidal cells
B1-B2: CA1 basket cells
B3-B4: CA3 basket cells
O-LM 1: CA1 O-LM cell
O-LM 2: CA3 O-LM cell

Ex – Excitatory inputs
Inh – Inhibotory inputs

intrinsinc net connections* 

Figure 2. On Pyramidal cells from CA3 and CA1 regions we have together 8*13 = 104 (100%) excitatory synapses. Color marker the deleted synapses during simulation.
The deletions were made only in CA3 microcircuit.
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2.2. CA1 Cells

Every CA1 pyramidal cell, CA1 basket cell and CA1 O-LM cell is constructed with 16 compartments
in which each dendrite has an excitatory or inhibitory synapse. Each CA1 cell receives somatic synaptic
inhibition from CA1 basket cells, proximal excitation from CA1 pyramidal cells, mid-dendritic excitation
from mossy fibers (MF) and distal apical excitation from EC layer 3 (EC3) [1,2]. Each basket cell
receives somatic synaptic inhibition from the medial septum (Theta oscillations) and adjacent basket
cells in their soma. Excitatory connections are provided to their distal dendrites from EC3 and to
medium dendrites from both CA1 pyramidal cells and CA3 Schaffer collaterals. Each O-LM cell
receives excitatory and inhibitory connections. The first ones are received from active CA1 cells in
their basal dendrites, and the second ones are received from the medial septum (Theta oscillations).

2.3. Model Inputs

Inputs from the CA3-CA1 model came from MS and layers 2 and 3, as proved by Witter [34].
There were two separate populations of cells with theta-modulated strength, and all inputs were
modeled as firing. Every input was modeled as the firing of one hundred entorhinal cortical cells at a
theta frequency of 8 Hz. The CA3 PCs and CA3 BCs acquired input in the apical dendrites from EC2,
and CA1 PCs and CA3 BCs from EC3 in their apical lacunosum moleculare dendrites (LM) [4]. Inputs
acquired from layers 2 and 3 were modulated as opposites, when one input was strong, the other
was weak, and vice versa [4]. All initial parameter microcircuit models of the CA1-CA3 network are
presented in Tables 1 and 2 where low significant weight (LSW)–is the weight of the highest distal
dendrite input. The typical time course of excitatory or inhibitory postsynaptic potentials: is EPSPd
or IPSPd.

Table 1. Initial parameters microcircuit model of CA1 network.

CA1 Cells LSW EPSPd [mV] IPSPd [mV]

Pyramidal cell (P1) 0.2 4.5 −6

Pyramidal cell (P2) 0.2 4.5 −6

Pyramidal cell (P3) 0.2 4.5 −6

Pyramidal cell (P4) 0.2 4.5 −6

Basket cell (B1) 1 4 −4.5

Basket cell (B2) 1 4 −5.5

O-LM 1 cell 0.6 4 −4

Table 2. Initial parameters microcircuit model of CA3 network.

CA3 Cells LSW EPSPd [mV] IPSPd [mV]

Pyramidal cell (P5) 0.6 4.5 −6

Pyramidal cell (P6) 0.6 4.5 −6

Pyramidal cell (P7) 0.6 4.5 −6

Pyramidal cell (P8) 0.6 4.5 −6

Basket cell (B3) 1 4 −4.5

Basket cell (B4) 1 4 −5.5

O-LM 2 cell 0.6 4 −4

2.4. Synaptic Properties

For this model, several synapses were considered, including AMPA, NMDA and GABA-A.
AMPA synapses were observed in CA1 and CA3 strata LM (EC2 and EC3 connections), distal
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two-thirds of the molecular layer (EC2 connections), CA3 lucidum (DG-GC connections) and CA1
radiatum (CA3-PC connections). The NMDA synapses existed in CA3 lucidum (DG-GC connections)
and CA1 radiatum (CA3-PC connections). The GABA-A synapses were inherent in almost every CA1
and CA3 strata and layers [19]. There are glutamate receptors for excitatory inputs: AMPA - E (k, i),
NMDA - M (k, i). The GABA receptors are for inhibitory inputs: I (k, i), where k is the number of
dendrite compartments and i the number of area- register tables. Each area simulates 0.5 ms of real time
and is primitively filled with the resting potential from value ReP = −80 mV. The long-term potentiation
(LTP) induction occurs only if depolarization of the postsynaptic region in NMDA channels, is sufficient
and then the weight of this synapse is increased.

