
molecules

Article

Lipase-Catalyzed Transesterification of Egg-Yolk
Phophatidylcholine with Concentrate of n-3
Polyunsaturated Fatty Acids from Cod Liver Oil

Anna Chojnacka *, Witold Gładkowski and Aleksandra Grudniewska

Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25,
50-375 Wroclaw, Poland; glado@poczta.fm (W.G.); aleksandra.grudniewska@upwr.edu.pl (A.G.)
* Correspondence: jeanna@wp.pl

Received: 29 September 2017; Accepted: 18 October 2017; Published: 19 October 2017

Abstract: Phospholipids containing PUFAs are important vehicles for their delivering to the targeted
tissues. In our research project we established enzymatic methods for the enrichment of natural
egg-yolk PC with n-3 PUFAs. Instead of synthetic PUFA ethyl esters, the new strategy was developed
using polyunsaturated fatty acids enriched fraction (PUFA-EF) from cod liver oil as the natural
acyl donors. PUFA-EF was produced by urea-complexation and contained 86.9% PUFA including
8.5% stearidonic acid (SDA; 18:4(n-3)), 26.7% EPA, and 45.2% DHA. The transesterification of PC
with PUFA was catalyzed by lipases. After screening of enzymes the effect of reaction medium;
molar ratio of substrates and etc. was investigated. The highest incorporation of PUFA was 45.6%;
including 36.8% DHA and 5.8% EPA at the following reaction conditions: hexane; 55 ◦C; PUFA-EF/PC
acyl ratio of 10; 48 h of reaction time and lipase B from Candida antarctica as a biocatalyst (20% of
enzyme load).
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1. Introduction

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) belong to n-3 polyunsaturated
fatty acids (n-3 PUFAs) and are also called Essential Fatty Acids (EFAs) because they can
only be delivered from the diet. Both have been shown to exert profound hypolipidemic
effect [1], limit hepatosteatosis [2], and display a preventative role in cardiovascular disease [3],
inflammatory diseases [4], and in some cancers [5,6].

DHA is highly concentrated in the brain and is very important for the normal development and
function of the brain [7,8]. It is also the major fatty acid in the photoreceptor membranes of the retina [9].
EPA is the precursor of prostaglandins, thromboxanes, and leukotrienes, with anti-inflammatory
activity and it is also reported to have a variety of health benefits against several diseases including
cancer-associated cachexia [10].

DHA and EPA occur in natural fish oils and micro algal oils as triacylglycerols (TAG), in krill oil as
sn-2-PUFA phospholipids (PUFA-PL) [11], and in fish oil capsules in the form of their ethyl esters [12].
In fish oils EPA and DHA usually account for between 5% and 15% each, depending on the type of
fish species, with the n-3 PUFA content ranging from 20 to 30% of total FA, whereas phospholipids
from Antarctic krill contain 47% of the n-3 PUFAs in its FA profile, including 18% of DHA and 28% of
EPA [13,14].

DHA is not synthesized in significant amounts from its precursor in human brain therefore it has
to be delivered from plasma through the blood-brain barrier (BBB) [15]. Previous studies indicated that
DHA-lysophosphatidylcholine (DHA-LPC) passes through the BBB about 10 times more successfully
than as free fatty acids [16]. Subbaiah et al. reported that during digestion of DHA-TAG and sn-2-DHA
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phospholipids DHA is released and absorbed as free fatty acid and then re-esterified to TAG before
its transport in the chylomicrons to various tissues. Compared to the sn-2 DHA-PC or DHA-TAG,
the efficiency of DHA delivery into lymph phospholipids is five-fold higher and its incorporation into
HDL is increased by two-fold, if the DHA is supplied in sn-1 position of dietary PC or LPC [15].

In the case of adipose tissues, it has been proven before that the major delivery road of EFAs is
lipoprotein lipase-catalyzed degradation of TAG-rich lipoproteins [17] while PL are more efficient
delivery form of DHA to platelets and erythrocytes than TAG [18]. n-3 PUFA supplements in the form
of phospholipids reduce the risk of many disorders with greater efficacy than in TAG form [19,20].
In mice fed high-fat diet, it was demonstrated that n-3 PUFAs contained in PL are more effective than
those contained in TAG in reducing hepatic steatosis, low-grade inflammation in white adipose tissue,
blood lipid levels, and glycaemia [21]. Thus, PUFA-PL are effective for various applications in food
and medicine.

