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The key player in the
pathogenesis of environmental
influence of systemic lupus
erythematosus: Aryl
hydrocarbon receptor

Jingwen Wu, Tianyi Pang, Ziyuan Lin, Ming Zhao and Hui Jin*

Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya
Hospital, Central South University, Changsha, China
The aryl hydrocarbon receptor was previously known as an environmental

receptor that modulates the cellular response to external environmental

changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor

and transcription factor that is activated by binding to the corresponding

ligands, and they transmit relevant information by binding to DNA, thereby

activating the transcription of various genes. Therefore, we can understand the

development of certain diseases and discover new therapeutic targets by

studying the regulation and function of AhR. Several autoimmune diseases,

including systemic lupus erythematosus (SLE), have been connected to AhR in

previous studies. SLE is a classic autoimmune disease characterized by multi-

organ damage and disruption of immune tolerance. We discuss here the

homeostatic regulation of AhR and its ligands among various types of

immune cells, pathophysiological roles, in addition to the roles of various

related cytokines and signaling pathways in the occurrence and development

of SLE.

KEYWORDS

aryl hydrocarbon receptor (Ah receptor or AhR), systemic lupus erythematosus (SLE),
immunology, autoimmune disease (AD), AhR ligands
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1 Introduction

The aryl hydrocarbon receptor (AhR) was first studied as an

environmental toxicant sensor (1). It is a cytoplasmic receptor

and transcription factor that relies primarily on ligand activation

and subsequently regulates the transcription of many genes by

binding to DNA. The AhR pathway is critical in the regulation of

innate and adaptive immunity, it’s well established that both

AhR agonists and antagonists can affect the immune system.

Previous studies have shown that AhR is associated with many

autoimmune diseases, including multiple sclerosis, rheumatoid

arthritis, inflammatory bowel disease, SLE, and so on (2). By

elucidating the role of AhR in autoimmune diseases, researchers

can enhance their understanding of the pathogenesis of

autoimmune diseases and develop new therapeutic targets. SLE

is a classic autoimmune disease characterized by a dysregulation

of immune tolerance leading to excessive inflammatory response

and multi-organ damage. In this paper, we summarize the

homeostatic regulation and pathophysiological roles of AhR

and its ligands among various types of immune cells, along

with the roles of various related cytokines and signaling

pathways in the development of SLE.
2 About AhR

2.1 Structure and function of AhR

AhR is a class of ligand-dependent activating transcription

factors belonging to the basic helix-loop-helix Per-Arnt-Sim

(bHLH/PAS) superfamily that regulates the transcriptional

expression of genes. The inactive AhR forms a complex with

the 90-kDa heat shock protein (Hsp90) (3), the hepatitis B virus

X-associated protein 2 (XAP2) (4), the protein tyrosine kinase c-

Src (5) and the cochaperone p23 (6) in the cytoplasm. These

molecular chaperones help to localize inactive AhR in the

cytoplasm, protect it from degradation, and allow ligand

binding to AhR to occur easily and consistently. As AhR binds

to the ligand, conformational changes occur, and they form

complexes with aryl hydrocarbon receptor nuclear transporter

protein(ARNT), allowing them to enter the nucleus. The

genomic regulatory region of AhR target genes contains

specific DNA sequences (5’-TNGCTGG-3’) called dioxin or

xenobiotic response elements (XRE). In the nucleus, the AhR-

ARNT complex recognizes XRE, it controls the expression of

multiple target genes through interaction with other

transcription factors, such as CYP1A1, CYP1B1, and aryl

hydrocarbon receptor repressor (AhRR) (7). AhR also controls

gene expression through non-XRE DNA-responsive elements by

interacting with other transcription factors in a similar way, such

as nuclear factor-kB (NF-kB), c-Maf, retinoic acid receptor,

estrogen receptor (ER), and retinoblastoma (Rb). AhR acts as
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a regulator of their activity, and with it the expression of their

target genes (8). In conclusion, AhR promotes the expression of

genes in regulatory regions, in addition to XRE, by recruiting

new DNA sequences or by interacting with certain proteins (See

Figure 1 on the AhR signaling pathway for details).
2.2 AhR is affected by multiple
endogenous and exogenous factors

AhR is known as an environmental receptor and its ligands

are very diverse that can be broadly classified into exogenous and

endogenous according to their sources. Exogenous ligands are

mainly from environmental toxins, including dioxins (9),

tetrachlorodibenzo-p-dioxin(TCDD), polychlorinated biphenyl

(PCB), polycyclic aromatic hydrocarbon (PAHs) (10), etc. The

binding of PAHs to AhR/ARNT induces the expression of

several CYPs that convert PAHs into genotoxic pro-electron

derivatives. Foods are also rich in natural ligands (e.g.,

polyphenols, resveratrol (11), quercetin (12), flavonoids (13),
FIGURE 1

AhR signaling pathway. AhR is a ligand-activated transcription
factor and inactive AhR forms a complex with Hsp90, XAP2, c-
Src, and p23 in the cytoplasm. As AhR binds to the ligand,
conformational changes occur, and they form complexes with
the ARNT to enter the nucleus. the genomic regulatory region of
AhR target genes contains the XRE, and in the nucleus, besides
recognizing the XRE, the AhR-ARNT complex also interacts with
other transcriptional regulators to control the expression of
multiple target genes. AhR, aryl hydrocarbon receptor; ARNT,
aryl hydrocarbon receptor nuclear transport protein; XRE,
exogenous response element; CYP, cytochrome P450.
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etc.) and also include drugs such as cyproheptadine (14),

leflunomide (15), and omeprazole (16).

The endogenous ligands mainly include tryptophan

derivatives, such as FICZ (17), indole-3-carbinol (I3C) (18),

indole-3-acetic acid (IAA) (19) and 2-(1’H-indole-3’-carbonyl)-

thiazole-4-carboxylic acid methyl ester (ITE) (20). Also, there

are prostaglandins (PGB3, PGD3, PGF3alpha, PGG2, PGH1,

PGH2) (21), indocyanine and indigo (22), bilirubin and

biliverdin (23), etc. Tryptophan and its derivatives provide a

large number of ligands for AhR, and we are familiar with

kynurenine (Kyn) as an agonist of AhR (24), while AhR

regulates the expression and activation of indoleamine 2,3-

dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO2),

kynurenase (KYNU), etc. These enzymes regulate the

metabolism of Kyn, which precisely forms a feedback loop.