2.5. Memory (LTP)

Each synapse is checked and after a detection of an action potential the values of the table
of a certain shift register are changed by synaptic function according to the typical time course of
postsynaptic excitatory (EPSP) or inhibitory (IPSP) potentials. For every 0.5 ms of the simulated time,
the actual values of all registers are checked and their weighted sums are compared with related
thresholds. There is a positive correlation between the weight and a related synapse’s proximity
to the cell body. The axon provides the output signal to the compartments of the dendrites of the
destination pyramidal cell. When an action-potential is generated, the registers are reset to the value of
resting potential and then the activity of all compartments is inhibited for a 1.5 ms period of refraction.
Yet we should also have a memory related to each input and working according to LTP rule. In each
state-updating cycle the program calculates (based on actual values in the registers and appropriate
weights) an accumulated local potential for postsynaptic region of each input synapse. If, at moment
of arrival an action potential at a particular input, the postsynaptic potential is beyond the value of
the local threshold (ca. 70mV), the second register (M-which simulates the rise of calcium ion content
inside the cell) change values of their data-boxes. The enhanced strength remains for a time calculated
as power function of the charge, which diminishes according to the forgetting coefficient (FQ) shown
in Figure 3. The formal expression can be written as:

(1) If Sk(i) > CaMT then (2)

(CaMT = −68mV threshold for remove of Mg ion block)

(2) Time of duration of memory:

Ck(i + 1)= Ck(i)+ exp(10(Mk,0(i)−ReP))−1

ifCk(i + 1) > FQ thenCk(i + 1)k(i + 1) − FQ

Mk,0- actual value of synaptic function for EPSP (NMDA) in register M.

ReP = −80mV (resting potential).

FQ-forgetting coefficient not below 1.
(3) Memory (LTP)

M(k) = 1 + ln
(Ck(i) + 1)

6clog

Ck(i) time of memory for compartment (k), clog parameter = 2.3026

Thus, we have always the rapid weight increase and very slow as compare to STDP algorithm
decrease of synaptic weights. And the FQ parameter could be independently matched to each neuron
before network simulation.
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2.6. Correlation Dimension, Shannon Entropy, and Embedding Dimension

Nonlinear analysis of the results of control model simulation in pathologies allowed for the
reconstruction of the phase space as a method describing the complexity of the dynamic system [35].
Reconstruction of the attractor used the time delay method [36,37]. In contrast, the method of the
false nearest neighbors selected a minimum dimension of deposition of one-dimensional time series of
simulation results of neural networks [38].

2.7. Statistical Methods

The statistical analyses have been performed using TIBCO Software Inc. (2017). Statistica
(data analysis software system), version 13. http://statistica.io. We also present results from Visual
Recurrence Analysis (VRA) of Kononov as selected from various methods for recurrence plots
analysis [39]. Statistical significance of differences between two groups was processed with the
t-Student test or U Mann-Whitney test. The significance of difference between more than two groups
were assessed with F test or Kruskal-Wallis H test. In the case of statistically significant differences
between two groups, post-hoc tests were utilized. Chi-squared tests for independence were used for
qualitative variables. In order to determine dependence, strength and direction between variables,
correlation analysis was used by determining the Pearson (and Spearman’s rank-order) correlation
coefficients. In all calculations, the statistical significance level of p < 0.05 has been used.

3. Results

Cells in CA1 and CA3 rhythmically phase their population activities at opposite half-cycles of
theta, which seems to be crucial in the encoding and retrieval of memories [33,34,40–42]. In the theta
phase separation of these processes in half-cycles of theta, a basic role is played by dendritic, somatic
and axsonic inhibition [31–33,43].

