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Stroke’s secondary damage, such as inflammation, oxidative stress, and mitochondrial
dysfunction, are thought to be crucial factors in the disease’s progression. Despite
the fact that there are numerous treatments for secondary damage following stroke,
such as antiplatelet therapy, anticoagulant therapy, surgery, and so on, the results are
disappointing and the side effects are numerous. It is critical to develop novel and
effective strategies for improving patient prognosis. The ubiquitin proteasome system
(UPS) is the hub for the processing and metabolism of a wide range of functional
regulatory proteins in cells. It is critical for the maintenance of cell homeostasis. With
the advancement of UPS research in recent years, it has been discovered that UPS is
engaged in a variety of physiological and pathological processes in the human body.
UPS is expected to play a role in the onset and progression of stroke via multiple targets
and pathways. This paper explores the method by which UPS participates in the linked
pathogenic process following stroke, in order to give a theoretical foundation for further
research into UPS and stroke treatment.
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INTRODUCTION

Stroke is a potentially fatal cerebrovascular event defined by brain tissue damage produced by a
sudden rupture of cerebral vessels or cessation of cerebral blood supply, resulting in neurological
dysfunction, including ischemic and hemorrhagic stroke (Landowski et al., 2020). Stroke has
overtaken ischemic heart disease as the second largest cause of death worldwide (Benjamin et al.,
2017; Li et al., 2021). According to a comprehensive analysis of Chinese population’s health, stroke
has become the leading cause of mortality in the country (Zhou et al., 2019). According to current
research, the ubiquitin proteasome system (UPS) plays a role in the molecular processes that lead
to the occurrence and progression of stroke. UPS is also linked to a number of signaling pathways
that cause injuries after stroke.

UBIQUITIN PROTEASOME SYSTEM

In cells, UPS is the primary non-lysosomal route for protein breakdown. This system destroys
proteins with basic functions in addition to misfolded or oxidized proteins. Under physiological
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and pathological situations, it is a critical mechanism for
maintaining protein homeostasis (Kramer et al., 2021). In
addition, the system is participated in a variety of cellular
functions, including DNA repair (Uckelmann and Sixma, 2017),
endocytic trafficking (Hicke, 2001), and immunological response
(Bednash and Mallampalli, 2016). UPS is vital in central
nervous system disorders because it can clean up aberrant
proteins in neurodegenerative diseases including Alzheimer’s and
Parkinson’s disease (Graham and Liu, 2017). At the same time,
the system controls the primary risk factors for cerebrovascular
disease, such as atherosclerosis (Wilck and Ludwig, 2014),
hypertension (Li et al., 2013), hyperlipidemia (Sharpe et al., 2020),
type 2 diabetes (Sun-Wang et al., 2021), and so on.

Ubiquitination Process
Ubiquitination is usually mediated by UPS. Ubiquitin, ubiquitin-
activating enzyme (E1), ubiquitin-conjugating enzyme (E2),
ubiquitin protein ligase (E3), deubiquitinase (DUB), and
the proteasome are all important components of the UPS
(Kane et al., 2021). Ubiquitin is a tiny peptide with a
molecular weight of about 8.5 kDa that consists of 76 amino
acids. It has a highly conserved sequence and is found in
eukaryotic cells in large quantities. Ubiquitin molecule contains
seven lysine residues (K6, K11, K27, K29, K33, K48, K63)
and an N-terminal methionine residue (M1), which allow
ubiquitin molecules to connect to one another (Kwon and
Ciechanover, 2017). Homotypic polyubiquitination modification
and heterotypic polyubiquitination modification are two types
of ubiquitin-ubiquitination modification (Komander and Rape,
2012). Furthermore, ubiquitin can undergo post-translational
modifications such as phosphorylation or acetylation (Yau and
Rape, 2016; Ohtake and Tsuchiya, 2017). This complicates
the ubiquitination process. Generally, E1 forms a high-energy
thiohydroxyester bond between the carboxyl group of ubiquitin’s
C-terminal glycine and the sulfhydryl side chain of E1’s active
cysteine under the action of ATP (Ciechanover, 2015). E2
is an intermediate enzyme in ubiquitination reaction, which
can bind E1 and E3. E2 enzyme has a highly conserved
ubiquitin-conjugating enzyme domain (UBC). On the UBC
sequence, there is a cysteine site with symbolic activity,
which can accept ubiquitin molecules activated by E1 and
form a thioester bond with ubiquitin (Zheng and Shabek,
2017). Subsequently, E2 with activated ubiquitin binds to E3;
Finally, E2 transfers the ubiquitin molecule to the substrate
by inducing the formation of an isopeptide bond between the
C-terminus of ubiquitin and a target lysine of the substrate.
E3 specifically recognizes target proteins during ubiquitination
(Buetow and Huang, 2016).

E3’s function reflects selectivity and efficiency of
ubiquitination. Single subunit proteins and multisubunit
complexes are two types of E3. There are four families of E3 single
subunit proteins that have been identified: the HECT domain
family, the RING domain family, the U-box domain family,
and the N-recognition family. Cullin-RING and APC/C are the
most common multisubunit complexes found in E3 (Zheng
and Shabek, 2017). The human genome encodes approximately
more than 600 ubiquitin ligases E3. Different E3 enzymes