Interest in the production of structured PLs containing specific fatty acid residues has grown
significantly in recent years. Lipase-catalyzed production of PUFA-PLs is very useful because this
specific reaction is carried out under mild conditions and lipases are known as an efficient tools for the
preparation of TAG and glyceryl ether lipids enriched with n-3 PUFA [22,23]. Regioselectivity of lipases
allows the specific removal or/and replacement of the acyl chains at position sn-1 of PL via hydrolysis
and next reesterification or through direct transesterification with an acyl donor [24]. In lipase-catalyzed
transesterification process commercially available fatty acid (acidolysis) [25,26] or their methyl or
ethyl esters (interesterification) [27,28] are usually used as the acyl donor. The modern trend is using
natural oils as a sources of triacylglycerols rich in desirable fatty acid in direct-interesterification
with phospholipids [29,30]. In our research group, we elaborated the lipase-catalyzed incorporation
of different biologically active acids (n-3 PUFA, n-6 PUFA, or conjugated fatty acids) into PC using
natural plant oils as the acyl donors i.e., sunflower oil, linseed oil, pomegranate seed oil [31,32].
The concentrates of CLA obtained from sunflower and safflower oil were also used to produce
CLA-enriched PLs [33].

In this work, we reported on the production of concentrate of wasted cod liver oil (CLO) and its
usage as the acyl donor in the enzymatic incorporation of n-3 PUFA into egg-yolk PC.

2. Results and Discussion

The substrates for lipase-catalyzed transesterification were obtained from natural sources. PC was
isolated from egg yolk and PUFA enriched fraction (PUFA-EF) was obtained from wasted CLO.

Urea complexation of saponified CLO has been chosen as a method for obtaining PUFA-EF due to
its simplicity, ease of scaling and environmentally friendly procedure [34]. The fatty acid compositions
of the original CLO and the PUFA fraction obtained after urea complexation is given in Table 1.

Starting from 25 g of CLO 3.9 g of PUFA-EF as a mixture of free fatty acids were obtained.
CLO contained 27.1% of n-3 PUFA with DHA and EPA constituting about 10% and 11%, respectively.
The urea crystallization method allowed to enrich the n-3 PUFA fraction with a high selectivity towards
DHA, which in the PUFA-EF was the major fatty acid followed by EPA and SDA. The total amount
of n-3 PUFA increased more than three times after crystallization process and in PUFA-EF it reached
about 87%. Almost four-fold increase of DHA, 2.5-fold increase of EPA and three-fold increase of SDA
was observed (Table 1).

Table 1. Fatty acid residue composition (wt. %) of cod liver oil (CLO) and the polyunsaturated fatty
acids enriched fraction (PUFA-EF) after urea crystallization. a

Fatty Acid CLO PUFA-EF Native PC

C16:0 11.0 ± 0.64 1.0 ± 0.16 34.2 ± 0.11
C18:0 2.3 ± 0.26 0.1 ± 0.04 15.7 ± 0.05
C18:1 19.5 ± 0.88 3.9 ± 0.11 29.0 ± 0.04

C18:2 n-6 1.6 ± 0.04 1.2 ± 0.03 15.3 ± 0.02
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Table 1. Cont.

Fatty Acid CLO PUFA-EF Native PC

C18:3 n-3 0.8 ± 0.03 2.3 ± 0.07 -
C18:4 SDA n-3 2.7 ± 0.11 8.5 ± 0.45 -

C20:4 n-6 0.9 ± 0.01 2.2 ± 0.05 2.0 ± 0.01
C20:5 EPA n-3 10.4 ± 0.04 26.7 ± 0.11 0.6 ± 0.02

C21:5 n-3 0.5 ± 0.02 1.7 ± 0.02 -
C22:5 n-3 1.5 ± 0.04 2.5 ± 0.01 -

C22:6 (DHA) n-3 11.2 ± 0.13 45.2 ± 0.35 3.2 ± 0.05
Others 37.6 4.7 -

Total n-3 PUFA 27.1 86.9 3.8
a Data show mean ± SD with n = 3.