In an experiment conducted on a normal hippocampus after 10 seconds of stimulation, the received
spike values for CA1 pyramidal cells were from 72 to 135 (mean 92.25, SD 28.999); however, the received
spike values for CA3 pyramidal cells were from 260 to 313 (mean 178.50, SD 56.736) Figures 2 and 3.
In an experiment carried out on an AD hippocampus, after 10 seconds of stimulation the received spike
values for CA1 pyramidal cells were from 18 to 38 (mean 24.00, SD 9.381); however, the received spike
values for CA3 pyramidal cells were from 32 to 56 (mean 42.75, SD 10.308). There were statistically
higher spike values of both CA1 and CA3 pyramidal cells in the normal hippocampus than in AD
(p = 0.0042 for CA1 and p = 0.0033 for CA3) (Figure 4). The average frequency of normal CA1
pyramidal cells was 64.95 Hz (SD 70.04 Hz), however in AD the average frequency was 36.31 Hz (SD
57.419 Hz). The conclusion which can be drawn is that in the normal hippocampus, the frequency

http://statistica.io
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of CA1 pyramidal cells is statistically higher (p = 0.0002) (Figure 4). After a 10-second stimulation
of normal pyramidal CA1 cells, the final received frequency was 21.79 Hz (SD 15.833 Hz); however,
in AD it was 3.23 Hz (SD 1.190 Hz).
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Figure 4. Ten second real-time simulation of CA3-CA1 network control model and pathology model.
The time course of Interspike Intervals (ISI) and output spikes trains for main cells of CA3-CA1
formations (top-pyramidal cells (P1-P8), medium-OL-M cell (1 and 2) and bottom basket cells (B1-B4)).

The difference between the final frequency observed in the normal and AD hippocampus was
almost 7, which proves the existence of a relevant decrease in CA1 pyramidal cell activity. The average
frequency of normal CA3 pyramidal cells was 69.91 Hz (SD 62.876 Hz); however, in AD the average
frequency was 32.69 Hz (SD 43.173 Hz). The conclusion is that in the normal hippocampus the
frequency of CA1 pyramidal cells is statistically higher (p = 0.0001) (Figure 5).
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Figure 5. Relationship between number of spikes, frequency and synaptic deletion control and
pathology models (pyramidal (P1-P8), OL-M (1 and 2) and basket (B1-B4) cells). The CA1 region is on
the left and is the CA3 formation is on the right.

After a 10-second stimulation of normal pyramidal CA3 cells, the final received frequency was
28.95 Hz (SD 18.483 Hz); however, in AD it was 4.74 Hz (SD 2.081 Hz). The difference between the
final frequency observed in normal and AD hippocampus was almost 6, which proves the existence of
a relevant decrease in CA3 pyramidal cell activity.

The comparison of spike values and frequency dependence from a synaptic deletion in CA1
and CA3 is presented in Figure 3. In AD high and statistically significant correlations between spike
values and synaptic deletion in both CA1 and CA3 cells (correlation coefficient from −0.64 to 0.85,
p < 0.05) were received. The progression of AD was consolidated with the decrease of spike values
and frequency, whereas the results received after the stimulation of normal hippocampus were not
statistically significant. The CA1 basket cells were the only group of observed cells without a high
correlation between frequency and synaptic deletion (correlation coefficient from−0.64 to 0.82, p < 0.05)
(Figure 5). Empirical research enabled us to reconstruct the expanse with the delayed method.

The relationships between memory and synaptic deletion healthy and AD CA3 and CA1 formations
are presented in Figure 6. There were high statistically correlations between memory and synaptic
deletion in both CA1 and CA3 cells. Furthermore, there were correlations between memory and
number of spikes in both CA1 and CA3 pyramidal cells.
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pathology models group output simulation train.

The time of the delay was estimated according to the analysis of the autocorrelation function.
A range of methods can be used to show regular and/or chaotic behavior of the CA3-CA1 model and
multiple neural spike train data analysis. In our paper we present the visual recurrence analysis (VRA)
method, which was expanded upon by Eugene Kononov and selected from a variety of methods.
The results are presented in Figure 7. Moreover, Figure 7 compares embedding dimension, correlation
dimension and entropy between healthy and AD hippocampus. There were no statistical differences
in the embedding dimension between healthy and AD (p = 0.6650) for pyramidal cells of the CA1
region and CA3 network (p = 1.00) (Figure 5). There were no statistical differences in the correlation
dimension between healthy and AD (p = 0.6650) for pyramidal cells of the CA1 region and CA3
network (p = 0.8852). A similar outcome was achieved for entropy pyramidal cells of CA1 (p = 0.1124).
However, the entropy of pyramidal cells of the CA3 network for healthy seemed to be significantly
higher (p = 0.0304) than AD (Figure 7).
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Figure 7. Nonlinear analysis of simulations CA1 region (left) and CA3 (right). On the top recurrence
plots with visual recurrence analysis (VRA), which shows all Euclidean distances between data points
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comparison of control and pathology models embedding dimension, correlation dimension, entropy
for pyramidal (P1 and P5), OL-M (1 and 2) and basket cells (B1 and B3).
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4. Discussion

