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Chromatin Looping Links Target Genes with
Genetic Risk Loci for Dermatological Traits

Chenfu Shi1,8, Helen Ray-Jones1,2,8, James Ding1, Kate Duffus1, Yao Fu3,
Vasanthi Priyadarshini Gaddi1, Oliver Gough1, Jenny Hankinson4, Paul Martin1,5,
Amanda McGovern1, Annie Yarwood1,2, Patrick Gaffney3, Steve Eyre1,6, Magnus Rattray7,
Richard B. Warren2 and Gisela Orozco1,6
Chromatin looping between regulatory elements and gene promoters presents a potential mechanism whereby
disease risk variants affect their target genes. In this study, we use H3K27ac HiChIP, a method for assaying the
active chromatin interactome in two cell lines: keratinocytes and skin lymphomaederived CD8þ T cells. We
integrate public datasets for a lymphoblastoid cell line and primary CD4þ T cells and identify gene targets at
risk loci for skin-related disorders. Interacting genes enrich for pathways of known importance in each trait,
such as cytokine response (psoriatic arthritis and psoriasis) and replicative senescence (melanoma). We show
examples of how our analysis can inform changes in the current understanding of multiple psoriasis-associated
risk loci. For example, the variant rs10794648, which is generally assigned to IFNLR1, was linked to GRHL3, a
gene essential in skin repair and development, in our dataset. Our findings, therefore, indicate a renewed
importance of skin-related factors in the risk of disease.
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INTRODUCTION
GWASs have uncovered the genetic factors that contribute to
disease risk for many complex disorders, including derma-
tological conditions such as psoriasis (Ps) (Tsoi et al., 2017) or
atopic dermatitis (AD) (Paternoster et al., 2015). It is now
accepted that the majority of these genetic risk factors do not
influence coding sequences directly but rather regulatory
regions such as enhancers and promoters, which can be
highly cell-type specific (Ernst et al., 2011; Farh et al., 2015;
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Roadmap Epigenomics Consortium et al., 2015). Many
studies have also shown that the effect of these variants is not
necessarily mediated by the closest gene because they can
affect distal genes through chromatin looping mechanisms (
GTEx Consortium, 2013; GTEx Consortium et al., 2017;
Javierre et al., 2016; Nica and Dermitzakis, 2013; Rao et al.,
2014; Võsa et al., 20181).

Recently, there has been a growing interest in using chro-
matin conformation and other functional genomics tech-
niques to investigate how these disease-associated loci lead to
disease and identify affected genes. To obtain the resolution
necessary to identify enhancer‒promoter interactions, several
techniques have been developed that couple Hi-C methods
with various enrichment strategies to increase resolution and
reduce sequencing cost compared with traditional Hi-C. For
example, HiChIP achieves this by using chromatin immuno-
precipitation to capture the genomic regions associated with a
specific histone modification or protein of interest after Hi-C
library preparation (Mumbach et al., 2017, 2016), whereas
capture Hi-C uses oligonucleotide baits to capture genomic
regions of interest (Dryden et al., 2014). Previous studies have
used these techniques to identify causal genes at GWAS loci
(Cairns et al., 2016; Dryden et al., 2014; Jäger et al., 2015;
Martin et al., 2016, 2015; McGovern et al., 2016; Mumbach
et al., 2017), uncovering many important mechanisms and
pathways involved in various diseases. These studies have,
however, mainly focused on cells derived from blood and
immune cells.

Multiple publications have shown that chromatin in-
teractions are cell-type specific and are altered during dif-
ferentiation and stimulation (Burren et al., 2017; Dixon et al.,
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2012; Hansen et al., 2018; Mumbach et al., 2017; Rao et al.,
2014; Rubin et al., 2017; Schmitt et al., 2016; Siersbæk et al.,
2017). Although for many autoimmune diseases associated
risk variants primarily affect immune cells, other cell types
might also be involved in the disease development (Farh
et al., 2015; Mahajan et al., 2018; Mizoguchi et al., 2018).
Autoimmune dermatological traits such as Ps, psoriatic
arthritis (PsA), and systemic sclerosis are systemic conditions
with heterogeneous effects in multiple cell types and are
likely to involve a complex interplay between skin-resident
cells and immune cells (Albanesi et al., 2018; Mccoy et al.,
2017).