can specifically mediate the formation of different ubiquitin
chain types. According to the different types of ubiquitin chain
modification, it shows different functions. Polyubiquitination
modification mediated by K48 or K11 ubiquitin chain is involved
in proteasome degradation. Many E3 enzymes, such as SCF,
gp78 and E6AP, can form K48 ubiquitin chains on substrate
proteins, thus mediating the degradation of substrate proteins
through proteasome (Wang and Pickart, 2005; Gao et al., 2016;
Thacker et al., 2020). K11 ubiquitin chain was first considered as
a regulator of cell fission, and its abundance increased with the
increase of APC/C activity. APC/C, as an E3 enzyme, mediates
the substrate Cyclin B1 to form K11 ubiquitin chain, which is
finally degraded by proteasome, so as to promote the normal
progress of cell mitosis (Song and Rape, 2010). In addition,
studies have shown that K11 ubiquitin chain is often difficult to
bind to 26S proteasome, but its degradation efficiency will be
significantly enhanced when it forms a composite chain with
K48 (Grice et al., 2015). Previous studies have shown that linear
ubiquitination assembly complex (LUBAC) can modify NEMO
by M1 ubiquitin chain to activate NF-κB pathway (Rahighi
et al., 2009). This indicates that M1 ubiquitin chain is involved
in activation of NF-κB pathway. ITCH and SMURF1 of the
HECT family are members of the K29 ubiquitin chain’s ubiquitin
ligases. SMURF1 has been found to add K29 ubiquitin chain
to AXIN in WNT pathway. AXIN modified by K29 ubiquitin
chain will not be degraded, but will lose the ability to interact
with receptor LRP5/6 of WNT pathway (Fei et al., 2013). ITCH
has been reported to catalyze Deltex in the NOTCH pathway
to form K29 ubiquitin chain, which enables Deltex to enter the
lysosomal pathway (Chastagner et al., 2006). In the process of
DNA damage repair, RNF168 will form K27 polyubiquitin chain
on histone, and then recruit 53BP1 and BRCA1 to DNA damage
site to start the DNA damage repair (Brown and Jackson, 2015;
Gatti et al., 2015).

Proteasome
The proteasome is a multi-subunit protease complex that is found
in both the cytoplasm and the nucleus. In mammalian cells, it is
the primary neutral protein hydrolase. It is ubiquitin-dependent
and possesses a variety of protein hydrolase functions. In UPS,
the term “proteasome” usually refers to the 26S proteasome.
The 20S proteasome and the 19S subcomplex make up the 26S
proteasome (Gillette et al., 2008). Before the target proteins enter
the 20S proteasome, each 19S sub complex comprises several
ATPase active sites and ubiquitin binding sites that can recognize
ubiquitinated target proteins, deubiquitinate the target proteins,
and open the structural folding of the target proteins (Matyskiela
et al., 2013). The 20S proteasome of eukaryotic cells contains two
α rings and two β rings, these α rings and β rings together form
a cylindrical structure, both α rings or β rings are composed of
seven subunits. α rings are found in the outer layer of the 20S
protease and are mostly employed for substrate identification; β

rings are found in the inner layer and are primarily responsible
for substrate degradation (Fricker, 2020). The β1, β2, and β5
of the seven β subunits have proteolytic activities, which are
referred to as caspase-like activity, trypsin-like activity, and
chymotrypsin-like activity, respectively, enzymolysis of acidic,
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FIGURE 1 | Degradation pathway of the ubiquitin proteasome system (UPS). Under the action of ATP, the ubiquitin activating enzyme E1 forms a high-energy
thiohydroxyester bond between the carboxyl group of ubiquitin’s C-terminal glycine and the sulfhydryl side chain of E1’s active cysteine. Then, ubiquitin-conjugating
enzyme E2 receives ubiquitin activated by E1 through a cystine site on its ubiquitin-conjugating enzyme domain (UBC) and forms a thioester bond. Depending on
the type of ubiquitin protein ligase E3, E2 can transfer ubiquitin to the substrate directly (RING E3s) or indirectly (HECT E3s) and form an isopeptide between the
substrate and ubiquitin. In addition, ubiquitin can itself be the target of the ubiquitination cascade. Finally, the ubiquitinated substrate is degraded by the 26S
proteasome. The ubiquitin separated from the substrate will re-enter the ubiquitination cycle.

alkaline, hydrophobic, or aromatic amino acid residues at the
carboxyl end (Unno et al., 2002; Figure 1).

OCCURRENCE AND DEVELOPMENT OF
STROKE

According to the causes, stroke can be classified as hemorrhagic
or ischemic, with ischemic stroke accounting for around 87%
of all cases (Virani et al., 2021). Due to cerebral ischemia or
hemorrhage, the normal blood supply of neurons is destroyed,
which leads to a series of pathophysiological reactions and finally
to the death of nerve cells. The mechanisms involved in nerve
injury include excitotoxicity, mitochondrial dysfunction, free
radical disorder, inflammation, apoptosis, necrosis, autophagy
and so on. According to analyses based on data from the
Global Burden of Disease (GBD) study, modifiable risk factors
such as hypertension, obesity, hyperglycemia, hyperlipidemia,
atrial fibrillation and renal dysfunction account for 87% of
stroke risk, while behavioral risk factors such as smoking,
sedentary behavior, and an unhealthy diet account for 47%.
Air pollution was found to be responsible for 30% of the
global risk of stroke (Collaborators, 2020). In addition, age,
gender and race are also associated with stroke (Diseases and
Injuries, 2020). The combined action of multiple risk factors leads
to pathological changes of cardiovascular and cerebrovascular
system, including but not limited to atherosclerosis, arteriolar fat
hyalinization and fibrin like necrosis, coronary artery disease, and
myocardial injury. These pathological changes provide clues for
the occurrence, recurrence, and secondary prevention of stroke.

Although brain tissue makes up only 2% of total body
weight, cerebral blood flow accounts for 15% of cardiac output.