AD affects different parts of the brain when it comes to the late stage of the disease. The first
changes are visible in the mesial temporal lobe and comprise hippocampal formation, which seems to
be of particular significance in memory function process impaired by AD [1]. There are several models
describing memory properties in various ways, which lead to a hypothesis that the implementation of
multiple models may result in ameliorated performance [44]. The attractor neural model is based on the
assumption that memory corresponds to a constant spatiotemporal standard of activated neurons and
simulates some memory features such as error correction and pattern completion [1–3]. Stable states
correspond to a variety of memories and might be termed as attractor states or fixed-point attractors.
In any network containing N neurons all activation states are expressed by a point in an N-dimensional
feature space. Assuming that the activation state of any neuron could be expressed by one or two states
(0 or 1), the total number of eventual memory states is 2-N. The network gravitates to the attractor state
if only activated in an initial state that is similar to the attractor’s. The final state of a network always
belongs to one of the attractor states; however, the selection of direct attractor states depends on the
initial state. This model focuses on the true memory even if incorrect memory information is prevalent.

In this model all varieties of memory patterns are stored as weights of synaptic connections [1,2].
Although error correction and pattern recognition are simulated properly, there appears to be a
valid drawback with respect to encoding a new input, which is also perceived as an incorrect
pattern [1]. There is an assumption that hippocampal processing switches to various models during
the implementation of a variety of functions and this model is an extension of the attractor neural
model. In experimental studies, capital effort is required for memory recall compared with recognition,
which is mentioned by Hasselmo and McClelland [2].

In AD, cell death is limited to 10% of the neuronal population, although there is no warranted
cognitive deficit. There is a conclusion based on conducted experiments that a 50% decrease in the
number of synaptic connections is the main reliable factor of cognitive deficiency, which is called
synaptic deletion [1]. The successful compensating mechanisms of the brain include strengthening
the remaining synaptic connections, termed synaptic compensations. Although in more advanced
stages of disease neuromodulation it is insufficient to overcome the loss of synaptic connections
that lead to greater cognitive deficiency, the synaptic deletion and compensation model is based on
those observations [45–48]. According to this model, it has been proved that in a Hopfield artificial
neural networks (ANN) architecture, the loss of synaptic connections is the reason for the decline of
memory and disfigurement of learned patterns. However, runaway synaptic modification is another
phenomenon perceived in an associative network [49–51]. In memory associative models, storage of
one memory is connected with storage of related memories and can result in a visible increase in the
number of network associations. This phenomenon is believed to be the main cause of the pathological
increase of synaptic connection strength and neuronal activity, which result in excitotoxicity.

As for currently available simulators of life-like neural circuits, they allow us to simulate the
circuits built of thousands of cells [52,53], but often tend to go deeply into detailed biophysics and
biochemistry of a single neuron; so, in case of simulation of large neural networks, the complexity of
the neuron’s mathematical description requires hardly available computational power e.g. Hines [54];
Bower & Beeman [55], Traub et al. [56]. And for practical reasons, the simulation algorithms for
network and rule should be as simple as possible for minimal acceptable biological plausibility. As we
agree to avoid unnecessarily complications, the STDP algorithm remains useful for synaptic weights
changes. It could be regarded as a major evolution of the old Hebb rule and needs precise timing
of postsynaptic spikes. However, this is not always true in biology; on distal dendrites the weight
changes could occur even without any related postsynaptic activity. Thus, the presented LTP related
algorithm can solve this problem; it works on the dendrite level, independently for each compartment
and in precise concomitance with the history of all input patterns.

The set of functions employed in our model should be subject to further implementation in
hardware, for which analog memories and field transistors witch floating gate technology are being
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considered [57,58]. However, we do already have some implementations of STDP synapses in silicon,
even nanotechnology projects [59,60]. For implementation of the LTP synapse, the problem of very
slow diminishing process that was previously injected to a floating gate charge remains to be solved,
and there must be precise regulation possibility of such a process.

There are special mechanisms present in the brain responsible for the reduction of interference
caused by excitotoxicity, which was proved by using the runaway synaptic modification model.
In this theory the excitatory and inhibitory cholinergic neuromodulation seems to be the main
factor in adjusting switching from one mode to another. Runaway synaptic modulation in normal
states is prevented by neuromodulation; however, in pathological states, including AD, it is
inescapable [47,49,52].