The fatty acid composition of native PC obtained from egg-yolk is also shown in Table 1.
The results indicate that palmitic acid (C16:0) and oleic acid (C18:1) are the predominant fatty acids
and each of them makes up a third of the total. The next most abundant fatty acids in yolk-PC are
stearic (C18:0; 15.7%) and linoleic (C18:2; 15.3%). The content of polyunsaturated fatty acids, especially
from the n-3 family is relatively low (in this case does not exceed 4%), therefore enrichment of egg-yolk
PC with n-3 PUFA is more justified from a nutritional point of view compared with soy PC. It is
known that when hen feed is supplemented with some plant or fish oils the enrichment of egg-yolk
lipids (especially PC) with n-3 PUFA is observed, however the amount of these acids in PC fraction
usually does not exceed 10% of total fatty acids [35–37]. Additionally, deposition of DHA and EPA is
predominantly observed at sn-2 position of phospholipids [35].

2.1. Screening of Enzymes

In this study, seven different lipase preparations were examined for their ability to catalyze the
acidolysis process between egg-yolk PC and PUFA-EF (Scheme 1).
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Scheme 1. Lipase-catalyzed acidolysis of egg-yolk PC with PUFA-EF. 

Five preparations contain different lipases: Lipozyme TL IM (a silica granulated Thermomyces 
lanuginosus lipase preparation), CALA (lipase A from Candida antarctica immobilized on resin 
Immobead 150), Lipozyme® (lipase from Mucor miehei immobilized on an anion exchange resin), 
Amano PS IM (lipase from Burkholderia cepacia immobilized on diatomaceous earth) and 
non-immobilized lipase from Candida cylindracea. The other two preparations contain the same lipase 
(lipase B from Candida antarctica) but immobilized on different carriers: Novozym 435 (immobilized 
on a macroporous acrylic resin) and CALB (immobilized on resin Immobead 150). Although the 
enzymes exhibited different activities (according to suppliers), we decided to apply them at the same 
weight ratio, because it is important to reduce the total costs of a process while choosing an enzyme 
for industrial applications. Initial conditions applied for the reaction systems in our present 
investigations were also chosen on the basis of earlier studies [26]. They were as follows: 20% lipase 
dosage (based on the weight of substrates), temperature 55 °C, PC/PUFA-EF molar ratio 1/3 and 
hexane as a solvent. 

Scheme 1. Lipase-catalyzed acidolysis of egg-yolk PC with PUFA-EF.

Five preparations contain different lipases: Lipozyme TL IM (a silica granulated Thermomyces
lanuginosus lipase preparation), CALA (lipase A from Candida antarctica immobilized on resin
Immobead 150), Lipozyme® (lipase from Mucor miehei immobilized on an anion exchange
resin), Amano PS IM (lipase from Burkholderia cepacia immobilized on diatomaceous earth) and
non-immobilized lipase from Candida cylindracea. The other two preparations contain the same lipase
(lipase B from Candida antarctica) but immobilized on different carriers: Novozym 435 (immobilized
on a macroporous acrylic resin) and CALB (immobilized on resin Immobead 150). Although the
enzymes exhibited different activities (according to suppliers), we decided to apply them at the same



Molecules 2017, 22, 1771 4 of 12

weight ratio, because it is important to reduce the total costs of a process while choosing an enzyme for
industrial applications. Initial conditions applied for the reaction systems in our present investigations
were also chosen on the basis of earlier studies [26]. They were as follows: 20% lipase dosage (based on
the weight of substrates), temperature 55 ◦C, PC/PUFA-EF molar ratio 1/3 and hexane as a solvent.

The time course of the incorporation of n-3 PUFA into PC by lipases is shown in Figure 1.
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Figure 1. Time courses of different lipases-catalyzed acidolysis between egg-yolk PC and PUFA-EF. 
Reaction condition: temperature, 55 °C; PC/PUFA-EF molar ratio, 1/3; lipase dosage, 20%; solvent, 
hexane. 
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continued for more than 72 h no significant increase of n-3 PUFA in modified PC was observed. For 
other enzymes the degree of incorporation decreased in the following order after 48 h of reaction: 
Lipozyme TL IM ≅ Lipozyme® > C. cylindracea lipase > Amano PS. Lipase A from Candida antarctica 
(CALA) was almost inactive in acidolysis process giving less than 0.5% of n-3 PUFA incorporation.  