The aerobic oxidation of glucose provides the majority of the
energy required by brain tissue, although the glucose reserve
is limited. Though brain oxygen use contributes for 23% of
total body oxygen consumption, the oxygen reserve is small
(Hyder et al., 2013). For these factors, the brain is extremely
vulnerable to ischemia and hypoxia. Following a stroke, brain
ischemia, and hypoxia are major concerns. In the ischemic core
the major mechanism of cell death is energy failure. Neurons
cannot create the ATP needed to supply the ionic pumps that
maintain the ionic gradient across the neuronal membrane,
primarily the Na+/K+ ATPase, without oxygen or glucose. As
a result, a substantial amount of Na+ and Ca2+ accumulate
in the cytoplasm, causing organelles swelling and degeneration,
loss of cell membrane integrity, and ultimately cell necrosis
(Lipton, 1999). In the ischemic penumbra, the decrease in
blood flow due to collateral blood supply is not enough to lead
to rapid energy failure, and neurons still survive for a long
time after ischemia and hypoxia. The excessive accumulation of
extracellular glutamate is an important factor leading to ischemic
penumbra injury (Mazzocchetti et al., 2020). Due to the excessive
accumulation of glutamate, the overactivation of subtypes of
N-methyl-D-aspartate receptors (NMDARs) leads to cellular
calcium overload. Therefore, calcium-dependent proteases are
activated, such as calpains, resulting in nerve cell damage (Rami
et al., 2000). In addition, some studies have shown that calpains
are involved in the activation of Caspase-3, which may be
an important mechanism of neuronal apoptosis after stroke
(Blomgren et al., 2001). Meanwhile, mitochondrial dysfunction
is caused by Ca2+ overload which leads to mitochondrial
permeability transition pore (mPTP) opening (Zhu et al., 2018).
Of note, mitochondrial dysfunction leads to insufficient ATP
production, which will further lead to Ca2+ accumulation
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and form a vicious circle. Nerve cell survival is aided by the
removal of defective mitochondria. Mitochondrial autophagy is
an important regulatory process for the quality and quantity of
mitochondria. According to a report, UPS plays a key function in
the regulation of mitochondrial autophagy (Alsayyah et al., 2020).
Mitochondria are organelles that operate as oxidative energy
centers and are required for cell survival, but aging or damaged
mitochondria produce deadly reactive oxygen species (ROS; Liu
et al., 2018). ROS are important signaling molecules in oxidative
stress. In the pathological manifestations of stroke, relatively
excessive ROS will destroy the homeostasis of intracellular
environment, resulting in oxidative stress and mitochondrial
damage (Sims and Muyderman, 2010). The main defensive
response to oxidative and electrophilic stressors is the Keap1-
Nrf2 pathway. UPS can strictly regulate the transcription of
nuclear factor erythroid2-related factor (Nrf2) through this
pathway, thereby affecting the antioxidant process (Baird and
Yamamoto, 2020). Whether it is mitochondrial dysfunction or
oxidative stress, it will eventually lead to neuronal damage.
Inflammation is one of the most prevalent pathological signs
following a stroke, and it is induced by a range of factors,
including microglia activation (Koh et al., 2018) and cytokine
involvement (Xu et al., 2018). Inflammation has the potential to
be neurotoxic., which can lead to neuronal death (Liddelow et al.,
2017). Hypoxia-inducible factor-1 (HIF-1) comprised by α and β

subunits is a protein that regulates the expression of genes that
code for erythropoietin (EPO) and vascular endothelial growth
factor (VEGF), as well as genes involved in glucose transport
and glycolysis, such as glucose transporter-1 (GLUT1), pyruvate
dehydrogenase kinase 1 (PDK1), and lactate dehydrogenase A
(LDHA; Leu et al., 2019). In the hypoxic state caused by stroke,
the oxygen-dependent HIF prolyl hydroxylase domain (PHD) is
inactivated, leading to the stabilization of HIF-1α, followed by its
translocation into the nucleus, where it forms a heterodimeric
complex with HIF-1β. This complex, called HIF-1, interacts
with DNA and activates the expression of multiple target genes
encoding proteins that help increase the tissue’s oxygen supply by
boosting erythropoiesis and angiogenesis (Semenza, 2004, 2009).
UPS has been implicated in the control of HIF in recent research
(Delpeso et al., 2003). Therefore, regulating related pathways and
their key proteins through UPS may be an effective solution to
protect neurons and prevent cell death during stroke.

REGULATORY MECHANISM OF
UBIQUITIN PROTEASOME SYSTEM

NF-κB Pathway and Ubiquitin
Proteasome System
NF-κB is a transcription factor family that includes NF-κB1
(P50/p105), NF-κB2 (p52/P100), and three RelA (p65), RelB,
and c-Rel (REL) proteins (Caamano and Hunter, 2002). As a
hub in signal transduction pathway, NF-κB can regulate the
expression of many genes involved in cell inflammation, immune
response, cell growth and development (DiDonato et al., 2012).
IκB protein is a family of constitutive inhibitors of NF-κB,

including IκBα, IκBβ, IκBγ, IκBζ, IκBε, Bcl-3, p100 and p105
(Yamazaki et al., 2001; Chiba et al., 2013). IKK complex consists
of IKKα, IKKβ and Nemo, which is the kinase of IκB (Durand and
Baldwin, 2017). Under normal conditions, NF-κB and inhibitor
IκB binding exists in the cytoplasm in an inactive potential state
(Wang et al., 2019).