Neural models presenting the process of memory are a means to describing mechanisms
underlying AD and its progression, although current knowledge is evolving and a full explanation is
still unavailable.

Supplementary Materials: Video AD: CA3-CA1 network simulation of Alzheimer disease-pathology model,
Video healthy-control model: CA3-CA1 network simulation of healthy.
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writing—original draft preparation, D.Ś., J.B., J.M., I.K., A.K.; writing—review and editing, D.Ś.; visualization,
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16. Świetlik, D. Simulations of Learning, Memory, and Forgetting Processes with Model of CA1 Region of the
Hippocampus. Complexity 2018. [CrossRef]

17. Bliss, T.V.P.; Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus.
Nature 1993, 361, 31–39. [CrossRef] [PubMed]

18. Raymond, C.R. LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation.
Trends Neurosci. 2007, 30, 167–175. [CrossRef] [PubMed]

19. Massey, P.V.; Bashir, Z.I. Long-term depression: multiple forms and implications for brain function.
Trends Neurosci. 2007, 30, 176–184. [CrossRef] [PubMed]

20. Shouval, H.Z.; Bear, M.F.; Cooper, L.N. A unified model of NMDA receptor-dependent bidirectional synaptic
plasticity. Proc. Natl. Acad. Sci. U.S.A. 2002, 6, 10831–10836. [CrossRef]

21. Castellani, C.C.; Oquinlan, E.M.; Bersani, F.; Cooper, L.N.; Shouval, H.Z. A model of bidirectional synaptic
plasticity: From signaling network to channel conductance. Learn Mem. 2005, 12, 423–432. [CrossRef]

22. Earnshaw, B.A.; Bressloff, P. C: Biophysical Model of AMPA Receptor Trafficking and Its Regulation during
Long-Term Potentiation/Long-Term Depression. J. Neurosci. 2006, 26, 12362–12373. [CrossRef]

23. Gerstner, W.; Kistler, W.M. Spiking Neuron Models. Single Neurons, Populations, Plasticity; Cambridge University
Press: Cambridge, UK, 2002.

24. Nowotny, T.; Rabinovich, M.I.; Abarbanel, H.D.I. Spatial representation of temporal information through
spike timing dependent plasticity. Phys. Rev. E 2003. [CrossRef] [PubMed]

25. Benuskova, L.; Kasabow, N. Modeling L-LTP based on changes in concentration of pCREB transcription
factor. Neurocomputing 2007, 70, 2035–2040. [CrossRef]

26. Aradi, I.; Holmes, W. Role of multiple calcium and calcium-dependent conductances in regulation of
hippocampal dentate granule cell excitability. J. Comput. Neurosci. 1999, 6, 215–235. [CrossRef]

27. Poirazi, P.; Brannon, T.; Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal
cell. Neuron 2003, 37, 977–987. [CrossRef]

28. Poirazi, P.; Brannon, T.; Mel, B.W. Pyramidal neuron as two-layer neural network. Neuron 2003, 37, 989–999.
[CrossRef]

29. Santhakumar, V. Role of Mossy Fiber Sprouting and Mossy Cell Loss in Hyperexcitability: A Network Model
of the Dentate Gyrus Incorporating Cell Types and Axonal Topography. J. Neurophysiol. 2004, 93, 437–453.
[CrossRef]

30. Saraga, F.; Wu, C.P.; Zhang, L.; Skinner, F.K. Active dendrites and spike propagation in multi-compartment
models of oriens-lacunosum/moleculare hippocampal interneurons. J. Physiol. 2003, 552, 673–689. [CrossRef]

31. Klausberger, T.; Somogyi, P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit
operations. Science 2008, 321, 53–57. [CrossRef] [PubMed]

32. Somogyi, P.; Katona, L.; Klausberger, T.; Lasztoczi, B.; Viney, T. Temporal redistribution of inhibition over
neuronal subcellular domains underlies statedependent rhythmic change of excitability in the hippocampus.
Philos. Trans. R Soc. Lond. B Biol. Sci. 2013, 369, 20120518. [CrossRef]

33. Tukker, J.; Lasztoczi, B.; Katona, L. Distinct Dendritic Arborization and In Vivo Firing Patterns of
Parvalbumin-Expressing Basket Cells in the Hippocampal Area CA3. J. Neurosci. 2013, 33, 6809–6825.
[CrossRef]

34. Witter, M. Connectivity of the Hippocampus. Hippocampal Microcircuits: A Computational Modeler’s Resource Book;
Springer: New York, NY, YSA, 2010.