Ps is recognized as an immune-mediated condition, and as
such, the roles of immune cells in disease have received great
attention. However, more recently, there has been a rejuve-
nated interest in the role of keratinocytes (KCs), which are the
most predominant cells in the epidermis and are highly
dysregulated in the disease in terms of proliferation and dif-
ferentiation (Ni and Lai, 2020). KCs respond to T-cell signals
by producing proinflammatory cytokines that further
contribute to T-cell activation (Albanesi et al., 2018;
Benhadou et al., 2018; Lorscheid et al., 2019). A prevalent T-
cell‒released signal in inflamed tissue is IFN-g. In Ps, IFN-g is
released in the classical T helper type 1 pathway (Lowes
et al., 2008) and accumulates in psoriatic lesions (Schlaak
et al., 1994; Uyemura et al., 1993), promoting epidermal
KC apoptosis (Hijnen et al., 2013).

Another recurrent feature in inflammatory skin diseases is
the invasion of CD8þ T cells in the inflammation site (Antohe
et al. 2019; Cai et al., 2012; Hennino et al., 2007; O’reilly
et al., 2012). In Ps, these cells release IL-17, an important
factor in disease pathology (Ortega et al., 2009).

In this study, we use HiChIP to map active chromatin in-
teractions genome wide on spontaneously immortalized KCs
(HaCaT), unstimulated or stimulated with IFN-g, and a CD8þ
T cell line derived from a cancerous skin plaque (MyLa). In
contrast to capture Hi-C, this technique specifically enriches
for active regions of the genome. Moreover, it provides in-
teractions genome wide, allowing us to discover candidate
genes for a larger set of disorders and to include more
recently identified loci in our analysis. We use these new
datasets to study disease-associated loci for Ps, PsA, AD,
melanoma, and systemic sclerosis and to identify potentially
associated genes. Our analysis pipeline is available at https://
github.com/ChenfuShi/keratinocyte_gene_link and allows
the possibility of using custom input variants (such as non‒
genome-wide significant loci or credible SNP sets).

We complement our dataset with matched RNA
sequencing and Hi-C. Because the disorders studied have a
significant immune component, we include in our analysis
publicly available HiChIP data for naı̈ve CD4þ T cells and a
B-cell‒like lymphoblastoid cell line (Mumbach et al., 2017)
reprocessed with the latest computational tools to investigate
the GWAS-associated loci, which might be mediated by
these cell populations.

We show that the interacting genes enrich for pathways
that are highly relevant to the underlying disease mecha-
nisms. Our results can also inform the association of different
genes to specific loci, and we provide examples of this for
four distinct Ps loci. Therefore, our findings update our view
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on the underlying disease mechanisms of these traits, facili-
tating future studies and drug discovery.

RESULTS
A compendium of activity and chromatin interactions in KCs

Chromatin interactions specific for active regulatory ele-
ments, such as enhancers and promoters, were identified
using HiChIP targeting the active histone mark H3K27ac.
Interactions and peaks are highly cell-type specific, as shown
by clustering and principal component analysis (Figure 1a
and b and Supplementary Figure S1a and b). We noted some
batch effects between replicates that caused an imbalance in
the number of detected HiChIP loops between replicates
(HaCaT cells) and observed that more variance was
explained by batch than by IFN-g stimulation in HaCaT cells
in the principal component analysis plots. Nevertheless,
there is substantial overlap in the interaction called between
replicates (Supplementary Figure S2 and Supplementary
Table S1). As expected, H3K27ac peaks were strongly
enriched in GWAS SNPs compared with the background in
our data. Moreover, dermatological conditions such as the
ones studied in this study possess a stronger enrichment in
KCs than other diseases (Supplementary Figure S3).

