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Minireview
Circadian clocks are seeing the systems biology light
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Abstract 

Circadian rhythms are those biological rhythms that have a periodicity of around 24 hours.
Recently, the generation of a circadian transcriptional network - compiled from RNA-expression
and promoter-element analysis and phase information - has led to a better understanding of the
gene-expression patterns that regulate the precise 24-hour clock. 
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More than 30 years ago, Seymour Benzer started on the

quest for the holy grail of behavioral neuroscience, the eluci-

dation of behavior at a molecular and systems level [1]. In

part because of his efforts, this quest is perhaps furthest

along in the study of biological rhythms, which in mammals

are most clearly manifested in the regulation of a very primi-

tive behavior, the sleep-wake cycle. Elegant genetic and bio-

chemical studies in several species have revealed that the

circadian clock that controls such daily rhythms is a cell-

autonomous transcriptional/translational feedback loop

(reviewed in [2]). In mammals, the master circadian clock

resident in the suprachiasmatic nucleus (SCN) of the hypo-

thalamus functions to synchronize other oscillators that

drive physiological outputs to a 24-hour rhythm. Despite

increasingly refined models of how individual clock compo-

nents function together as a self-sustaining oscillator, the

link between their action, transcriptional oscillations (or

clock output), and dependent processes such as physiology

and behavior has remained elusive.

Enter systems biology, which can be broadly defined as the

integration and synthesis of information from various sub-

fields to inform a biological question [3]. In this field,

changes to biological systems are observed at multiple levels

under a set of experimental condition(s). Integration of

complex data, such as RNA and protein levels together with

phenotypes, facilitates the construction of prospective

models, which can inform and be informed by experimental

data. The methodologies used may include, but are not

limited to, transcriptional profiling, differential proteomics,

cell-based screening, and whole-organism phenotypic screen-

ing [3]. These studies often produce information-rich

datasets that necessitate the use of bioinformatics tools to

organize and manage the information and to synthesize

testable hypotheses.

As a nascent field, many of the initial studies could be

viewed as hypothesis-generating experiments. Transcrip-

tional profiling, proteomic screens, and in silico studies in

themselves merely capture a snapshot of data coincident

with a biological process. As the field has progressed,

however, studies have become more refined, and involved

the interplay between hypothesis generation and testing. 

Systems-level circadian studies
After initial studies in model systems such as Arabidopsis

and Drosophila, several authors have applied a popular

systems-biology tool - transcriptional profiling - to the study

of mammalian circadian transcriptional output [4-8]. Tran-

scriptional profiling, which is usually accomplished using

DNA arrays, was employed to identify batteries of genes and

biological systems that are controlled by the master clock in

the SCN [4,9], as well as rhythms regulated by peripheral

clocks in liver, kidney, and heart [4-8]. Although the core

circadian activators, Bmal1 and Clock, and the core repres-

sors, the cryptochromes, function analogously in these

tissues, their downstream targets vary between different



tissues. For example, analysis of rhythmic genes in liver

revealed their principal roles to be regulation of metabolism,

whereas genes cycling in the SCN were primarily involved in

signaling and neurosecretion. These studies also uncovered,

to a varying degree, a central battery of genes that are clock-

regulated in every tissue and can be thought of as first-order

clock-controlled genes (CCGs); some of these, such as

Bmal1, the cryptochrome Cry1, the period homolog Per2,

and the nuclear receptor Nr1d1  are components of the clock

itself [4,6-8]. More recent profiling studies have used genetic

models to refine both the roles of these core components and

their outputs. Using animals with a functionally deficient

locus for several of the known circadian regulators, such as

Clock mutant and cryptochrome-deficient Cry1-/- Cry2 -/-

mice, studies have shown both the specificity and redun-

dancy of various core components and the effect of their

deletion on rhythmic behavior and transcription [7]. 