Our screening results were in accordance with the results reported by Lyberg et al. They achieved 
the best incorporation of n-3 PUFA in esterification of 2-palmitoyl-LPC using Candida antarctica 
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was also observed for incorporation of DHA, which content in modified PC made up 39.8% of total 
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specificity of enzyme used (Novozym 435) towards DHA than EPA. Peng et al. observed reversed 
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Figure 1. Time courses of different lipases-catalyzed acidolysis between egg-yolk PC and PUFA-EF.
Reaction condition: temperature, 55 ◦C; PC/PUFA-EF molar ratio, 1/3; lipase dosage, 20%;
solvent, hexane.

Only two preparations of lipase B from Candida antarctica exhibited satisfactory activity, giving
more than 10% incorporation of n-3 PUFA into PC within 48 h. In the reaction with Novozym 435 the
incorporation degree reached a maximum (23.7%) after 48 h, whereas CALB-catalyzed acidolysis
afforded the double-less incorporation degree (12.1%) at the same time. When the reaction was
continued for more than 72 h no significant increase of n-3 PUFA in modified PC was observed.
For other enzymes the degree of incorporation decreased in the following order after 48 h of reaction:
Lipozyme TL IM ∼= Lipozyme® > C. cylindracea lipase > Amano PS. Lipase A from Candida antarctica
(CALA) was almost inactive in acidolysis process giving less than 0.5% of n-3 PUFA incorporation.

Our screening results were in accordance with the results reported by Lyberg et al. They achieved
the best incorporation of n-3 PUFA in esterification of 2-palmitoyl-LPC using Candida antarctica
lipase B [38].

Because the highest degree of incorporation of n-3 PUFA into PC was achieved for Novozym 435,
this enzyme was selected for subsequent experiments.

2.2. Effect of Substrate Molar Ratio

The increase of substrate molar ratio (PC/PUFA-EF) from 1/3 to 1/10 resulted in higher
incorporation of n-3 PUFA, which grew up from 23.7 to 45.5% (Figure 2). An over two-fold increase
was also observed for incorporation of DHA, which content in modified PC made up 39.8% of total
fatty acids after reaction carried out at 1/10, PC/PUFA-EF molar ratio. On the other hand, the content
of EPA was not significantly different, irrespective of molar ratio used. It can be explained by higher
specificity of enzyme used (Novozym 435) towards DHA than EPA. Peng et al. observed reversed
specificity towards these acids using Lipozyme TL IM [25].
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A significant decrease of the isolated yield was observed for modified PC along with the increase
of PUFA-EF in the reaction mixture. The highest isolated yield (36%) was obtained at 1/3 substrate
molar ratio, significantly lower value (3%) was noticed in the case of 1/10 ratio.

Adlercreutz et al. observed that the increase in FA concentration led to increase of PC yield [39]
while Vikbjerg et al. reported no significant effect of PC/FA molar ratio on yield of modified PC [40].
However in both investigations the amounts of PC and LPC were measured by HPLC or TLC-FID
methods. Taking into consideration all steps of modified PC preparation including purification of the
product by column chromatography we estimated the isolated yield of PC as the amount of recovered
PC (by weight) in relation to initial PC. In this context the lower yield of modified PC observed at
highest PUFA-EF concentration can be explained by difficult separation of the products from the
reaction mixtures.

Taking into account the economy of the process, 1/3 molar ratio (PC/PUFA-EF) was chosen for
subsequent experiments.
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Figure 2. Effect of substrate molar ratio (PC/PUFA-EF) on the incorporation of n-3 PUFA into egg-yolk
PC in acidolysis reaction catalyzed by Novozym 435 (reaction condition: enzyme load 20% (w/w),
temperature 55 ◦C, solvent hexane, reaction time 48 h).

2.3. The Effect of Organic Solvent

The best results of incorporation degree were obtained in hexane (Figure 3). Using heptane
as a solvent resulted in a significant decrease of n-3 PUFA incorporation from 24 to 18% and DHA
incorporation was lowered by 6%. The content of EPA was not changed significantly and leveled off
at 6.6%. The lowest incorporation of n-3 PUFA (12.3%), DHA (6%), and EPA (4.8%) was observed in
toluene. Mutua and Akoh also achieved the highest incorporation of n-3 PUFA into PC in hexane
using nonimmobilized lipase from Mucor miehei [41]. Simultaneously, the relationship between low
incorporation level and high isolated yield of modified PC was observed and for toluene the 58% yield
was obtained whereas in hexane 36% was achieved.