We identified >50,000 significant interactions from each
of our HiChIP datasets (summary statistics in Supplementary
Tables S1 and S2). The median interaction distance was 250
kilobase (kb), which is consistent with the results derived
from the public datasets (Figure 1c and Supplementary
Figure S4a). Moreover, the vast majority (90%) of in-
teractions connected the regions within topologically asso-
ciating domains identified from our matched Hi-C datasets
(Figure 1d). This is consistent with recent reports about to-
pologically associating domains determining the scope of
gene regulation (Rao et al., 2014; Rowley and Corces,
2018). We compared this new dataset with our previous
study that used capture Hi-C in the same cell lines and
targeted GWAS loci from a number of autoimmune disor-
ders (Ray-Jones et al., 2020). We found significant overlap
between capture Hi-C and HiChIP, although HiChIP iden-
tifies significantly more genes that are specifically active in
these cell types (Figure 1c and d, Supplementary Figures S4b
and S5a and b, and Supplementary Materials and Methods).
Moreover, we recovered most of the interacting genes
highlighted in the previous work, such as IL23A, STAT3,
B3GNT2, COMMD1, ERRFI1, and SOX4 (Ray-Jones et al.,
2020).

RNA sequencing for IFN-g‒stimulated HaCaT cells
revealed 535 differentially expressed (447 upregulated and
88 downregulated) genes that were enriched for pathways
related to IFN-g stimulation (Supplementary Figure S5c). This
stimulation has a significant impact on the number of in-
teractions that originate from these genes: genes overex-
pressed on stimulation have 7.08 interactions per gene in
stimulated cells compared with 4.48 in unstimulated cells
(Supplementary Figure S5d) (�1.58 in these genes compared
with �1.18 overall interactions). Although it seemed that
these interactions linked the regions that have increased
H3K27 acetylation (mean: �1.3, median: �1.64, in stimu-
lated cells compared with that in unstimulated cells), the
majority of these linked peaks already have significant levels
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Figure 1. Properties of the chromatin looping datasets used in this study. (a) Hierarchical clustering of the loops for the individual HiChIP samples using

correlation. (b) PCA of the loops for the individual HiChIP samples. (c) Comparison of the distance distribution of the significant fithichip (HiChIP) and

CHiCAGO (CHi-C) interactions for naı̈ve HaCaT HiChIP, a representative example. (d) The proportion of significant interactions that are within TADs and that

cross TAD boundaries for region capture Hi-C data and HiChIP data. CHi-C, capture Hi-C; PC, principal component; PCA, principal component analysis; rep,

replicate; stim, stimulated; TAD, topologically associating domain; unstim, unstimulated.
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of H3K27 acetylation before stimulation (Supplementary
Figure S5e).

Chromatin contacts identified by HiChIP pinpoint
functionally relevant interactions

We first wanted to test whether HiChIP can successfully
discover important features involved in gene regulation. To
do this, we used the 535 differentially expressed genes that
are activated on IFN-g stimulation and assumed that these
genes are regulated through enhancers binding transcription
factors (TFs) related to IFN-g response. As expected,
H3K27ac peaks linked to these genes through HiChIP in-
teractions in HaCaT were enriched for TF motifs that are
known to be involved in the response to IFN-g stimulation
and/or viral infection (Ramezani et al., 2018; Schroder
et al., 2004) and contained similar motifs to those identi-
fied in peaks that had different H3K27ac signal in the
stimulated condition (Supplementary Figure S5f). H3K27ac
peaks linked through HiChIP interactions to upregulated
genes specifically in stimulated cells enriched significantly
for IRF2, ISRE, and IRF1 motifs compared with the H3K27ac
peaks linked to these genes in both conditions
(Supplementary Table S3).