NF-κB signaling pathway mainly includes classical and
non-classical activation pathways (Figure 2). In the classical
one, IKK complex is activated when cells are stimulated
by proinflammatory factors, growth factors, immune receptor
ligands and stress response (Fricker, 2020), in which IKKβ

(ser177 and ser181) and IKKα (ser176 and ser180) sites in the
amino terminal kinase domain are phosphorylated. Due to their
activation, serine residues of IκB are phosphorylated (Ling et al.,
1998; Delhase et al., 1999). The polyubiquitination mode of IκBα

depends on the phosphorylation of two serine residues (ser32
and ser36), while the phosphorylation sites of IκBβ are ser19
and ser23 (Chen, 2012). The phosphorylation of IκB leads to
the covalent binding of lysine residues at positions 21 and 22
of its amino terminal to multiple ubiquitin molecules through
SCF type E3 ubiquitin ligase complex. This binding changes
the spatial conformation of IκB, resulting in its recognition
and degradation by ATP dependent 26S proteasome (Chen
et al., 1995; Karin and Ben-Neriah, 2000; Caamano and Hunter,
2002). Following depolymerization, the liberated NF-κB dimer
is activated by several post-translational modifications before
being transported to the nucleus and combining with particular
DNA sequences to increase target gene transcription (Zhang
et al., 2017). Inflammatory cytokines like TNF-α, IL-2, IL-6,
and INF-γ are then produced, reactivating NF-κB and causing
inflammatory damage to cell tissues (Mitchell and Carmody,
2018). The activation of non-classical NF-κB pathway depends on
receptor activated kinase NIK, which can activate IKKα (Cildir
et al., 2016). The phosphorylation of NF-κB2 p100 mediated
by activated IKKα leads to its own ubiquitination, which is
recognized by proteasome and partially degraded to p52. Finally,
p52-RelB heterodimer enters the nucleus to start transcription
(Xiao et al., 2001; Sun, 2011). Therefore, NF-κB plays a crucial
role in acute and chronic inflammatory illnesses as the center
regulating the expression of pro-inflammatory genes in the
inflammatory process (Baker et al., 2011).

PINK1/Parkin Pathway and Ubiquitin
Proteasome System
The PTEN-induced putative kinase 1(PINK1)/Parkin pathway
is one of the most prevalent mechanisms for controlling
mitochondrial quality and abundance (Shen et al., 2021). PINK1
is a mitochondrial serine (Ser)/threonine (Thr) kinase with
a mitochondrial targeting sequence (MTS), a transmembrane
(TM) segment, and a Ser/Thr kinase domain that is nuclear
encoded (Eiyama and Okamoto, 2015). PINK1, as a Parkin
upstream component, is required for Parkin activation and
recruitment to depolarized mitochondria (Miller and Muqit,
2019). Parkin has an N-terminal ubiquitin-like (UBL) domain,
three RING domains (RING0, RING1, and RING2), and an in-
between RING(IBR) domain that separates RING1 and RING2
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FIGURE 2 | UPS is involved in canonical and non-canonical NF-κB pathway. In the canonical way. After the inflammatory receptor is activated, the activated IKK
complex phosphorylates ser32 and ser36 of IκB, which promotes the ubiquitination of IκB mediated by SCFβ. Subsequently, IκB is targeted to the 26S proteasome
for proteolysis. NF- κB dimer was released and transferred into the nucleus to start the transcription of target genes. In the non-canonical pattern. IKK is activated by
NIK, which leads to phosphorylation of p100. Then, Phosphorylated p100 is degraded by proteasome after ubiquitination, in which p52-RelB heterodimer is
produced. Finally, the p52-RelB heterodimer enters the nucleus to start transcription.

as an E3 ligase (Biswas et al., 2020). When the MTS and TM of
PINK1 reach the inner mitochondrial membrane under healthy
conditions, the transmembrane segment is cleaved in the form
of protein hydrolysis by the presenilins-associated rhomboid-
like protein (PARL) found in the inner membrane. Cleaved
PINK1 is released into the cytoplasm, exposing destabilizing
amino acid residues at its N-terminus. E3 ubiquitin ligases
(UBR1, UBR2, and UBR4) ubiquitinate them with N-terminal
rules and degrade fast by proteasome (Yamano and Youle, 2013;
Figure 3A). Therefore, the content of PINK1 in cytoplasm
is very low and Parkin is not activated (Pickrell and Youle,
2015). When the mitochondrial membrane potential is abnormal,
PINK1 avoids PARL-mediated processing and N-end rule-
dependent degradation by forming a stable association with the
translocase of the outer membrane (TOM) and accumulating
on the outer mitochondrial membrane (OMM; Lazarou et al.,
2012). PINK1 accumulates on the OMM can activate parkin
in two ways. On the one hand, Parkin is activated by PINK1
phosphorylating ser65 in the Parkin UBL domain (Bingol
and Sheng, 2016). On the other hand, PINK1 phosphorylates

ser65 in ubiquitin, which is coupled with OMM proteins at
basic levels. Parkin’s affinity for phosphorylated ubiquitin is
what causes it to be found in mitochondria. The activated
Parkin further binds ubiquitin to the OMM protein, and
then ubiquitin is phosphorylated by PINK1 (Bragoszewski
et al., 2017; Figure 3B). On mitochondria, phospho-ubiquitin
produced by PINK1 serves as an autophagy signal, which Parkin
amplifies (Lazarou et al., 2015). Subsequently, ubiquitinated
OMM protein recruits autophagic adaptor protein SQSTM1/p62
to damaged mitochondria (Geisler et al., 2010), and promotes
its degradation through autophagy. There are some negative
regulatory mechanisms related to UPS in PINK1/Parkin
pathway, which are very important for the stability of
mitochondrial autophagy. Ubquitin-specific protease30 (USP30)
is an OMM localized DUB, which antagonizes PINK1/Parkin
mediated mitochondrial autophagy by deubiquitination of
OMM proteins. The presence of USP30 can maintain the
steady state of ubiquitination of OMM protein and prevent
excessive mitochondrial autophagy (Tanaka, 2020). Furthermore,
UBL exhibits a strong affinity for the Rpn13 subunit of
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the 26S proteasome regulatory granules. The proteasome is
attracted to mitochondria by this affinity, which increases
proteasome degradation of ubiquitinated OMM protein and
Parkin (Aguileta et al., 2015).