Molecules 2017, 22, 1771 6 of 12

Molecules 2017, 22, 1771 5 of 12 

 

the product by column chromatography we estimated the isolated yield of PC as the amount of 
recovered PC (by weight) in relation to initial PC. In this context the lower yield of modified PC 
observed at highest PUFA-EF concentration can be explained by difficult separation of the products 
from the reaction mixtures. 

Taking into account the economy of the process, 1/3 molar ratio (PC/PUFA-EF) was chosen for 
subsequent experiments.  

 
Figure 2. Effect of substrate molar ratio (PC/PUFA-EF) on the incorporation of n-3 PUFA into 
egg-yolk PC in acidolysis reaction catalyzed by Novozym 435 (reaction condition: enzyme load 20% 
(w/w), temperature 55 °C, solvent hexane, reaction time 48 h). 

2.3. The Effect of Organic Solvent 

The best results of incorporation degree were obtained in hexane (Figure 3). Using heptane as a 
solvent resulted in a significant decrease of n-3 PUFA incorporation from 24 to 18% and DHA 
incorporation was lowered by 6%. The content of EPA was not changed significantly and leveled off 
at 6.6%. The lowest incorporation of n-3 PUFA (12.3%), DHA (6%), and EPA (4.8%) was observed in 
toluene. Mutua and Akoh also achieved the highest incorporation of n-3 PUFA into PC in hexane 
using nonimmobilized lipase from Mucor miehei [41]. Simultaneously, the relationship between low 
incorporation level and high isolated yield of modified PC was observed and for toluene the 58% 
yield was obtained whereas in hexane 36% was achieved.  

 
Figure 3. Effect of organic solvent on the incorporation of n-3 PUFA into egg-yolk PC in acidolysis 
reaction catalyzed by Novozym 435 (reaction condition: enzyme load 20% (w/w); temperature 55 °C; 
PC/PUFA-EF molar ratio 1/3; reaction time 48 h). 

Figure 3. Effect of organic solvent on the incorporation of n-3 PUFA into egg-yolk PC in acidolysis
reaction catalyzed by Novozym 435 (reaction condition: enzyme load 20% (w/w); temperature 55 ◦C;
PC/PUFA-EF molar ratio 1/3; reaction time 48 h).

2.4. The Effect of Enzyme Dosage

The increase of enzyme dosage from 10 to 20% resulted in significant increase of incorporation of
n-3 PUFA, from 15 to 24% (Figure 4). The incorporation of DHA and EPA was also higher, by 5.5% and
3%, respectively, but at the same time the isolated yield of modified PC was lowered from 41 to 36%.
Increase of enzyme load to 30% did not affect incorporation degree but a further decrease of isolated
yield was observed. Taking into consideration the cost of enzyme, 20% of enzyme load seems to be
enough to achieve both high incorporation of PUFA and PC yield.
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2.5. Positional Analysis of Modified PC

The products of reaction obtained in the Novozym 435-catalyzed reaction (conditions: temperature
55 ◦C; PC/PUFA-EF molar ratio 1/3; 20% enzyme load; solvent hexane; reaction time 48 h) were
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separated by column chromatography to afford 36.2% modified PC and 48% LPC. LPC was formed as
a product of partial hydrolysis of the PC during the acidolysis reaction and it was found to contain
over 22% of n-3 PUFA. Analysis of positional distribution of fatty acids in egg-yolk PC before and
after modification (Table 2) indicated that n-3 PUFA were almost exclusively incorporated into the sn-1
position of the glycerol skeleton and their content in this position reached 47.4%. Analyzing the total
and positional FA composition of the native and modified PC and LPC one can see the increase of
PUFA was accompanied by a reduction in saturated fatty acids which usually occupy the sn-1 position
of egg-yolk PC. In the case of both (palmitic; C16:0, and stearic; C18:0) acids, almost two-fold decrease
in their content was observed. These data confirm the specificity of Novozym 435 lipase towards sn-1
position of PC. Observed regioselectivity is not a general rule for other lipases; Yamamoto et al. used
lipase OF from Candida rugosa to incorporate n-3 PUFA into sn-2 position of soy PC [42].