Next, we wanted to assess how HiChIP datasets can
recapitulate results from large expression quantitative trait
loci (eQTL) studies in the discovery of genes dysregulated by
GWAS variants. Using Ps loci, we tested our results from
naı̈ve T cells and GM12878 cells with the largest blood eQTL
database available, eQTLgen (Võsa et al., 20181), as ground
truth. Our HiChIPanalysis showed a 52% recall rate and 31%
specificity compared with that of the genes identified from
eQTLs. Using genes that were linked in both HiChIP repli-
cates, we obtained a 46% recall rate and 40% specificity. For
comparison, Javierre et al. (2016) reported a recall rate of
25.7% with lead eQTLs.

We then compared our HaCaT KC datasets with the Ge-
notype-Tissue Expression dataset from sun-exposed skin
www.jidonline.org 1977
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Table 1. Number of Genes Identified Associated with
Each Disease Studied

Disease Number of Genes Identified

PsA 84

Ps 399

Eczema 154

Melanoma 165

Scleroderma 182

Abbreviations: Ps, psoriasis; PsA, psoriasis arthritis.
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(GTEx Consortium, 2013), resulting in a recall rate of 56%
and a specificity of 14.7% (38% and 20%, respectively, with
genes reproduced from both replicates). In this study, the
Genotype-Tissue Expression dataset contains relatively few
eQTLs compared with the eQTLgen database owing to the
limited sample size, reducing specificity in our analysis. By
comparison, our previous capture Hi-C dataset generated a
21% recall rate and 11% specificity. Interestingly, 38 of 52
eQTLs linked to Ps loci identified in the skin in Genotype-
Tissue Expression are recapitulated in the eQTLgen dataset.

These eQTL datasets were generated from slightly different
cell populations compared with those analyzed in this study.
We have attempted using eQTL datasets generated from pure
cell populations (for CD4þ and CD8þ T cells) such as the
Kasela et al. (2017) dataset and the Database of Immune Cell
Expression eQTL dataset (Schmiedel et al., 2018), but these
studies produced very few hits within the studied loci owing
to their limited sample size. Regardless, we obtained similar
recall rates as reported earlier (22‒66%).

Using chromatin conformation and functional genomics to
dissect disease-associated loci

We next sought to use our dataset to identify the genes whose
transcription start sites either overlap or are linked by chro-
matin interaction to GWAS SNPs associated with PsA, Ps,
AD, melanoma, and systemic sclerosis. We identified be-
tween 84 and 399 potentially linked genes for each disease
studied in our combined datasets (Table 1), with a large
fraction of these being recoverable using both replicates for
each cell type (Supplementary Figure S6). Importantly, these
genes were strongly enriched for disease-relevant pathways.
For example, genes linked to melanoma loci were enriched
for replicative senescence and cell-cycle pathways, whereas
genes linked to Ps and PsA were linked to cytokine signaling
and IL-23 (Figure 2), which is a pathway targeted by multiple
novel treatments (Sakkas et al., 2019).

Although some genes were common in all the cell lines
(e.g., 12% in Ps), most genes were specific to one or a few
cell types (Supplementary Figure S7). Moreover, we found
that most loci also implicate multiple genes, with an average
of 7.1 genes per loci in Ps. Interestingly, the number of genes
implicated by our method correlated significantly with the
number of genes that were linked by eQTLs for the same loci
(P ¼ 4.61e-13) (Supplementary Figure S8). This could be
partly caused by the size of the linkage disequilibrium block
of the loci, in which the lead SNP implicates a set of coin-
herited SNPs that can have effects on the expression of many
genes.
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Using these data, we can begin to provide some functional
insight into the mechanisms mediating disease susceptibility.
We found that for a significant number of loci, the closest
protein-coding genes were not implicated, despite it being
possible for linkage disequilibrium blocks to have multiple
closest genes. For example, of the 44 Ps loci tested with a
linkage disequilibrium block smaller than 100 kb, we linked
all the closest genes for only 25 loci. For 14 loci, we did not
find any evidence of the closest genes being regulated by the
GWAS SNPs in any of the cell lines tested, and for 5 loci, we
linked some but not all of the closest genes. Similar numbers
can be seen in all the traits studied (Supplementary Table S4).
We also identified some loci that do not have any protein-
coding genes within 50 kb. We identified 12 of these loci
across the diseases studied and provided putative linked
genes for all of them in Supplementary File S1.