Among them, FICZ, fully known as 6-formylindolo[3,2-b]

carbazole, is the endogenous agonist that binds most tightly to

AhR (25). See Table 1 on the classification of factors that can

affect AhR for details. Notably, Kyn and the entire tryptophan

family are regulated by the mechanistic target of rapamycin

(mTOR), a serine/threonine kinase. mTOR is named after

rapamycin, an antifungal macrolide antibiotic. mTOR

activation and its pro-inflammatory effects profoundly
Frontiers in Immunology 03
influence the development of SLE, and there is an extensive

link between mTOR and AhR signaling pathway, which will be

described in 5.5.
3 Relevance of AhR to immune cells

3.1 AhR in dendritic cells

Dendritic cells (DCs) are the major antigen-presenting cells in

human body. Monocytes enter tissues and differentiate into

macrophages or dendritic cells. This differentiation process is

regulated by several transcription factors. In the presence of AhR

activation, monocyte-derived DCs differentiation is promoted

through induction of BLIMP-1 (33). However, AhR is

controversial in inducing the differentiation of DCs, which have

several subsets: conventional DCs (cDCs) and plasmacytoid

dendritic cells (pDCs) (34). TCDD can induce AhR expression

and activation in DCs to enhance DCs differentiation (35), these

experiments also demonstrated that the AhR pathway functioned

as an important signalingpathway for the activationof indoleamine

2,3-dioxygenase 1(IDO1) and indoleamine 2,3-dioxygenase 2

(IDO2) expression. IDO1 and tryptophan 2,3-dioxygenase-2
TABLE 1 Endogenous and exogenous factors that can affect AhR.

Factors Origin Compounds References

Exogenous Environmental toxins Dioxins (e.g. Tetrachlorodibenzo-p-dioxin,TCDD) (1, 9)

Polycyclic aromatic hydrocarbons (PAHs) (10)

Polychlorinated biphenyl (PCB) (10)

Ultraviolet – (26)

Dietary 5-hydroxyindole-3-acetic acid (5-HIAA) (27)

Resveratrol (11)

Quercetin (12)

Flavonoids (13)

3,3’-diindolylmethane (DIM) (18)

Curcumin (28)

Baicalein (29)

Norisoboldine (30)

Drugs Cyproheptadine (14)

Leflunomide (15)

Omeprazole (16)

Endogenous
-

Tryptophan derivatives 6-formylindolo[3,2-b]carbazole (FICZ) (17)

Kynurenine (Kyn) (24)

lndole-3-carbinol (I3C) (18)

Indole-3-acetic acid (IAA) (19)

2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (20)

Prostaglandin PGB3, PGD3, PGF3alpha, PGG2, PGH1,PGH2 (21)

Plant enzymes Indocyanine and indigo (22)

Hemoglobin metabolism Bilirubin and biliverdin (23)

Gut microbiota Lactobacillus and Bifidobacterium (31)

Lactobacillus bulgaricus (32)
fr
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(TDO2) promote the production of the endogenous AhR ligand

Kyn and generate DCs. In another study, in the presence of

lipopolysaccharide or CpG, AhR negatively regulates DCs-

mediated immune responses through a Kyn-dependent

mechanism, which in turn affects the differentiation of primary T

cells to regulatory T (Treg) cells and T helper 17 (Th17) cells (36).

AhR can also affect the antigen-presenting function of DCs (37).

Jaishree Bankoti et al. reported that the AhR ligand TCDD decreased

the expression of CD11c on the surface of bone marrow-derived

dendritic cells (BMDCs) but increased the levels ofMHC II andCD86

onBMDCs. The binding of CD86molecules onDCs toCTLA-4 onT

cells can impair T cell responses (38). As a consequence of AhR

activation, CTLA-4 can be expressed on T cells, which binds tightly to

CD86onDCs, impairingTcell responses (39).Assuch, theattachment

of CD86 on DCs to CTLA-4 on T cells, which is triggered by AhR

activation, may contribute to immunosuppression. Comparatively,

FICZ and ITE induced phenotypic changes similar to those seen in

TCDD in BMDCs, indicating that DCs lack a particular response to

AhR ligands.
3.2 AhR in macrophages

Macrophages are important components of intrinsic immunity,

with roles such as phagocytosis and killing of pathogens,

participation in the inflammatory response, and involvement in

the regulation of adaptive immunity. Macrophages produce pro-

inflammatory cytokines, such as IL-6, IL-12, and TNF-a, which
activateT cells and induce their differentiation (40).Researchershave

demonstrated that AhR suppresses the differentiation of monocytes

and bone marrow-derived macrophages (33, 41). There are two

subtypes of macrophages: M1 and M2macrophages (42). FICZ can

affect the balance between M1 and M2 macrophages by altering

macrophage polarization through the activation of AhR (43). Yang

et al. further demonstrated that AhR activation can reduce

macrophage differentiation through the AhR-miR-142a-IRF1/HIF-

1apathway to reduceM1macrophagepolarizationandpromoteM2

macrophage polarization (44).

In addition to affecting differentiation, AhR has other

regulatory effects on macrophages, as Shinde et al. reported that

macrophages exposed to apoptotic cells could activateAhRon their

surface and promote the production of the immunosuppressive

cytokine IL-10, thereby limiting the development of SLE in mice

(45). After treatment with the endogenous AhR ligand FICZ and

the exogenous ligand benzo-alpha-picryl, the abundance,

ubiquitination, and phosphorylation of a variety of proteins in

macrophages can be affected (46).
3.3 AhR in mast cells

Mast cells (MCs) contribute to the regulation of mucosal

immune and allergic responses. Mast cells can be activated and
Frontiers in Immunology 04
release inflammatory mediators and cytokines by a variety of

stimuli and have a surface that expresses a large number of IgE

Fc receptors, which when bound to IgE and cross-linked to

antigens can lead to a variety of pathophysiological events.

AhR is an important factor in mast cell activation. Exposure

to the AhR ligand FICZ leads to activity reduction of the SHP-2

gene, enhancing the activation of mast cells by IgE (47, 48).

Notably, different doses of FICZ stimulation lead to different

changes in MCs. Sibilano R et al. reported that repeated exposure

to FICZ inhibited MCs’ degranulation, the mechanism is that the

release of histamine is FICZ dose-dependent, but is attenuated

by repeated activation of AhR (49). Kyn can also activate mast

cells by activating AhR to promote a series of reactions such as

degranulation and leukotriene release (50, 51). Meanwhile,

although AhR can regulate the function of MCs, experiments

by Caroline Pilz et al. support that AhR does not have much role

in regulating the number of MCs in mice (52).