But this still begs the question of who is regulating whom

and, an especially important question for biological timing,

when? In a recent report, Ueda et al. [10] have begun to

address these very issues by using system-level approaches

to explore the network topology of circadian transcriptional

output (Figure 1). The authors have collated information

from their earlier transcriptional studies and those of others

to generate a list of sixteen cycling genes that have also been

identified as members of the circadian regulatory machinery.

These candidates were then screened in assays in vitro to

assess the contribution of their regulatory elements to both

cycling activity and to the temporal phase of peak expression.

Many of these regulatory elements were themselves targets of

other clock genes, reflecting the interlocking nature of circa-

dian feedback loops. Of the sixteen genes explored in detail,

nine were found to harbor functional E/E� boxes, targets of

the Clock/Bmal1 complex, in their promoter regions, seven

had functional DBP/E4BP4-binding elements (D boxes), and

six harbored functional RevErbA/ROR-regulatory elements

(RREs) [10]. From the promoter information, the transcrip-

tional regulators could be grouped on the basis of the phase

of the circadian cycle in which they were transcriptionally

most active.

An important aspect of circadian biology is the requirement

for rhythmic output throughout the entire 24-hour day. How

does the clock regulate gene expression throughout the

entire day given a limited number of regulatory elements?

This is known as the phase-control problem. Ueda et al. [10]

elegantly demonstrate how complex phase regulation can be

accomplished using combinations of three clock-regulated

elements: E/E� boxes, D boxes, and RREs. These experiments

show how constructive and destructive interference can be

used to generate new phases and amplitudes of circadian

transcription. Ueda et al. [10] used in silico methods to con-

struct models that accurately reflect the observations that

cycling genes can have low-amplitude or high-amplitude

oscillations. The phase of these oscillations can shift

forwards or backwards depending on which cohort of genes

is regulating their expression. Using this foundation of

knowledge, it was possible to construct a model of the circuit

of the circadian feedback system. This model was then

probed to find the Achilles’ heel of the transcriptional circuit

underlying the mammalian circadian clock. These experi-

ments supported the proposed model, and concluded that

the E/E� box plays the critical role in the regulation of circa-

dian transcription. 

The advent of systems biology has allowed the elucidation of

biological features such as behavior. Complicated feedback

loops can be decoded, allowing the identification of central

regulators of the system and those controlling more subtle

processes. With respect to circadian behavior, these studies

have reinforced the importance of the E/E� box regulators

Clock, Bmal1, Cry1 and Cry2. The true importance of these

studies, however, lies in the construction of sophisticated

models of regulatory systems that can be experimentally

tested. The continued application of these approaches,
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Figure 1
Regulatory elements of mammalian circadian gene expression. A systems-
level approach has identified the transcriptional circuit controlling
circadian gene expression. The E/E� box, the DBP/E4BP4-binding element
(D box), and the RevErbA/ROR-regulatory element (RRE) are upstream
regulatory elements in the genes indicated, and function alone or in
combination throughout the 24-hour cycle to generate five phases of
gene expression. The genes shown encode the following proteins: Arntl,
aryl hydrocarbon receptor nuclear translocator-like protein; Bhlhb2 and
Bhlhb3, basic helix-loop-helix domain containing proteins, class B; Clock,
circadian locomotor output cycles kaput protein; Cry1, cryptochrome 1;
Dpb, D-site albumin promoter-binding protein; Nr1d1 and Nr1d2, nuclear
receptor subfamily 1 group D proteins; Npas2, neuronal PAS domain
protein 2; Nfil3, nuclear factor, interleukin-3-regulated; Per1-Per3, period
homologs; Rora, Rorb and Rorc, retinoic acid receptor-related orphan
receptors alpha, beta, and gamma.
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coupled with rigorous experimental testing to confirm

prospective modeling, provides a remarkable opportunity to

explain how behavior can result from relatively simple tran-

scriptional networks. Benzer’s quest continues, and indeed,

the magnitude of the task is only now becoming apparent.

Despite this, Ueda et al. [10] are leading the way in helping us

see how systems biology can shed light on the circadian clock.
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