Looking at a locus, particularly the ETS1 locus, Ps and AD
have distinct associations. However, whereas the Ps locus
directly overlaps the promoter of ETS1, the association with
AD is located 130 kb downstream of the gene. We observed
significant chromatin interactions between the AD locus and
the ETS1 promoter in naı̈ve T, Myla, and GM12878 cells
(Supplementary Figures S9 and S10). Our data suggest a
putative mechanism in which the distinct disease associa-
tions at this locus are mediated by a single gene. We follow
up with the description of other examples in Ps in the next
section.

HiChIP identifies genes associated with Ps loci in a cell-
type‒specific manner

The results from our analysis can be applied to augment the
existing understanding of disease-associated loci and to link
new genes or change the ones currently linked. In this study,
we focus on four Ps-associated loci that show cell-type‒
specific and, to our knowledge, previously unreported
interactions.

The Ps locus indexed by SNP rs73178598 is located in an
intergenic region overlapping an antisense RNA, SATB1-AS1.
We found a 240 kb T-cell‒specific interaction present in
naı̈ve Tand MyLa cells linking this locus with the promoter of
SATB1 in all replicates (Figure 3). Interestingly, for this region,
there is an interaction that is present in naı̈ve T cells and Myla
but not in KCs or GM12878 with differences visible in Hi-C
maps as well (Supplementary Figure S11). Silencing of SATB1
has been shown to have a similar effect to IFN-g stimulation
on major histocompatibility complex chromatin organization
(Kumar et al., 2007) and is an important regulator of regu-
latory T cells and autoimmunity (Beyer et al., 2011).

The Ps loci indexed by SNP rs9504361 is intronic to
EXOC2 and is typically associated with this gene. However,
H3K27ac occupancy at the locus is specific to MyLa cells in
our analysis. We detected long-range interactions between
this SNP and the promoters of IRF4 (all replicates) and
DUSP22 (one replicate only), specifically in this cell type
(Supplementary Figures S12 and S13). IRF4 is a lymphocyte-
specific TF central to the activation of innate and adaptive
immune systems (Huber and Lohoff, 2014), and it was found
to be overexpressed in psoriatic skin lesions (Ni et al., 2012).
DUSP22 is a phosphatase that might be involved in the c-Jun
N-terminal kinase signaling pathway and has been shown to
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be associated with lymphomas (Paydas et al., 2019; Zeke
et al., 2016).