The intricate relationship between MCs and T cells can serve

as a fulcrum for regulating the balance between various types of

T cells. On the other hand, in the presence of activated MCs, the

Tregs/Th17 balance is tilted towards Th17 accompanied by a

decrease in IL-6 abundance and a lack of Th1/Th2 cytokines

(53), and this also study showed that MCs, as a source of

inflammatory mediators, could counteract the suppressive

effect of Treg cells on effector T cell-mediated immunity.
3.4 AhR in natural killer cells

Natural killer cells (NK cells) are derived from bone marrow

lymphoid stem cells and, upon maturation, settle mainly in the

spleen and liver (54). NK cells are innate lymphocytes capable of

producing inflammatory cytokines that nonspecifically kill

tumor cells and virally infected cells. In terms of NK cell

development and differentiation, treatment of human

embryonic stem cells (hESCs) with the AhR antagonist

StemReginin-1(SR-1) and the AhR agonist TCDD,

respectively, revealed that SR-1 increased the differentiation of

NK cells while TCDD inhibited the development of them (55).

AhR has many important effects on NK cell function. Petr

Bachleda et al. reasonably hypothesized that the effect of

resveratrol on NK cytotoxicity is related to the partial

agonistic activity of resveratrol on AhR (56), this hypothesis is

based on the fact that resveratrol enhances perforin expression

and NK cell cytotoxicity through the NKG2D-dependent

pathway (57). Kyn can also enhance NK cell cytotoxicity by

activating AhR (58). During infection, NK cells are one of the

main sources of IL-10, and AhR activation is required for

maximal IL-10 production (59). In hematologic cancer, AhR

activation using FICZ not only improves the ability of NK cells

to produce IFN-g and cytolytic activity, but also enhances the

ability of NK cells to inhibit cancer growth in an AhR-dependent

manner (60).
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3.5 AhR in T cells

3.5.1 AhR and CD4- CD8 -T (DN T) cells
The role between AhR and DN T has received less attention

previously, but there is also a link between the two. Maturation

of T cells from DN T to TCRab+ or TCRgd+ cells occurs in the

thymus, and the frequency of fetal DN TCRgd+ cells is higher

after activation of AhR using TCDD, suggesting that TCDD

plays an important role in the differentiation and lineage

commitment of DN T cells (61). Kyn stimulates the activation

of mTOR complex 1 (mTORC1) in DN T cells of SLE

patients (62).

3.5.2 AhR in T helper 1 (Th1) cells, T helper 2
(Th2) cells

It is believed that Th1 cells and Th2 cells antagonize each

other in mediating immunity: Th1 mediates cellular immunity

and promotes inflammation; Th2 cells mediate humoral

immunity and inhibit inflammation (63).

AhR and Th1 cells are of interest in the body’s response to

certain bacterial, viral, and parasitic infections. Th1-related

immunity is initiated in vivo after Trypanosoma cruzi

infection, and some AhR ligands have therapeutic effects, but

Laura Fernanda Ambrosio et al. found that there is a threshold

for AhR activation in this process. The use of higher affinity

ligands (above threshold activation) limits CD8+ T cell

development and promotes Treg cell development, enabling an

earlier suppression of Th1-type responses. Conversely, the use of

low-affinity ligands (below-threshold activation) promotes early

inflammatory Th1-type responses, thereby limiting parasite

replication. Thus, AhR induces multiple regulatory pathways

that ultimately affect parasite replication and infection outcomes

(64). Eliseu et al. reported that both AhR agonist Kyn and AhR

antagonist CH223191 decreased the number of Th1 cells in a

mice pulmonary fungal infection model, while agonist FICZ

resulted in the expansion of all CD4+ T cell subsets (Th1, Th2,

Th17, Th22, and Treg) (65). In addition, AhR-deficient mice

displayed a decrease in Th1, Th22, and other immune cells in

their lungs (66).

AhR is important as an environmental sensor in regulating

the exposure of the organism to exogenous substances, a process

that is closely related to Th2. V J Schulz et al. found that

activation of AhR with TCDD can suppress Th2-mediated

allergic responses by inducing differentiation of CD4+ T cell

subpopulations to Treg cells (67). Exposure to ambient

particulate matter (PM) (PAHs, dioxins, and heavy metals are

the main components) can promote or exacerbate allergic

responses by activating AhR in Th2 (68, 69) and enhanced

Th2-mediated allergic response enhances the sensitivity of

patients to allergens (70).

The imbalance between Th1/Th2 cells has been considered

one of the pathogenesis of autoimmune diseases. AhR can
Frontiers in Immunology 05
regulate the Th1/Th2 balance by activating Th0 cells, and a

synthetic anti-allergy agent M50367 (as AhR ligand) exerts anti-

allergic effects by suppressing the differentiation of Th0 cells into

Th2 cells in vitro, tilting the Th1/Th2 balance in favor of Th1

(71). Kakutani et al. demonstrated that low-dose, prolonged

exposure to TCDD resulted in a dose-dependent significant

increase in Th1 and Th2 lymphocyte responses, similarly

shifting the Th1/Th2 balance towards Th1 (72).

3.5.3 AhR in Th17 and Treg cells
Th17 and Treg cells share a common precursor CD4+ T cell,

and both require tumor growth factor (TGF)-b to induce

differentiation. Nevertheless, their functions are opposite: Th17

cells tend to exacerbate autoimmune and inflammatory

responses, while Treg cells suppress autoimmunity and

maintain immune homeostasis (73).

AhR is expressed at the highest levels in human Th17 cells,

and substantial evidence shows that AhR is necessary for IL-22

production and Th17 differentiation. It is important to note that

AhR is unnecessary for the initial differentiation of Th17 cells,

but is necessary to promote their expansion and production of

IL-22 (74, 75). Many AhR ligands exhibit inhibitory effects on

Th17 development and differentiation, such as TCDD, Kyn, I3C

and diindolylmethane (DIM) (76–78). Some ligands block

Th17-induced immune responses, such as curcumin and

naphthoflavone (79, 80). It is thoroughly studied that FICZ

can promote the differentiation of Th17 cells (81). Notably, Kyn

has a double role, in addition to suppressing differentiation, it

also promotes the differentiation of Th17 cells in a ligand-

dependent manner, this may be related to the expression of

the System L transporter on cells (82). I3C, although recognized

to inhibit Th17 cell production and promote Treg production,

increased Th17 cell expression in small intestinal cells in the

non-obese diabetic (NOD) mice (83). Moreover, though AhR is

unnecessary for Th17 differentiation, its activation promotes

further function and differentiation of Th17, leading to the

development of various autoimmune diseases dependent on

Th17 cells.