Keap1-Nrf2 Pathway and Ubiquitin
Proteasome System
Nrf2 is the main regulator of redox and metabolic homeostasis.
It has seven Nrf2 ECH homologous domains (Neh1-Neh7),
and each domain has different functions (Hayes and Dinkova-
Kostova, 2014). As the most important regulatory domain of
Nrf2, Neh2 includes two motifs, DLG and ETGE, which can
regulate the stability and ubiquitination of Nrf2 by binding
to other proteins such as Keap1 (Tong et al., 2006). Keap1
is a substrate adaptor protein of Cullin3 (Cul3)-dependent E3
ubiquitin ligase complex, which can be assembled with Cul3
and Rbx1 (ring-box1). Keap1 serves as a substrate adapter,
whereas Rbx1 binds to ubiquitin-loaded E2 and Cul3 serves as
a scaffold between Keap1 and Rbx1, which can regulate Nrf2
(Tonelli et al., 2018). Keap1 contains three functional domains,
including a BTB domain, an IVR and a Kelch or DGR domain
(Sajadimajd and Khazaei, 2018). The N-terminal BTB domain of
Keap1 can bind Cul3, which is necessary for Keap1 dimerization
(Suzuki and Yamamoto, 2015). Under normal conditions, the
Neh2 domain of Nrf2 interacts with the Kelch/DGR domain in
Keap1 through the mediation of DLG and ETGE motifs. Keap1-
Cul3-E3 ubiquitin ligase targets multiple lysine residues located
in the Neh2 domain at the N-terminal of Nrf2 and promotes
the ubiquitination of Nrf2. The ubiquitinated Nrf2 is transported
to the 26S proteasome, where it is degraded (Canning et al.,
2015; Karunatilleke et al., 2021; Figure 4A). Critical cysteine
residues in Keap1, particularly Cys151, operate as sensors of
these cellular damages under oxidative stress conditions and
become covalently changed by electrophilic molecules or ROS
(Zhang and Hannink, 2003). Such changes cause Keap1 to
shift conformation, most likely by disrupting the low-affinity
link between the Kelch domain and the DLG-motif, resulting
in decreased ubiquitylation of Nrf2, inhibiting UPS-mediated
degradation and thereby boosting Nrf2 protein levels (Baird
et al., 2013). Then Nrf2 translocases to the nucleus and binds
to the ARE/EpRE of the target gene through heterodimerization
with sMAF protein to induce the expression of a series of cell
protective genes, such as NQO1, GST, HMOX1, GCL, GSH, etc.
(Kansanen et al., 2013; Fao et al., 2019; Figure 4B), so as to reduce
or eliminate oxygen free radicals and improve the antioxidant
capacity of cells and tissues.

HIF-1 Pathway and Ubiquitin
Proteasome System
Hypoxia inducible factor (HIF) is an important transcription
factor regulated by the change of oxygen concentration (Wang
et al., 1995). It is composed of a α subunit regulated by
oxygen concentration and a constitutively expressed β subunit,
in which α subunit has three functional forms: HIF-1α, HIF-
2α and HIF-3α. HIF is divided into HIF-1, HIF-2 and HIF-
3 according to different α subunits. α subunit and β subunit

have two important domains: the basic helix-loop-helix (bHLH)
and Per-Arnt-Sim (PAS). The bHLH and PAS are required for
dimerization between HIF-1α and HIF-1β (Zhang et al., 2011;
Shu et al., 2019). HIF-1α is generally expressed in all cells, while
HIF-2α and HIF-3α are selectively expressed in some tissues
(Majmundar et al., 2010). HIF-1α which has two transactivation
domains, N-terminal transactivation domains (N-TAD) and
C-terminal transactivation domains (C-TAD), as well as an
oxygen-dependent degradation domain (ODDD) that mediates
oxygen-regulated stability, is not only the regulatory subunit of
HIF-1, but also its active subunit (Ruas et al., 2002). The stability
and activity of α subunit are regulated by post-translational
modifications such as hydroxylation, ubiquitination, acetylation
and phosphorylation. Among them, HIF-1α is mainly regulated
by the PHD (Ke and Costa, 2006). Under the normoxic state, the
prolyl residues at sites 402 and 564 of HIF-1α are hydroxylated
by PHD. Hydroxylated HIF-1α binds to Von Hippel-Lindau
(VHL), which together with Elongin C, Elongin B, Cullin-2, and
Rbx1, forms the VCB-Cul2 E3 ligase complex. Subsequently,
it is ubiquitinated, then recognized by 26S proteasome and
degraded (Ohh et al., 2000). Since PHD activity is suppressed
during hypoxia, VHL is unable to detect HIF-1α, and hence
HIF-1α is not degraded by UPS. Subsequently, accumulated
HIF-1α enters the nucleus from the cytoplasm, where it is
joined to create a dimer with HIF-1β (Tarhonskaya et al., 2015).
In the nucleus, p300/CBP associated factor (PCAF) combines
with the C-TAD of HIF-1α to form a complex. The complex
combines with the hypoxia response element (HRE) in the
promoter region of hypoxia response genes to promote the
transcription of hypoxia response gene and cause a series of
adaptive responses of cells to hypoxia (Dengler et al., 2014). In
addition, HIF-1α is also regulated by the factor inhibiting HIF
(FIH; Kaelin and Ratcliffe, 2008). In normoxic environment,
FIH hydroxylates the asparagine residue (N803) of HIF-1α to
prevent the connection between p300/CBP and C-TAD, thereby
reducing the transcriptional activity of HIF-1α (Lando et al.,
2002b). Under hypoxia, the hydroxylation of FIH is inhibited,
which promotes the interaction between HIF-1α and p300/CBP
and leads to the transcription of target genes (Lando et al., 2002a;
Figure 5).