Another example of a gene target, to our knowledge pre-
viously unreported, can be found at the 1p36 locus
(rs10794648), which to date has been associated with
IFNLR1 (also known as IL28-RA) because it is the closest gene
to the associated SNPs (Genetic Analysis of Psoriasis
Consortium & the Wellcome Trust Case Control Consortium
2, et al., 2010; Stuart et al., 2015). IFNLR1 encodes part of
a receptor for IFN-g that is presented in the epidermis and is
www.jidonline.org 1979
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thought to promote an antiviral response in Ps (Lazear et al.,
2015). However, our HiChIP data showed long-range in-
teractions between the Ps SNPs at 1p36 and the distal gene
GRHL3 primarily in HaCaT KCs (all replicates in unstimu-
lated cells and combined only in IFN-g stimulated cells)
(Figure 4a and Supplementary Figures S14 and S15). We
further explored the chromatin profile in this region using
available chromatin immunoprecipitation sequencing data
for enhancer-associated marks (H3K27ac and H3K4me1) and
a promoter-associated mark (H3K4me3) in progenitor,
differentiating and migrating primary KCs (Klein et al., 2017).
We found that GRHL3 overlaps H3K27ac and H3K4me3
marks in all conditions, indicating that the promoter is active
through differentiation (Supplementary Figure S16a). More-
over, we found that the Ps-associated SNPs overlap H3K4me1
in migrating and H3K27ac in migrating and progenitor cells
but not H3K4me3 in any condition (Supplementary
Figure S16b). These findings suggest that the SNPs overlap
an enhancer that is present in migrating and progenitor cells
but are active in progenitor cells only. GRHL3 encodes a TF
that stimulates migration. It is upregulated in psoriatic lesions
and is required for repair of the epidermal skin barrier after
immune-mediated injury (Gordon et al., 2014). Improper
regulation of GRHL3 in progenitor cells could adversely affect
the migration of KCs, which is known to be highly accelerated
in Ps, leading to the formation of the classic skin plaques.
Targets of the GRHL3 TF include further GWAS-implicated
genes such as IVL (involved in KC differentiation) (Watt,
1983) and KLF4 (TF involved in KC differentiation and skin
barrier formation). KLF4 was recently implicated as the likely
Journal of Investigative Dermatology (2021), Volume 141
functional target gene in the 9q31 locus in our previous study
(Ray-Jones et al., 2020).

Finally, the locus indexed by the Ps SNP rs73183592, to
our knowledge, previously undescribed mechanism was
linked through a long-range interaction spanning about 500
kb to FOXO1 (Figure 4b and Supplementary Figure S17), a
gene with important functions in regulatory T cells. Interest-
ingly, this interaction was identified primarily in KCs in our
analysis (all replicates in unstimulated and one replicate only
in IFN-g stimulated) but was only weakly supported in T cells
because this enhancer seems to be specific to KCs. Dysre-
gulation of this pathway was also found to be important in the
development of Ps (Li et al., 2019; Zhang and Zhang, 2019).

DISCUSSION
Chromatin conformation and functional genomics studies
have the potential to uncover the underlying mechanisms
that drive the disease susceptibility of many complex traits.
Although these techniques are very promising, there has been
a lack of studies in disease-relevant cell types, and as recently
evidenced, both chromatin interactions and gene regulation
are cell type and stimulation specific (Burren et al., 2017;
Dixon et al., 2012; Hansen et al., 2018; Mumbach et al.,
2017; Rao et al., 2014; Rubin et al., 2017; Schmitt et al.,
2016; Siersbæk et al., 2017).

In this study, we used H3K27ac HiChIP, a modern tech-
nique that allows combined analysis of both chromatin
conformation and chromatin activity, to create a global study
of promoter‒enhancer interactions in KC and CD8þ T-cell
lines. Equivalent data have so far only been generated in
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immune cells with few examples in other cell populations,
such as HiChIP in endometrial cancer cells (O’Mara et al.,
2019) and promoter capture Hi-C in neuronal cells (Song
et al., 2019), cardiomyocytes (Choy et al., 2018), and
pancreatic islets (Miguel-Escalada et al., 2019).

After assessing the effectiveness of these techniques in
linking functional elements with genes in a cell-type‒specific
manner, we show their possible use in studying disease-
associated loci. We explore disease-associated SNPs for
PsA, Ps, AD, melanoma, and systemic sclerosis and identify
all the genes that are linked by chromatin interactions to
these variants. We show that these genes are enriched for
disease-relevant pathways and provide tables and figures for
all the loci (Supplementary File S1 and GitHub repository).
We show how these data, using four distinct Ps-associated
loci as examples, allow us to identify previously unreported
mechanisms and provide functional insight into the diseases
studied.