Transcription factor Foxp3 drives the differentiation and

function of Treg cells. AhR not only induced FoxP3 expression

directly (76), but also stabilized FoxP3 expression by increasing

enhancer activity (84). TCDD, I3C, DIM, ITE, and Kyn, as

well as the recent discovery of baicalein and norisoboldine

(NOR) (35, 74, 76, 85, 86), have been shown to promote

Treg differentiation.

The regulation of the Treg/Th17 homeostasis by most

ligands is unidirectional, that is, promoting one side and

inhibiting the other (see Figure 2 for details). However, there

are still some interesting results. TCDD activates AhR and

induces the conversion of CD4+ Foxp3 T cells to functional

Treg cells (76, 84). Interestingly, in the regulation of Th17,

available evidence suggests that in vitro use of TCDD activates
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AhR to promote Th17 differentiation (87), but in vivo, TCDD

leads to a decrease in Th17 numbers and suppresses

experimental autoimmune encephalomyelitis (EAE)

occurrence (76), this interesting phenomenon may be due to

the fact that humans express the lower-affinity AhR (88), and the

difference in affinity of AhR affects the amount of IL-17 and IL-

22 produced by Th17 cells, and the number of these cytokines is

significantly lower in the mouse model expressing the low

affinity AhR. This different role of AhR in vivo and in vitro

fully reflects the complexity of its pathway (87). The use of the

AhR antagonist resveratrol interferes with the differentiation of

both Treg and Th17 (76). Endogenous ligand FICZ promotes

Th17 differentiation (74, 89), and its effect on Treg is

controversial; some studies indicate that FICZ reduces the

number of Treg cells (89), but more evidence suggests that

FICZ promotes Treg production (66, 90). It was also shown that

the tryptophan breakdown product Kyn (91) and the flavonoid

compound alpinetin (92) increased Treg production but had no

effect on Th17 cell production.

3.5.4 AhR and T helper 22 (Th22) cells
Th22 cells belong to the CD4+ T cell subpopulation and

are important components of anti-microbial resistance in

the mucosa. Th22 has an important impact on a variety of

autoimmune diseases including Hashimoto’s thyroiditis (93),

rheumatoid arthritis (94), Crohn ’s disease (95), and

leukoaraiosis (96). AhR deficiency suppresses Th22 expansion,

and in a mouse model of pulmonary fungal disease, AhR also

regulates the number of Th17 and Treg cells associated with

Th22 (66). Th22 secretes IL-22 and AhR is the main

transcription factor regulating IL-22 transcription (97),

blocking AhR with the antagonist CH223191 decreases IL-22

production (65).
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3.5.5 AhR and type 1 regulatory T (Tr1) cells
Tr1 cells are CD4+ regulatory T cells that suppress

inflammat ion and autoimmunity by secret ing the

immunosuppressive cytokine IL-10. In human peripheral

blood mononuclear cells (PBMCs), AhR promotes Tr1 cell

differentiation and IL-10 production via granzyme B (84). IL-

27 can promote the growth and differentiation of Tr1 cells (98).

DCs secrete IL-27 after being stimulated by anti-CD3. IL-27R

initiates the synthesis of AhR and the transcription factor c-maf,

which interact to further expand Tr1 cells in vivo (99, 100).

According to Gandhi R et al., activation of AhR using TCDD

causes differentiation of Tr1 cells in vitro (84). Mascanfroni et al.

demonstrated that AhR promotes hypoxia-inducible factor 1-a
(HIF1-a) degradation and regulates Tr1 cell metabolism during

the late stages of differentiation (101).
3.6 AhR and B cells

IL-4 regulates AhR expression and activation in B cells,

according to Tanaka G et al. (102). Bharat Vaidyanathan et al.

performed several experiments to clarify the role of AhR in B cell

antibody class switching, differentiation into plasma cells, and

generation of memory B cells. The impact of AhR in several

developmental processes, AhR may therefore be a novel

molecular target for the regulation of B cell immune response

(103). It has been more thoroughly studied that the AhR agonist

TCDD causes B cells to differentiate in a manner that suppresses

antibody production, by reducing the expression of two

transcription factors, EBF1 and PAX5 (104, 105). Bach2 is a

transcriptional target of AhR in mouse B cell lines, and AhR-

mediated transcriptional regulation of Bach2 is a mechanism

through which TCDD suppresses B cells (106).
FIGURE 2

AhR regulates Th17/Treg cell homeostasis delicately. This figure highlights the important role of AhR in regulating Th17/Treg cell homeostasis.
As shown, many ligands(such as TCDD, Kyn, I3C, DIM, CID-1, alpinetin and naphthoflavone) promote Treg differentiation after activation of AhR,
while FICZ, PAHs suppress Treg differentiation. FICZ, PAHs, Kyn and TCDD (when acting in vitro) can promote Th17 cell differentiation, while
TCDD (when acting in vivo), CID-1, Kyn, I3C, DIM, baicalein and naphthoflavone suppress Th17 differentiation. FICZ, 6-formylindolo[3,2-b]
carbazole; Kyn, kynurenine; I3C, indole-3-carbinol; DIM, diindolylmethane; TCDD, Tetrachlorodibenzo-p-dioxin; PAH, Polycyclic aromatic
hydrocarbons; CID-1, Cinnamtannin D1.
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Regulatory B cells (Bregs) are capable of regulating immunity

and inflammation, and AhR can promote the differentiation and

function of Bregs (107).B10 cells are a specific subpopulation of

Bregs, and PGE2 may induce B10 cell expansion through the AhR

signaling pathway. Rosser EC et al. found that butyrate

supplementation activated AhR by increasing levels of the

serotonin-derived metabolite 5-hydoxyindoleacetic acid (5-HIAA),

suppressing rheumatoid arthritis in a Bregs-dependentmanner (27).

In particular, the numbers and differentiation of T cell subsets

have been shown to be affected by cytokines produced by B-cell

subsets. In this way, AhR appears to play a multifaceted regulatory

role in immune cell differentiation, involving both direct and

indirect interactions between immune cells.

The roles of AhR and its ligands in various types of immune

cells are shown in Table 2.
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4 The role of AhR in autoimmunity
and autoimmune diseases

The incidence and prevalence of autoimmune diseases

continue to increase and current studies have shown that

genetic susceptibility accounts for approximately 30% of all

autoimmune diseases, the remaining 70% is due to

environmental factors (112), which are closely related to AhR.