Enzymatic preparation of n-3 PUFA-PL using fish oils or their concentrates as the acyl donors is a
subject of interest to different research groups. However, most of them concern the modification of soy
PC [25,42–46]. Using phospholipase A2 in enzymatic modification is a limitation because only sn-2
PUFA-PC can be obtained and requires a two-step procedure [47,48].

Introduction of n-3 PUFA into sn-1 position of PC can be obtained using phospholipase A1 but
low incorporation is observed for free enzyme (22%) [44] and immobilization of enzyme on different
carrier is necessary to achieve satisfactory content of n-3 PUFA in PC [45,46]. Xi et al. applied harsh
reaction conditions (12 MPa, 50 ◦C, supercritical CO2 as a solvent) to increase DHA in Antarctic krill
PC from 15 to 59% [49].

Table 2. Fatty acid composition (wt %) of native egg yolk PC and modified PC and lyso-PC a.

Fatty Acid Native PC Modified PC Modified
LPCTotal sn-1 sn-2 Total sn-1 sn-2

C16:0 34.2 ± 0.11 64.1 ± 0.22 0.8 ± 0.04 15.7 ± 0.48 28.5 ± 0.65 0.5 ± 0.55 17.7 ± 0.22
C18:0 15.7 ± 0.05 29.2 ± 0.55 1.1 ± 0.09 9.5 ± 0.27 19.5 ± 0.35 0.3 ± 0.13 10.8 ± 0.05
C18:1 29.0 ± 0.04 5.5 ± 0.33 56.3 ± 0.32 30.1 ± 0.09 7.5 ± 0.12 52.1 ± 0.95 28.1 ± 0.56
C18:2 15.3 ± 0.02 1.2 ± 0.05 28.8 ± 0.55 15.9 ± 0.34 1.5 ± 0.25 29.0 ± 0.84 20.5 ± 0.08

C18:4 SDA n-3 - - - 2.1 ± 0.06 3.8 ± 0.22 0.2 ± 0.06 1.9 ± 0.02
C20:4 n-6 2.0 ± 0.01 - 4.5 ± 0.06 1.8 ± 0.08 3.5 ± 0.12 0.5 ± 0.08 0.7 ± 0.03

C20:5 EPA n-3 0.6 ± 0.02 - 1.4 ± 0.06 7.8 ± 0.13 14.5 ± 0.35 1.5 ± 0.12 5.9 ± 0.05
C22:6 (DHA) n-3 3.2 ± 0.05 - 7.1 ± 0.22 17.6 ± 0.11 29.1 ± 0.84 3.2 ± 0.55 14.4 ± 0.07
Total n-3 PUFA 3.8 0 8.5 27.5 47.4 4.9 22.2

a Data show mean ± SD with n = 3.

The alternative for phospholipase A1 in modification of sn-1 position of PC are commercially
available lipases with selectivity towards sn-1 position. Totani and Hara carried out interesterification
between soy-PC and sardine oil using lipases from Candida cylindracea and Rhizopus delemar [43].
Higher incorporation of n-3 PUFA into PC (17.6%) was obtained in C. cylindracea-catalyzed reaction.
Comparable results (18.9% incorporation) were reported by Peng et al. in the Lipozyme TL
IM-catalyzed acidolysis of soy-PC with n-3 PUFA concentrate after 72 h of reaction [25].

To the best of our knowledge, the only results on lipase-catalyzed modification of egg yolk
PC using commercial concentrate of fish oil were published by Haraldsson and Thorarensen [50].
They used 1,3-regiospecific Rhizomucor miehei lipase (Lipozyme™) in the solvent free acidolysis reaction
and phospholipids with 48% n-3 PUFA were obtained presumably as a mixture of PC and LPC.
The highest incorporation degree obtained in our investigation (45.6%) concern only PC. Using
concentrate with different FA composition (45.2% DHA and 26.7% EPA in our investigation versus 55%
EPA and 30% DHA in studies of Haraldsson and Thorarensen [50]) resulted in higher content of DHA
in obtained product (36.8% in modified PC versus 16% in modified PL). It is also worth to notice that
in the cited studies [50], 100% dosage of lipase and longer reaction time (72 h) were applied to achieve
such incorporation whereas our conditions involve maximum 30% enzyme load and 48 h of reaction.
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3. Materials and Methods