35. Eckman, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractor. Rev. Moder Phys. 1985. [CrossRef]
36. Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980,

45, 712–716. [CrossRef]
37. Farmer, J.D.; Ott, E.; Yorke, J.A. The dimension of chaotic attractors. Phys. D. 1983, 7, 153–180. [CrossRef]
38. Kennel, M.; Brown, R.; Abarbanel, H. Determining embedding dimension for phase-space reconstruction

using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [CrossRef]

http://dx.doi.org/10.5603/FM.a2018.0043
http://dx.doi.org/10.5603/FM.a2018.0042
http://dx.doi.org/10.1155/2018/1297150
http://dx.doi.org/10.1038/361031a0
http://www.ncbi.nlm.nih.gov/pubmed/8421494
http://dx.doi.org/10.1016/j.tins.2007.01.007
http://www.ncbi.nlm.nih.gov/pubmed/17292975
http://dx.doi.org/10.1016/j.tins.2007.02.005
http://www.ncbi.nlm.nih.gov/pubmed/17335914
http://dx.doi.org/10.1073/pnas.152343099
http://dx.doi.org/10.1101/lm.80705
http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006
http://dx.doi.org/10.1103/PhysRevE.68.011908
http://www.ncbi.nlm.nih.gov/pubmed/12935177
http://dx.doi.org/10.1016/j.neucom.2006.10.133
http://dx.doi.org/10.1023/A:1008801821784
http://dx.doi.org/10.1016/S0896-6273(03)00148-X
http://dx.doi.org/10.1016/S0896-6273(03)00149-1
http://dx.doi.org/10.1152/jn.00777.2004
http://dx.doi.org/10.1113/jphysiol.2003.046177
http://dx.doi.org/10.1126/science.1149381
http://www.ncbi.nlm.nih.gov/pubmed/18599766
http://dx.doi.org/10.1098/rstb.2012.0518
http://dx.doi.org/10.1523/JNEUROSCI.5052-12.2013
http://dx.doi.org/10.1007/978-0-387-21830-4_17
http://dx.doi.org/10.1103/PhysRevLett.45.712
http://dx.doi.org/10.1016/0167-2789(83)90125-2
http://dx.doi.org/10.1103/PhysRevA.45.3403


Molecules 2019, 24, 1909 15 of 15

39. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems.
Phys. Rep. 2007, 438, 237–329. [CrossRef]

40. Cutsuridis, V.; Hasselm, M. GABAergic modulation of gating, timing and theta phase precession of
hippocampal neuronal activity during theta oscillations. Hippocampus 2012, 22. [CrossRef] [PubMed]

41. Cutsuridis, V.; Cobb, S.; Graham, B. Encoding and retrieval in the hippocampal CA1 microcircuit model.
Hippocampus 2010, 20, 423–446. [CrossRef]

42. Cutsuridis, V.; Graham, B.; Cobb, S.R.; Vida, I. Hippocampal Microcircuits: A Computational Modelers’ Resource
Book; Springer: New York, NY, YSA, 2010. [CrossRef]

43. Viney, T.; Lasztoczi, B.; Katona, L. Network state-dependent inhibition of identified hippocampal CA3
axo-axonic cells in vivo. Nat. Neurosci. 2013, 16, 1802–1811. [CrossRef]

44. Price, D. Aging of the brain and dementia of the Alzheimer type. In Principles of Neural Science; McGraw-Hill:
New York, NY, USA, 2000.

45. Horn, D.; Levy, N.; Ruppin, E. Neuronal-based synaptic compensation: A computational study in Alzheimer’s
disease. Neural Comput. 1996, 8, 1227. [CrossRef]

46. Horn, D.; Ruppin, E.; Usher, M.; Herrmann, M. Neural network modeling of memory deterioration in
Alzheimer’s disease. Neural Comput. 1993, 5, 736–749. [CrossRef]

47. Reggia, J.; Ruppin, E.; Berndt, R. Computer models: A new approach to the investigation of disease. M.D.
Comput.: Comput. Med. Pract. 1997, 14, 160–168.