THE ROLE OF UPS IN SIGNAL PATHWAY
AFTER STROKE

UPS Participation in NF-κB Pathway and
Stroke
UPS is essential for maintaining protein homeostasis and
preventing damaging protein aggregation in cells (Budenholzer
et al., 2017). Inflammation is the result of a complicated
interplay between soluble substances and cells (Medzhitov, 2008).
Inflammatory cell infiltration and activity frequently result in
long-term tissue damage (Feehan and Gilroy, 2019). UPS can
play an important role in the inflammatory process by regulating
a variety of inflammatory regulatory proteins (Goetzke et al.,
2021). It was found that inflammatory response widely exists
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FIGURE 3 | PINK1/Parkin pathway mediates ubiquitination of mitochondria. (A) Under basal condition, PINK1 passes through the outer mitochondrial membrane
(OMM) to the inner membrane (IMM), and its transmembrane segment is hydrolyzed by presenilins-associated rhomboid-like protein (PARL) protein. The treated
PINK1 is released into the cell matrix and mediated proteasome degradation by E3 ubiquitin ligases (UBR1, UBR2, and UBR4). (B) When mitochondrial disorder,
PINK1 cannot be transported across membranes, so that it cannot be destroyed by PARL. Instead, PINK1 stably binds to the OMM and accumulates on it.
Therefore, PINK1 can directly phosphorylate ubiquitin or Parkin. Parkin is recruited by phosphorylated ubiquitin to various mitochondrial substrate proteins(S) in
which mitochondrion is ubiquitinated.

FIGURE 4 | Keap1-Nrf2 signaling pathway involved in UPS. (A) Under non-stressed conditions, Nrf2 binds to Keap1 complex which has E3 ligase activity in the
cytoplasm. When Nrf2 is ubiquitinated, it is targeted to the 26S proteasome for proteolysis which keep it low in cytoplasm. (B) Under oxidative stress conditions,
Critical cysteine residues in Keap1 is covalently-modified by electrophilic species or reactive oxygen species (ROS) and Nrf2 avoides Keap1-mediated ubiquitination
modification. Then Nrf2 translocated to the nucleus, starts ARE/EpRE transcription through heterodimerization with SMAF protein, and induced the expression of a
series of cytoprotective genes.
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FIGURE 5 | The regulation of HIF-1. Under the normal oxygen condition, the prolyl residues at sites 402 and 564 of HIF-1α are hydroxylated by the prolyl
hydroxylase domain (PHD). Subsequently, hydroxylated HIF-1α is ubiquitinated by Von Hippel-Lindau (VHL) and degraded by 26S proteasome. In addition, the
asparagine residue (N803) of HIF-1α is hydroxylated by the factor inhibiting HIF (FIH) which inhibits the connection between p300/CBP and C-TAD, thereby reducing
the transcriptional activity of HIF-1α. When hypoxia occurs, the activities of FIH and PHD are inhibited. Therefore, HIF-1α can enter the nucleus to form complexes
with HIF-1β and p300/CBP, and promote the transcription of hypoxia response genes and cause a series of adaptive responses of cells to hypoxia.

after cerebral ischemia and acute ischemic stroke (Chamorro
et al., 2016). It can be seen that inhibiting the activity of NF-
κB can reduce the nerve injury after intracerebral hemorrhage
or cerebral ischemia (Liu et al., 2019; Shang et al., 2019). In
recent years, many studies have reported that the effect of UPS
is related to the activation of NF-κB. Intervening UPS can
prevent the degradation of IκB and the activity of NF-κB and
combine them in cell solute. Ginsenoside Rd treatment can
restore IκB expression in the cytoplast after ischemia injury
by decreasing proteasome activity, therefore suppressing NF-κB
activity and protecting neurons, according to a study (Zhang
et al., 2020). Phillips et al. applied proteasome inhibitor PS519
to rats with focal cerebral ischemia and found that PS519
can reduce the inflammatory response by restraining NF-κB
and improve the recovery of neurological function in rats
with brain injury (Phillips et al., 2000). According to another
study, the neuroprotective effect of PS519 may be related to
its involvement in the regulation of cell adhesion molecules
ICAM-1 and E-selectin, because these two adhesion molecules
play a key role in the adhesion and exudation of neutrophils
and macrophages across the blood-brain barrier (Berti et al.,
2003). These suggest that the effect of proteasome inhibitors
on inflammatory response may be multi-channel. Moreover,
although early intervention of UPS has a neuroprotective effect
on inhibiting NF-κB overexpression at the transcriptional level,
the decrease of long-term proteasome activity is related to
intracellular protein aggregation, delayed neuronal degeneration,
and death (Meller, 2009). It suggested that UPS may played a dual
role in neurons after ischemia. Although proteasome inhibitors

have been shown to provide protection in cerebral ischemia,
other nerve injury problems caused by decreased proteasome
activity cannot be ignored (Caldeira et al., 2014). Due to the
non-selectivity of most proteasome inhibitors, the application
of proteasome inhibitors is limited (Wojcik and Di Napoli,
2004). Chen et al. suggested that selective immunoproteasome
inhibitors may be a promising strategy for stroke treatment. They
discovered that inhibiting the expression of p65 and reducing
infarction volumes in rats may be accomplished by inhibiting the
low molecular weight protein 2 (LMP2), a significant catalytic
subunit of immunoproteasome (Chen et al., 2015).