3.1. Materials and Chemicals

Lohmann Brown hens’ eggs were a gift from the Tronina factory. Cod liver oil (CLO) was a gift
from the National Marine Fisheries Research Institute, Gdynia, Poland. Lipozyme TL IM (a silica
granulated Thermomyces lanuginosus lipase preparation, 250 U/g) was a gift from the Novozymes
A/S (Bagsvaerd, Denmark). Lipase B from Candida antarctica immobilized in a macroporous acrylic
resin (synonym: Novozym 435, >5000 U/g), lipase B from Candida antarctica (CALB, >1800 U/g),
lipase A from Candida antarctica (CALA, >500 U/g) both immobilized on resin Immobead 150, lipase
from Mucor miehei (Lipozyme®, >30 U/g), lipase from Candida cylindracea (≥2 U/mg) and lipase from
Burkholderia cepacia (Amano PS IM, >500 U/g) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). A boron trifluoride methanol complex solution (13–15% BF3 × MeOH) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Silica gel-coated aluminum plates (Kieselgel 60 F254, 0.2 mm)
used in thin layer chromatography (TLC) and the silica gel (Kieselgel 60, 230–400 mesh) used in the
column chromatography were purchased from Merck.

3.2. Isolation of PC from Egg Yolk

The extraction of phospholipids from egg yolk was performed on a semi-technical scale in
Wroclaw Technology Park. Eggs were purchased from the poultry farm “Ovopol” (Nowa Sól, Poland)
and dried in the drying chamber at inlet air temperature 185 ± 5 ◦C and an outlet air temperature
70 ± 2 ◦C. In the next step, obtained powder was extracted with ethanol in a tank equipped with a
mechanical stir maintaining the dilution ratio of yolk to solvent at 1:4 (m/v). The process of suspension
was carried out for 90 min. and then alcohol was removed by filtration. The residue was evaporated in
vacuo (0.06 MPa at 50 ◦C). The pure PC was separated from crude PLs fraction by silica gel column
chromatography (chloroform/methanol/water, 65:25:4, v/v/v). Purity of PC fractions was analyzed
by TLC on silica gel-coated aluminum plates (chloroform/methanol/water, 65:25:4, v/v/v) and HPLC
(Section 3.5). Pure phosphatidylcholine fractions were collected and evaporated in vacuo.

3.3. Production of n-3 PUFA Concentrate

The raw material for the production of the concentrate was cod liver oil containing approximately
30% PUFA. Concentration was carried out by a two-step process: saponification of triacylglycerols of
CLO followed by formation of urea inclusion compounds according to the procedure described by
Patkowska-Sokoła et al. [51].

The mixture of 25 g of CLO and 75 mL 1 M NaOH ethanol solution was heated under reflux for
1 h. Then the mixture was cooled to room temperature, 100 mL distilled water was added and such
mixture was extracted with hexane. Organic layer containing unsaponifiable residue was rejected and
the water layer was acidified to pH 1 with 6 M HCl, extracted with hexane, and dried under anhydrous
MgSO4. The hexane was then evaporated in vacuo.

To 20 g of free fatty acids obtained after saponification of CLO, 80 g of urea and 150 mL of
methanol was added. The mixture was stirred for 1 h on a magnetic stirrer at 60 ◦C. The solutions
were allowed to crystallize in a refrigerator at 4 ◦C for 18 h. The crystal fraction was filtrated on
a Büchner funnel. The filtrate was diluted with 15 mL of distilled water and acidified to pH 4–5
with 3 M HCl. An equivalent quantity of hexane was added to the solution and the fatty acids were
extracted twice. The hexane fractions were washed with distilled water to remove leftover of urea
and dried over anhydrous magnesium sulfate. Hexane was evaporated to obtain the PUFA-enriched
fraction (PUFA-EF). The fatty acid compositions of this fraction was analyzed by GC (Table 1).