According to the previous section, we have learned that AhR is

essential for immune function, and its role in autoimmunity is

mainly achieved by regulating the differentiation and function of

multiple immune cells, thus affecting autoimmune diseases. In

particular, AhR is essential for maintaining the balance between

Th17 and Treg cells, which plays a major role in autoimmune
TABLE 2 Effect of AhR ligand activation on immune cells.

Immune
cells

Relevant AhR ligand types Post-excitation effect References

Macrophages FICZ Affects the abundance, ubiquitination, and phosphorylation of multiple
proteins in macrophages

(46)

Dendritic
cells

TCDD Promotes differentiation (35)

Kyn Promotes/suppresses differentiation (36)

I3C Suppresses differentiation (108)

TCDD, FICZ, ITE Leads to immunosuppression (38)

Mast cells FICZ Promotes differentiation at low doses, suppresses differentiation at high
doses

(47–49)

Kyn Promotes activation (50)

TCDD Promotes Treg cells differentiation (67)

Natural killer
cells

TCDD Suppresses differentiation (55)

StemReginin-1 Promotes differentiation

Resveratrol, Kyn Enhances cytotoxicity of NK cells (56, 58)

FICZ Inhibits cancer growth (60)

DN T TCDD Influences the differentiation and lineage commitment of DN T (61)

Kyn Stimulates mTORC1 (62)

Th1 TCDD Increases Th1 cytokine production (109)

Shifts the Th1/Th2 equilibrium toward Th1 (72)

Th17 FICZ, PAHs. Kyn Promotes differentiation (74, 81, 82)

TCDD Promotes differentiation in vitro, suppresses differentiation in vivo (38, 51)

CID-1, Kyn, I3C, DIM, Naphthoflavone, Baicalein Suppresses differentiation (76–78, 86)

Curcumin, Naphthoflavone Blocks Th17-induced immune responses (79, 80)

Treg FICZ Promotes/suppresses generation (89, 90)

Resveratrol Interferes differentiation (76)

TCDD, CID-1, Kyn, I3C, DIM, Resveratrol, Alpinetin,
Baicalein, Norisoboldine

Promotes differentiation (35, 74, 76,
85, 86)

PAHs Suppresses differentiation (110)

Th22 – Promotes differentiation –

Tr1 TCDD Promotes differentiation (84)

B cells FICZ Regulates B cell differentiation (111)

TCDD Suppresses differentiation (104)
f

FICZ, 6-formylindolo[3,2-b]carbazole; TCDD, Tetrachlorodibenzo-p-dioxin; Kyn, kynurenine; I3C, indole-3-carbinol; CID-1, Cinnamtannin D1; DIM, diindolylmethane; DN T, CD4-
CD8- double-negative T cell; Th17, T helper cell 17; Tr1, type 1 regulatory T cells; Treg, regulatory T cells; Th22, T helper cell 22.
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diseases (39), and also controls the differentiation and activity of

specific T-cell subsets.

In the studies available todate,mostof the evidence suggest that

AhR activation suppresses inflammatory responses and alleviates

autoimmune diseases. Multiple sclerosis (MS) is a demyelinating

disease of the central nervous system, in which AhR also plays an

active role. In a mouse model of EAE, microbial metabolites limit

the pathogenic activity of microglia and astrocytes and suppress

CNS inflammation through anAhR-mediated pathway (113). AhR

can also be used to monitor disease activity, Rothhammer V et al.

detected that AhR agonists are dynamically regulated during MS,

and different levels of AhR agonists in serum have an important

impact on the progression and prognosis of patients (114).

AhR is also an important regulator of systemic autoimmune

diseases. Type 1 diabetes mellitus(T1D) develops due to severe

destruction of pancreatic b-cells caused by islet cell autoantigen

targeting. AhR activation attenuates the autoimmune response

during the development of T1D (115). The most commonly used

mouse model for T1D is the NOD mouse, which develops

spontaneous disease similar to that of humans (116). Both

Kerkvliet NI and Ehrlich AK et al. demonstrated effective

suppression of T1D-related symptoms after treatment of NOD

micewithAhR ligands (117, 118).Rheumatoid arthritis(RA) affects

approximately1%of thepopulation and is characterizedbychronic

inflammation of the synovium and joint destruction. Its

pathogenesis is unclear, and a variety of factors such as genetics,

infection, smoking and environmental pollution may exacerbate

the symptoms of RA (119). For example, smoking is one of the

major risk factors. Cigarette smoke contains many AhR ligands, 3-

MC, BaP and TCDD upregulate IL-1b mRNA in human-like

synovial cell lines, and the AhR antagonist a-naphthoflavone
inhibits the action of 3-MC (120). AhR has a critical impact on

the development of Th17 cells, IL-6 induces Th17 cells and

contributes to RA development. Nguyen NT et al. showed that

the reductionofTh17cells inamousemodel ofRAbyblocking IL-6

maybepartially dependenton the inhibitionofAhRexpressionand

that AhR antagonists are therefore a promising therapeutic agent

forRA(121). Takingall these evidence together, it couldbe said that

AhR is indispensable for RA development.

The main character of this article, SLE, is also a very

representative systemic autoimmune disease, and more details

about AhR and SLE will be discussed below.

5 Role of AhR in the development of
SLE

5.1 Environmental factors influence the
development of SLE through AhR pathways

5.1.1 Gut microbiota affects SLE through
AhR pathways

In recent years, the gut microbiota has been studied more

intensively and can influence food and drug metabolism, human
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consciousness and behavior, the pregnancy process, and many

other aspects. A growing number of studies have shown multiple

associations of gut microbiota with AhR and autoimmune diseases.

On the one hand, the presence of dysregulated gut

microbiota in many autoimmune diseases is associated with

the activation of AhR signaling (122), and the regulation of gut

flora by AhR is in turn modulated by multiple factors, which

have been demonstrated in autoimmune diseases such as

inflammatory bowel disease (IBD) (122–125). On the other

hand, the gut microbiota itself can metabolize or produce

some AhR ligands that affect the development of autoimmune

responses (126–128).