PINK1/Parkin and Cerebral Stroke
Regulated by UPS
PINK1/Parkin pathway is one of the classical pathways of
mitochondrial autophagy. Under normal conditions, UPS forms
a strict PINK1 and Parkin regulatory mechanism to maintain the
balance of mitochondrial autophagy and prevent mitochondrial
damage caused by excessive mitochondrial autophagy (Oshima
et al., 2021). In the stroke induced by mitochondrial dysfunction
(Youn et al., 2021; Zhou et al., 2021), PINK1/Parkin pathway
mediates ubiquitination of dysfunctional mitochondrial OMM
protein, and then clears abnormal mitochondria through
crosstalk with autophagy (Geisler et al., 2010). In recent years,
there has been more and more studies on this mechanism,
which to some extent shows that UPS plays an important
role in PINK1/Parkin pathway in the process of brain injury
in stroke. At present, the researches on the pathway in
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stroke mainly focus on its relationship with autophagy, but
ignore the role of UPS. In fact, mitochondrial ubiquitination
mediated by PINK1/Parkin pathway is the basis of mitochondrial
autophagy. Inactive PINK1 cannot activate or recruit Parkin
to mitochondria (Narendra et al., 2008; Matsuda et al., 2010).
The UPS mechanism can be inhibited to prevent PINK1/Parkin-
mediated ubiquitination of OMM proteins (Chan et al., 2011).
Furthermore, inhibiting Parkin mitochondrial translocation,
lowering Parkin phosphorylation, and lowering the quantity of
phosphorylated ubiquitin (pser65 Ub) can all be used to prevent
mitochondrial autophagy triggered by various mitochondrial
damage causes (Wang et al., 2018a). OMM proteins could
be destroyed through an autophagy-independent UPS route,
according to Rakovic et al. The bigger OMM proteins MFN2
and TOM70 were only partially ubiquitinated and primarily
destroyed by the lysosomal system, whereas the smaller OMM
proteins TOM40 and TOM20 were only slightly ubiquitinated
and mostly degraded by UPS (Rakovic et al., 2019). It showed
that depolarized mitochondrial membrane proteins could be
degraded by two different mechanisms: UPS or lysosomal
mediated protein hydrolysis. At the same time, the degradation
of larger OMM protein affected the stability of OMM, led to
its rupture, exposed mitochondrial inner membrane (IMM) to
the cytoplasmic environment, and caused drastic changes in
IMM structure and morphology, which might eventually lead to
the secondary degradation of IMM and matrix protein (Yoshii
et al., 2011). In the oxygen-glucose deprivation (OGD) neuronal
model, PINK1 knockout mice (PINK1−/−) were more sensitive
to ischemic injury than control group (Imbriani et al., 2020).
Moreover, in traumatic brain injury (TBI), the loss of Parkin
would increase the production of ROS, promote oxidative stress
and further lead to neuronal death (Mukhida et al., 2005). In
a rat model of ischemia, PINK1/Parkin-mediated mitochondrial
autophagy may perform a neuroprotective role in hippocampus
neurons (Wu et al., 2018). The deletion of either the PINK1
or Parkin genes has been shown to cause aggregated neuronal
damage. Increasing the expression of PINK1 and Parkin, on the
other hand, could prevent a huge number of nerve cells from
dying. Therefore, it is necessary to pay attention to the role of
PINK1/Parkin/UPS mechanism in mitochondrial damage after
stroke, rather than autophagy.

UPS Control in Stroke and Keap1-Nrf2
Oxidative stress refers to the imbalance of redox balance caused
by the production of excessive ROS after the body is stimulated
by the outside world, resulting in the damage of cell tissue
(Hybertson et al., 2011). Because of its high oxygen consumption
and fat content, the brain is prone to oxidative injury. The
role of oxidative stress in ischemia-reperfusion brain injury
has long been recognized (Chamorro et al., 2016). Nrf2 is the
main regulator of endogenous and exogenous stress defense
mechanisms in cells and tissues. Its primary role is to activate
the antioxidant response and trigger the transcription of a
number of genes in order to protect cells from oxidative stress
and restore intracellular homeostasis (Villeneuve et al., 2010;
Chen and Maltagliati, 2018). That Nrf2 escape from Keap1
repression is the crucial event for Nrf2-mediated activation

(Kaspar et al., 2009). Oxidative stress caused by cerebral ischemia
or intracerebral hemorrhage affects the conformation of Keap1.
Then, Nrf2 dissociates and transfers to the nucleus, binds to
ARE, and stimulates the target gene expression of downstream
antioxidant enzymes and other cytoprotective proteins (Hu et al.,
2016; Jiang et al., 2017). The expression of Nrf2 is highly up-
regulated in ischemic brain tissue, according to studies, and a
range of Nrf2 inducers exhibit neuroprotective effects following
cerebral ischemia (Wang et al., 2018b). Monomethylfumarate,
the immediate metabolite of dimethylfumarate (DMF), causes
direct alteration of the cysteine 151 of Keap1, which increases
the dissociation of Nrf2 and has neuroprotective properties
(Linker et al., 2011; Bomprezzi, 2015). Furthermore, in the
human neuroblastoma cell line SH-SY5Y, miR-7 can target to
limit Keap1 mRNA translation, preventing the degradation of
Nrf2 protein, resulting in Nrf2 activation and cytoprotection
(Kabaria et al., 2015). Although these reagents need to be further
studied in the stroke model, it is undeniable that preventing Nrf2
from being degraded by proteasome through modification or
inhibition of Keap1 is a promising measure in the protection
of neurons after stroke. According to a report, p62 expression
reduced Nrf2 degradation and increased subsequent Nrf2 nuclear
accumulation by inactivating Keap1 (Sun et al., 2016). Li et al.
found that sestrin2 stimulated angiogenesis to ameliorate brain
injury by activating Nrf2 and modulating the interaction between
p62 and Keap1, following photothrombotic stroke in rats (Li
et al., 2020). In addition, it has been reported that PINK1/Parkin
pathway can promote the release of Nrf2 by inhibiting Keap1
(Xiao et al., 2017). Zhang et al. found that mitophagy reduced
oxidative stress via Keap1/Nrf2/PHB2 (Prohibitin 2) pathway
after subarachnoid hemorrhage in rats (Zhang et al., 2019).
A study has shown that Britanin leading to the induction of
the Nrf2 pathway ameliorated cerebral ischemia–reperfusion
injury by selectively binding to cysteine 151 of Keap1 and
inhibiting Keap1-mediated ubiquitylation of Nrf2 (Wu et al.,
2017). Obviously, preventing the proteasome degradation of
Nrf2 through the regulation of Keap1 is very important for
neuroprotection after stroke.