The HiChIP gene targets have the potential to be used as
therapeutic targets in drug repurposing and discovery, as
recently applied for other diseases (Fang et al., 2019; Martin
et al., 2019). As a proof of concept, we tested the genes
identified in this work by querying the DrugBank database
(Wishart et al., 2008) in search of drugs that are currently
used and the ones that could be repurposed. Across the
diseases studied, we identified 127 genes that are targeted by
approved drugs in some diseases, corresponding to 231 drugs
that could be potentially repurposed (Supplementary File S2).

A limitation of this study is that it is based on immortalized
cell lines. In the future, these studies should include primary
tissues and compare healthy with diseased samples. This has
so far been done in a limited way, but early results are
showing a significant impact of disease state and genetics on
chromatin conformation (Delaneau et al., 2019; Fasolino
et al., 2020; Gorkin et al., 2019; Kloetgen et al., 2020).
Moreover, although the techniques used in this study are an
important strategy to identify potential candidate genes, they
require further individual experimental validation (such as
genetic perturbation techniques) before they can be used for
drug targeting.

In summary, through our analysis, we present a list of po-
tential target genes and pathways for mediating disease risk
for five complex diseases, and by documenting individual
loci, we highlight some mechanisms by which this risk is
mediated. These genes and mechanisms represent a useful
resource for further research aimed at characterizing how
genetic variation has an impact on disease susceptibility for
these and other complex diseases.
MATERIALS AND METHODS
For detailed methods, see the Supplementary Materials and

Methods.

Cell culture

HaCaT KC cells (T0020001, Addexbio Technologies, San Diego, CA)

were cultured in high-glucose DMEM supplemented with 10% fetal

bovine serum and penicillin-streptomycin (final concentration: 100

U penicillin and 0.1 mg/ml streptomycin). For HaCaT stimulation

experiments, the media were supplemented with 100 ng/ml
Journal of Investigative Dermatology (2021), Volume 141
recombinant human IFN-g (285-IF-100; R&D Systems, Minneapolis,

MN), and cells were incubated for 8 hours before harvest.

My-La CD8þ cells (95051033, Sigma-Aldrich, St. Loius, MO)

were cultured in RPMI 1640 medium supplemented with 10% AB

human serum (Sigma Aldrich), 100 U/ml recombinant human IL-2

(Sigma-Aldrich), and penicillin-streptomycin.

HiChIP experiments

HiChIP libraries were generated according to the Chang Lab pro-

tocol (Mumbach et al., 2016). Briefly, 10 million cross-linked cells

were lysed, the chromatin was digested with MboI, biotinylated, and

ligated. After random shearing, chromatin immunoprecipitation was

performed against H3K27ac (ab4729, Abcam, Cambridge, United

Kingdom). Decrosslinking and biotin pulldown preceded tagmen-

tation with Tn5 transposase (Illumina, San Diego, CA) at 55 �C for 10

minutes. For more details, see the Supplementary Materials and

Methods.

Linking GWAS loci to putative gene targets

To identify the genes that were linked to disease-associated SNPs,

we first identified the transcription start sites of all protein-coding

transcripts in the hg38 Gencode V29 annotation (Harrow et al.,

2012). We associated all transcripts for which a transcription start

site was located within 5 kb of a loop. We also associated the

transcripts for which the transcription start site was within 1 kb of an

SNP overlapping an H3K27ac peak as identified from HiChIP data.

All transcripts were then grouped by gene, and the genes were

filtered by an expression level of at least 1 transcript per million in

the corresponding cell line.

Data availability statement

The sequence datasets generated and analyzed during this study are

available in the Gene Expression Omnibus repository under acces-

sion numbers GSE137906 (for capture Hi-C only) and GSE151193

(for HiChIP, RNA sequencing, and Hi-C with updated processed

files).

The code required to reproduce the analysis in this study is

available on GitHub. Figures with Hi-C and HiChIP loops for every

locus for all the diseases studied in this research are also available in

the same repository (https://github.com/ChenfuShi/keratinocyte_

gene_link).
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