There is no evidence that the gut microbiota plays an

important role in the development of SLE through AhR

pathways, and Adriana Cuervo’s group first demonstrated the

presence of gut microbial dysbiosis in SLE patients (129), and it

has even been suggested that new biomarkers of SLE may be

found in the human microbiota (130). In a dietary investigation

of SLE patients, the altered abundance of Lactobacillus and

Bifidobacterium in the gut was directly correlated with the

intake of flavonoid-rich apples and oranges. Some of these

strains have immunomodulatory effects and promote Tregs/

Th17 differentiation (31). Tryptophan has been reported to be

catabolized differently in SLE patients (131). Brown J et al.

demonstrated that intestinal flora promoted the production of

tryptophan metabolites, including Kyn, which enhanced T cell

activation in lupus mice (132). Feeding a high tryptophan diet

(including an increase in Kyn) to lupus-prone TC mice resulted

in dysbiosis of their intestinal flora and stimulated autoantibody

production and produced lupus-like disease when their feces

were transferred to germ-free kindred B6 mice (133). In

conclusion, abnormal intestinal flora may contribute to the

disease development in SLE through AhR pathways.

Although both gut microbiota and AhR are closely

associated with the development of SLE, the interaction

between the two does not seem to play a direct role in SLE

development at present.

5.1.2 Ultraviolet affects the development of SLE
through AhR pathways

Ultraviolet(UV) irradiation activates the AhR and promotes

the production of several AhR ligands, such as FIZC (26).

Among the environmental factors affecting the development of

SLE, UVB is an important item. Ultraviolet B (UVB) can

suppress DNA methyltransferase 1 (DNMT1) activity in CD4+

T cells of SLE patients and induce CD4+ T cells methylation-

sensitive gene hypomethylation, thus exacerbating SLE. A study

by Zhouwei Wu et al. confirmed that UVB can suppress SIRT1

expression through activation of AhR and subsequently suppress

CD4+ T cells in SLE patients of DNMT1 activity (134).

Propranolol, a potential lupus-inducing drug, induced stronger

AhR activation in the PBMCs of SLE patients than in the control

group, and signs of AhR activation were also shown in skin
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tissues related to lesion expression. Interestingly, its AhR agonist

activity was increased by UVB exposure (135).

5.1.3 Environmental toxicants affect the
development of SLE through AhR pathways

The sources of environmental toxins are very broad and can

originate from vehicle exhaust, combustion, and industrial

emissions, and the main components include PAHs, dioxins,

and TCDD. A large body of evidence has demonstrated that

environmental pollutants affect the development of SLE.

Experiments by O’Driscoll CA et al. demonstrated that

different doses of air particulate extract (SRM1650b PM,

SRM2975 PM) affect the differentiation of Th17 and Treg in

vitro, thus affecting the autoimmune response, and this

regulatory effect depends on AhR (136). Long-term exposure

to high levels of PCBs increased SLE morbidity and mortality in

women in a long-term follow-up study in a Taiwanese

population (137). However, contradictory results have been

reported for different AhR ligands, Li J et al. demonstrated the

immunosuppressive effect of TCDD on murine SLE (138), while

Amjad Mustafa et al. reported that in lupus-like autoimmune

SNF(1) mice, prenatal TCDD leads to an active postnatal

immune response and exacerbates lupus-like responses (139).

Smoking is an important environmental factor, the main

components of cigarette smoke are nicotine, PAHs, heterocyclic

compounds, heavy metal elements, etc. Numerous studies have

demonstrated that previous and current smoking increases the

risk of SLE and exacerbates disease severity (140, 141). Marie

Saghaeian Jazi et al. investigated the polymorphisms of AhR

pathway genes in smoking-related SLE patients, in their study,

xenobiotic-metabolizing genes CYP1A1 and AhRR are

associated with xenobiotic susceptibility and disease severity in

SLE. There was an association between polymorphisms in AhRR

and CYP1A1 and SLE severity only in smokers, suggesting that

smoking exposure requires significant effects of xenobiotic-

metabolizing genes. Smoking is a definite environmental risk

factor associated with the development of SLE (142), and the

components of smoke include some AhR ligands (such as

dioxins and dioxin-like compounds) that may be able to

trigger the AhR/AhRR/CYP1A1/B1 axis (143).
5.2 AhR influences the development of
SLE by modulating estrogen signaling

In the previous section on AhR signaling pathway we have

described the non-genomic pathway of the AhR, which involves

the ER. AhR and ER are both ligand-activated transcription

factors that function in the nucleus and are involved in many

physiological processes, including effects on endogenous

estrogen metabolism and proteasomal degradation. The

physiological roles of these two nuclear receptors and the

complex crosstalk between their signaling pathways have
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potential implications for the development of certain diseases,

including SLE, which is known to be more prevalent in women

and may be attributed to the effects of estrogen on the immune

system. Estrogen activates the ER and acts through two different

receptors, ERa and ERb. The effects of estrogen in SLE are

complex and are mainly mediated by ERa (144, 145). It has been

demonstrated that women during pregnancy (146) and taking

postmenopausal estrogen therapy are at increased risk of SLE

(147), whereas there is a little effect between oral contraceptives

and the development of SLE (144) and no increase in the risk of

exacerbations in women with stable SLE (148). Notably, high

levels of estrogen cannot be simply assumed to be associated

with SLE. S S Shabanova et al. studied 94 untreated women with

SLE, 25% of whom had reduced estrogen levels (149).

There aremultiple associations between AhR and estrogen; the

AhR ligand TCDD leads to increased expression of CYP, which

accelerates the metabolic degradation of estrogen (150); B Astroff

et al. demonstrated that TCDDmay produce anti-estrogenic effects

by activatingAhR (151).WhereasARNTcan also regulate estrogen

signaling, ARNT can act as an estrogen receptor modulator alone,

and in the presence of E2, ARNT is recruited to the estrogen

response promoter, leading to an increase in ER transcription by an

unknown mechanism (152). In another aspect, Ohtake et al.

reported that the AhR-ARNT complex would interact directly

with the estrogen receptor and bind to the estrogen response

element (ERE) to activate transcription, while the AhR-ARNT

complex also inhibits E2 binding to the ER, so that AhR also

mediates some of the adverse estrogen-related effects (153).

Meanwhile, AhR can function as an E3 ubiquitin ligase and

promote ER degradation (154) (see Figure 3).

Based on all the above evidence, it is reasonable to speculate

that AhR can influence the occurrence and development of

human SLE by regulating estrogen signaling.
5.3 AhR affects immune cells in SLE

Many immune cells are involved in AhR-induced SLE

pathogenesis. According to the previous section, Th17 and Treg

cells are key players in the immune response. The homeostasis of

the Th17/Treg cell is critical to the pathogenesis of SLE (155), it has

been shown that the proportion of Th17 cells is elevated and Treg

cells are reduced in SLE patients (156, 157). In a case-control study,

HaitaoYu et al. examined the relationshipbetween the ratio ofAhR

inTh17 cells and the ratio of AhR inTreg cells and SLE skin lesions

in SLE patients (158). In the analysis of PBMCs from SLE patients,

AhR expression was more than three-fold higher than that in

healthy controls, andpatients in thehighAhRratio grouphadmore

extensive lesions andmoredecreasedC3 levels compared to the low

AhR ratio group.