48. Ruppin, E.; Reggia, J. A neural model of memory impairment in diffuse cerebral atrophy. Br. J. Psychiatry
1995, 166, 19–28. [CrossRef] [PubMed]

49. Hasselmo, M. Runaway synaptic modification in models of cortex: Implications for Alzheimer’s disease.
Neural Netw. 1994, 7, 13–40. [CrossRef]

50. Hasselmo, M. Neuromodulation and cortical function: Modeling the physiological basis of behavior.
Behav. Brain Res. 1995, 67, 1–27. [CrossRef]

51. Siegle, G.; Hasselmo, M. Using connectionist models to guide assessment of psychological disorder. Psychol.
Assess 2002, 14, 263–278. [CrossRef]

52. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003, 14, 1569–1572. [CrossRef]
[PubMed]

53. Haeusler, S.; Maass, W. A statistical analysis of information-processing properties of lamina-specific cortical
microcircuit models. Cereb. Cortex 2007, 17, 149–162. [CrossRef]

54. Hines, M. A program for simulation of nerve equations with branching geometries. Int. J. Biomed. Comput.
1989, 24, 55–68. [CrossRef]

55. Bower, J.M.; Beeman, D. The Book of GENSIS: Exploring Realistic Neural Models with the GEneral NEural
SImulation System, 2nd ed.; Springer: New York, NY, USA, 1998.

56. Traub, R.D.; Contreras, D.; Cunningham, M.O. Single-Column Thalamocortical Network Model Exhibiting
Gamma Oscillations, Sleep Spindles, and Epileptogenic Bursts. J. Neurophysiol. 2005, 93, 2194–2223.
[CrossRef] [PubMed]

57. Elias, J.G.; Northmore, D.P.M. Building Silicon Nervous Systems with Dendritic Tree Neuromorphs. In Pulsed
Neural Networks; Maass, W., Bishop, C.M., Eds.; MIT Press: Cambridge, UK, 1998; pp. 135–156.

58. Arthur, J.V.; Boahen, K. Recurrently Connected Silicon Neurons with Active Dendrites for One-Shot Learning.
Proc. IEEE Int. Jt. Conf. Neural Netw. 2004. [CrossRef]

59. Indiveri, G.; Chicca, E.; Douglas, R.A. VLSI array of low-power spiking neurons and bistable synapses with
spike-timing dependent plasticity. IEEE Trans. Neural Netw. 2006, 17, 211–221. [CrossRef] [PubMed]

60. Morie, T.; Matsuura, T.; Nagata, M. A multinanodot floating-gate MOSFET circuit for spiking neuron models.
TNANO 2003, 2, 158–164. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1002/hipo.21002
http://www.ncbi.nlm.nih.gov/pubmed/22252986
http://dx.doi.org/10.1002/hipo.20661
http://dx.doi.org/10.1007/978-1-4419-0996-1
http://dx.doi.org/10.1038/nn.3550
http://dx.doi.org/10.1162/neco.1996.8.6.1227
http://dx.doi.org/10.1162/neco.1993.5.5.736
http://dx.doi.org/10.1192/bjp.166.1.19
http://www.ncbi.nlm.nih.gov/pubmed/7894871
http://dx.doi.org/10.1016/0893-6080(94)90053-1
http://dx.doi.org/10.1016/0166-4328(94)00113-T
http://dx.doi.org/10.1037/1040-3590.14.3.263
http://dx.doi.org/10.1109/TNN.2003.820440
http://www.ncbi.nlm.nih.gov/pubmed/18244602
http://dx.doi.org/10.1093/cercor/bhj132
http://dx.doi.org/10.1016/0020-7101(89)90007-X
http://dx.doi.org/10.1152/jn.00983.2004
http://www.ncbi.nlm.nih.gov/pubmed/15525801
http://dx.doi.org/10.1109/IJCNN.2004.1380858
http://dx.doi.org/10.1109/TNN.2005.860850
http://www.ncbi.nlm.nih.gov/pubmed/16526488
http://dx.doi.org/10.1109/TNANO.2003.817221
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	CA3 Cells 
	CA1 Cells 
	Model Inputs 
	Synaptic Properties 
	Memory (LTP) 
	Correlation Dimension, Shannon Entropy, and Embedding Dimension 
	Statistical Methods 

	Results 
	Discussion 
	References