HIF-1 Pathway and Stroke Regulated by
UPS
Tissue oxygen content plays crucial roles in maintaining
the normal functioning of cells and regulation of their
development (Mohyeldin et al., 2010). HIF-1 is an important
transcriptional regulator of hypoxia and plays an important
role in cerebrovascular diseases (Correia and Moreira, 2010).
Accumulating evidence indicates that the induction of HIF-1
provides protection against cerebral ischemic damage (Zhang
et al., 2011). HIF-1α is widely expressed in the hypoxic/ischemic
brain (Chavez et al., 2000). Mice with neuron-specific reduction
of HIF-1α that were subjected to temporary focal cerebral
ischemia showed higher tissue damage and a lower survival
rate, indicating that HIF-1-mediated responses have an overall
positive impact in the ischemic brain (Baranova et al., 2007). HIF-
1α has complex effects on the brain, which largely depends on the
time-point after hypoxic damage. At the earliest post-ischemic
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stage (i.e., within 24 h), HIF-1α accumulation promotes cell
death. In contrast, during the later stage (i.e., >4 days), HIF-
1α signaling has a pro-survival effect through limitation of
the infarct size (Mitroshina et al., 2021). HIF-1α which is an
important regulator of hypoxia being regulated by proteasomal
degradation (Shi, 2009). There is now overwhelming data
suggesting that the UPS contributes to cerebral ischemic injury
and proteasome inhibition is a potential treatment option
for stroke (Wojcik and Di Napoli, 2004). Growing evidence
shows that proteasome inhibitors enhance angioneurogenesis
and induces a long-term neuroprotection after cerebral ischemia.
Inhibition of immunoproteasome LMP2 was able to enhance
angiogenesis and facilitate neurological functional recovery in
rats after focal cerebral ischemia/reperfusion. A study highlights
an important role for inhibition of LMP2 in promoting
angiogenesis events in ischemic stroke, and point to HIF-1α as
a key mediator of this response (Chen et al., 2018). The novel
proteasome inhibitor BSc2118 protects against cerebral ischemia
through HIF1A accumulation and enhanced angioneurogenesis
(Doeppner et al., 2012). Although the role of HIF-1α in cerebral
ischemia remains complex, the role of HIF-1α as mediator of
BSc2118-induced neuroprotection is appealing based on the data
present (Yan et al., 2011). Furthermore, a result indicates that
20S proteasomes are involved in HIF-1α degradation in ischemic
neurons and that proteasomal inhibition provides more HIF-
1α stabilization and neuroprotection than PHD inhibition in
cerebral ischemia (Badawi and Shi, 2017).

CONCLUSION AND FUTURE
DIRECTIONS

UPS is the main pathway for the degradation of cytosolic, nuclear
and transmembrane proteins, and also the main regulator for
maintaining neural development, brain structure and function
(Park et al., 2020). Neuron is a highly differentiated terminal
cell. Various components of UPS widely exist in synapses and
participate in the regulation of synaptic function (Tsakiri and
Trougakos, 2015). After stroke, due to the destruction of the
internal environment of neuron survival, a series of neuron
injury events are caused, which eventually leads to the death of
nerve cells and the loss of nerve function. In recent years, there
have been more and more researches on UPS. It is found that

UPS mediated protein degradation is an important mechanism
for the body to regulate the level and function of intracellular
proteins. The components involved in this biological process
mainly include ubiquitin and its related starting enzymes. UPS
plays a very important role in maintaining cell homeostasis
(Shang and Taylor, 2011). At the same time, UPS is also involved
in the pathological process related to nerve injury after stroke (Ge
et al., 2007). At present, there are many research results on the
physiological and pathological mechanism of stroke. However,
the discussion on UPS and stroke is insufficient and there is a
lack of literature for reference. Nevertheless, it may still become
a new hotspot in basic research and potential clinical application.
It should be noted that the aggregation of ubiquitinated proteins
is one of the important features after stroke (Luo et al., 2013).
UPS is closely related to the pathways of post-stroke related
pathological changes such as mitochondrial autophagy, oxidative
stress, hypoxia and inflammatory response (Ahmad et al., 2014).
To study the role of UPS in PINK1/Parkin, NF-κB, HIF-1α and
the regulatory mechanism of Keap1-Nrf2 pathway is of great
significance for the clinical treatment and prognosis of stroke
patients. At present, there are still many problems that need
more experiments to study. From the perspective of maintaining
homeostasis, it is necessary to clarify how to moderately activate
or inhibit UPS to play a cytoprotective role. The pathological
process of stroke is a dynamic process. It is necessary to observe
the changes of UPS by stages. Due to the lack of research
on the side effects of drugs in experimental animals and the
results of clinical trials, the conclusion whether UPS regulating
drugs mediate cell protection or cytotoxicity after stroke is still
controversial. To explore the relationship between UPS and
stroke and its mechanism has great potential to improve the
prognosis of stroke patients.
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