Fcg receptor IIb (FcgRIIb)-deficient (FcgRIIb-/-) mice can

develop lupus-like disease and some environmental contaminants

can activate AhR and cause amplify inflammatory responses (159).
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Kanyarat Udompornpitak et al (160) used the AhR agonist 1,4-

chrysenequinone (1,4-CQ) to produce a strong response in

macrophages of FcgRIIb-/- mice compared to macrophages of

wild-type mice, and these activations led to a more severe

inflammatory response, causing FcgRIIb-/- mice to develop lupus-

like features (161).
5.4 AhR pathway affects SLE
development in a ligand-
dependent manner

As mentioned previously, a variety of environmental

toxicants are ligands for the aryl hydrocarbon receptor and

exposure to these environmental toxicants can exacerbate SLE.

Other exogenous ligands, such as quercetin, curcumin and

resveratrol as dietary components can bind to AhR and
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improve SLE symptoms (162–164). Leflunomide as an agonist

of AhR suppresses the immune response and treats a variety of

diseases, including SLE (165, 166).

As one of the endogenous ligands, I3C has been shown to be a

beneficial factor in regulating the inflammatory response and

cytokine expression in SLE. Saeed Mohammadi et al. showed

(167) that I3C-mediated activation of AhR significantly

downregulated the overexpression of inflammatory cytokines and

also had an immunomodulatory effect on macrophages in SLE

patients. Kyn, as an established endogenous ligand of AhR, can

exert anti-inflammatory and immunomodulatory effects through

activation of AhR (168) and mTOR (62), and we have previously

mentioned that Kyn has a definite effect on SLE. In a quantitative

metabolomic analysis of peripheral blood lymphocytes (PBL) from

SLE patients, Andras Perl et al. found that Kynwas one of themost

increased metabolites (62). Treatment with N-acetylcysteine

(NAC) blocked mTOR (which is extensively linked with AhR,

details in5.5) inT lymphocytes andsignificantly reducedKyn levels

in patients, suggesting a therapeutic role in SLE (169).

It is important to note that we cannot simply attribute the

effect of ligand activation of AhR on SLE to the agonist/

antagonist activity of the ligand. For example, while resveratrol

is an AhR antagonist and leflunomide is an AhR agonist, they

both have a therapeutic effect on SLE. Just as two different AhR

agonists, TCDD and FICZ, have opposite effects on EAE

development (76). Since each ligand may have different effects

on the disease, it is important to determine the detailed

mechanisms by which each ligand affects AhR signaling.
5.5 AhR influences the development of
SLE through multiple signaling pathways

In the previous description, wementioned themTOR signaling

pathway, which is closely related to the pathogenesis of SLE (170).

Moreover, the AhR and mTOR pathways have been extensively

connected and AhR activation can stimulate mTOR pathway

activation (171). Fangyi Shi et al. found that AhR enhanced

activation of the PI3K/Akt/mTOR signaling pathway, thereby

promoting cell survival (172). According to George Anderson et

al (171), the link between mTOR and AhR activation is also widely

present via metabolic pathways in the tumor microenvironment,

the backbone ofwhich is built up by oxidative phosphorylation and

glycolysis regulated through the acetyl coenzyme A andmelatonin

pathways. The AhR can attenuate acetyl-CoA levels, with

consequences for mTORC1 induction of amino acid transporter

(LAT1) and glycolysis. Protein phosphatase 2A(PP2A) is

recognised as a regulator of the tumour microenvironment (173),

which can inhibit mTORC1-induced LAT1 and glycolysis, and

there is a negative crosstalk between PP2A and mTORC1 (174).

PP2A is also a regulator of the AhR (175). The involvement of

mTORactivation in SLEwasfirstmentionedbyFernandezDRet al

(176). Furthermore, mTOR is involved in the proliferation
FIGURE 3

AhR regulates estrogen signaling. The AhR-ARNT complex would
interact directly with the ER and bind to the ERE to activate
transcription, while the AhR-ARNT complex also inhibits E2 binding to
the ER. At the same time, AhR can function as an E3 ubiquitin ligase to
promote the degradation of the sex hormone receptor (CUL4BAhR is
a complex that consists of AhR, ARNT, CUL4B, TBL3, DDB1 and Rbx1,
the AhR plays a role as an adapter for specific substrates).AhR, Aryl
hydrocarbon receptor; ARNT, Aryl hydrocarbon receptor nuclear
transport protein; XRE, xenobiotic response element; ERE, estrogen
response element; CYP, Cytochrome P450; E2, estradiol; DDB1,
damage-specific DNA binding protein 1; TBL3, transducin beta-like
protein 3; Rbx1, ring-box 1.
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and differentiation of immune cells and the production of

inflammatory cytokines in SLE, and the AhR signaling pathway

may be involved. The effect of mTOR blockade on cytokine

production in SLE patients has been proved (177, 178).

Tryptophan and its metabolites increase T cell metabolism and

mTOR activation, and Kyn promotes IFN-g production, all of

which are associated with the development of lupus in mice (132).

Overall, the pro-inflammatory effects of AhR stimulation by Kyn

and the activation of mTOR by Kyn play an important role in the

pathogenesis of SLE, there is likely to be a mutually reinforcing

relationship between the two. Formore links betweenmTOR,AhR

and SLE please see Figure 4.

Kyn itself has a powerful pro-inflammatory effect and can

induce SLE development by activating AhR. Moreover, Kyn

activation of mTOR is also involved in the development of SLE, a

process accompanied by production of cytokines such as IL-4,

IL-17, IFN-g, and increased T-cell metabolism. Treatment with

NAC inhibits mTOR activation and significantly reduces Kyn

levels in SLE patients.

Programmed death (PD)-1 signaling pathway contributes to

the development of SLE. According to a recent report by Colleen S.

Curran et al. (181), the PD-1 signaling cascade is regulated by the

Toll-like receptor (TLR) pathway and the type I interferon (IFN)

pathway by activating NF-kB and/or STAT1. Tyrosine kinase

receptors (TAM) are the main regulators of these signals. In

contrast, dysregulated cellular signaling in SLE can identify

pathways involved in the control of PD-1 responses. The other
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twopathwaysmentioned before are also twokey pathways affecting

SLE pathogenesis (182, 183). FICZ, Kyn, and other AhR ligands

increase or inhibit PD-1 andPD-L1 expressionon cell surfaces, and

as previously described, AhR is also expressed in various cells (such

as Th17, Treg) that exhibit crosstalk with NF-kB and STAT1.