3.4. The Lipase-Catalyzed Transesterifiction of PC with PUFA Concentrates

The egg-yolk PC (0.13 mmol, 100 mg) was mixed with PUFA-EF at molar ratio of substrates
1/3 (PC/PUFA-EF) in 5 mL of solvent and then 20% of lipase (by weight of substrates) was added.
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The reactions were carried out using seven different lipases, in N2 atmosphere, at 55 ◦C. The effect of
molar ratio of substrates, lipase dosage and different solvent was tested in another set of experiments
for Novozym 435. The reaction mixtures were agitated in a magnetic stirrer at 300 rpm and stopped
at the selected time intervals by enzyme filtration. Modified PC and lysophosphatidylcholine (LPC)
were separated from the mixtures by silica-gel column chromatography (chloroform/methanol/water,
65:25:4, v/v/v). All experiments were carried out in triplicates.

3.5. Analysis of Substrates and Products

Purity of native and modified egg-yolk PC was analyzed by HPLC on an Ultimate 3000 DIONEX
chromatograph equipped with CoronaTM Charged Aerosol Detector (CAD). A Waters Spherisorb S5W
column (150 × 4.6 mm) was used for analysis. HPLC gradient program was as follows: (flow rate
0.6 mL × min−1): 0 min 0/90/10 (%A/%B/%C) at 2 min, 0/40/60 at 20 min, 1/40/59 at 22 min,
10/40/50 at 38 min, 8/40/52 at 44 min, 1/40/59 at 55 min, 0/90/10 at 56 min, 0/90/10 hold 10 min
(A/B/C, water/0.1% solution of formic acid in hexane/isopropanol).

Fatty acid profiles of starting materials and products were determined after their conversion to
the corresponding fatty acid methyl esters (FAME) according to the following procedure: samples
(50 mg) were heating under reflux (3 min) with 3 mL of BF3×MeOH complex solution and then cooled.
Products were extracted with 2 mL of hexane and the organic layers were washed with a saturated
NaCl solution. Hexane extracts were dried and analyzed directly by gas chromatography (GC) on
an Agilent 6890 N instrument equipped with a 70% cyanopropyl polysilphenylene-siloxane column
(TR FAME, 30 m length, 0.25 mm diameter, 0.25 µm film thickness). The oven temperature was first set
at 160 ◦C for 3 min and then raised to 220 ◦C (rate 5 ◦C min−1) and next to 260 ◦C at 30 ◦C min−1 and
held there for 3 min. The injector and flame ionization detector temperatures were 250 ◦C and 280 ◦C,
respectively. The FAME were identified by comparing their retention times with those of a standard
FAME mixture (Supelco 37 FAME Mix) purchased from Sigma-Aldrich. The incorporation degree of
n-3 PUFA into PC was calculated as follows:

Incorporation of n-3 PUFA into PC = % of n-3 PUFA in modified PC − % of n-3 PUFA in native PC

Similar equation was applied for calculation of incorporation of particular fatty acid.

3.6. Positional Analysis of Fatty Acids in Native and Modified PC

The procedure was based on regiospecific Lipozyme®-catalyzed ethanolysis of PC. The details of
the procedure were described in our previous paper [52].

4. Conclusions

Summarizing, the developed method of enzymatic preparation of n-3 PUFA enriched-PL reported
herein is competitive with those reported previously. This method involves mild reaction conditions,
utilization of natural substrates (egg-yolk PC and waste cod liver oil) and commercially available
regioselective enzyme (Novozym 435). As a result, molecular species i.e., sn-1 DHA enriched-PC and
DHA enriched-LPC as carriers of this biologically active molecule overcoming blood-brain barrier (BBB)
can be easily obtained. This molecular species can target the brain more effectively than DHA-TAG as
was reported earlier in the in vivo studies of Kitson et al. concerning brain uptake of DHA-PC with
radiolabelled tracers in rats [53].
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of concentrates of CLA obtained from sunflower and safflower and their application to the lipase-catalyzed
acidolysis of egg yolk phosphatidylcholine. Eur. J. Lipid Sci. Technol. 2016, 118, 1566–1578. [CrossRef]

34. Hayes, D.G.; Bengtsson, Y.C.; Alstine, J.M.; Setterwall, F. Urea complexation for the rapid, ecologically
responsible fractionation of fatty acids from seed oil. J. Am. Oil Chem. Soc. 1998, 75, 1403–1409. [CrossRef]

35. Gładkowski, W.; Kiełbowicz, G.; Chojnacka, A.; Gil, M.; Trziszka, T.; Dobrzański, Z.; Wawrzeńczyk, C.
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