Also associated with SLE is the germinal center kinase-like

kinase (GLK) pathway, which produces the cytokine IL-17A.

The frequency of T cell overexpression of GLK shows a positive

correlation with disease severity in SLE patients. Chuang HC

and other investigators have found that in animal experiments,

GLK signaling stimulates IL-17A production in mice Th17 cells

by inducing the formation of the AhR-retinoic-acid-receptor-

related orphan nuclear receptor gt (ROR-gt) complex, This

process is highly selective and promotes autoimmunity (184).

Their recent findings suggest (185) that the GLK-induced AhR-

ROR-gt complex in Th17 may serve as a marker of IL-17A-

mediated autoimmune disease and could be a new therapeutic

target for human SLE and several diseases.
6 Summary

AhR is known as an environmental receptor, it’s a

cytoplasmic receptor and transcription factor that is activated

by binding to the corresponding ligands, and it transmits

relevant information by binding to DNA, thus activating the

transcription of various genes. There are many other interesting
FIGURE 4

mTOR, an important molecule involved in the development of SLE by AhR. In this figure, we only show the possible association between the mTOR
and AhR pathways and their effects on SLE. AhR can reduce acetyl coenzyme A levels and thus have an effect onmTORC1-induced glycolysis.
mTORC1-induced glycolysis is also inhibited by PP2A, which has a negative crosstalk with mTORC1 and is a regulator of AhR. AMP-activated protein
kinase (AMPK) is regulated by ATP/ADP or AMP/ATP ratio in the cell. Activated AMPK inhibits the activity of mTORC1 (179). AMPK is also regulated by
AhR-driven degradation of Synphilin-1, which can reduce AMPK production (180). So PP2A and AMPKmay be important molecules linking mTOR to
AhR. PI3K/Akt/mTOR pathway is one of the upstream pathways regulating mTOR, and AhR enhances the activation of PI3K/Akt/mTOR signaling
pathway, thus promoting cell survival. Kyn itself has a powerful pro-inflammatory effect and can induce SLE development by activating AhR. Moreover,
Kyn activation of mTOR is also involved in the development of SLE, a process accompanied by production of cytokines such as IL-4, IL-17, IFN-g, and
increased T-cell metabolism. Treatment with NAC inhibits mTOR activation and significantly reduces Kyn levels in SLE patients. PP2A, protein
phosphatase 2A; AMPK, AMP-activated protein kinase; PI3K, phosphatidylinositol-3-kinase; Akt, autologous tumor killing; NAC, N-acetylcysteine.
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receptors similar to AhR in the human body, such as the retinoic

acid-inducible gene I (RIG-I)-like receptor (RLR) and NOD-like

receptor (NLR). RLR is a key sensor of viral infection that

mediates transcriptional induction of type I interferons and

other genes that co-establish antiviral host responses, both

viral and host-derived RNAs can activate RLR (186). NLR is

an intracellular innate immune sensor that sense intracellular

microbial and non-microbial danger signals and form large

cytoplasmic complexes called inflammasomes that link the

sensing of microbial products and metabolic stress to the

proteolytic activation of the proinflammatory cytokines IL-

1beta and IL-18 (187). However, AhR differs from them in

that it possesses ligands of diverse origin and is associated with

much more different internal and external environmental

factors, so AhR may have a broader role. It is necessary to

study such receptors with sensor roles because they are often an

important part of multiple pathophysiological responses. For

this review, we focused on the role of AhR in the development of

autoimmune diseases, mainly SLE, in order to provide clues for

more effective and targeted prevention and treatment methods.

AhR contributes tomany autoimmune diseases, and this review

focuses on outlining the role of AhR in the development of different

subtypes of immune cells and SLE. AhR ligands are mainly of

exogenous and endogenous origin, but their effects are complex,

with ligand-, dose- and environment-specific responses. For

example, small doses of FICZ promote mast cell differentiation

while large doses suppress it; some ligands have different effects in

different environments, such as TCDD, which promotes Th17 cell
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differentiation in vitro but suppresses it in vivo. Moreover, what is

clear aboutAhR ligands and autoimmunity is thatmostAhR ligands

cause immunosuppression and improve autoimmunedisease,while

others exacerbate disease (especially environmental toxins, but

which have both immunosuppressive and stimulatory effects).

Different AhR ligands alter the balance between regulatory T cells

and the outcomeof autoimmune diseases. The specificmechanisms

responsible for these complex, even contradictory effects may be as

follows: First, the route of exposure and the degree and duration of

AhR activation contribute to altering the effects of AhR ligands on

autoimmunity; second, the lower affinity of AhR expressed in

humans compared to animal models prevents the production of

sufficient amounts of pro-inflammatory cytokines in vivo; and

finally, AhR as a member of multiple signaling can be regulated by

many different genes, substances, or environments, and subtle

differences in cascade effects may make AhR act differently.

From the results of current studies on AhR and SLE, some

experiments havedemonstrated thatAhRactivationcan exacerbate

the development of SLE, such as the action of UV, environmental

toxins, estrogen, etc. with AhR. However, there is still much

evidence that ligand activation of AhR improves SLE symptoms,

such as I3C and resveratrol, which suggests thatAhR is a promising

therapeutic target for autoimmune diseases. However, there are

some interesting results, such as evidence that AhR activation can

have different effects on lupus in mice and humans: Rahul Shinde

et al. reported that blocking AhR activity in mice enhanced

autoimmune responses and that activation of AhR improved

lupus-like disease (45). However, increased AhR activity was
FIGURE 5

Activation of AhR by multiple factors promotes the occurrence and development of human SLE. On the one hand, factors such as ultraviolet,
environmental toxins, and gut microbiota will mostly affect the binding of AhR to ligands. AhR regulates the pathophysiological functions of
multiple immune cells in a ligand-specific manner, which in turn affects SLE. Meanwhile, many signaling pathways that regulate disease (e.g.,
mTOR, PD-1, NF-kB, STAT, TGF-b1, GLK signaling pathway, etc.) also involve activation of AhR, which promotes the development of SLE with
the involvement of multiple cytokines. On the other hand, immune cells also secrete various pro-inflammatory substances and cytokines that
influence the activation of certain signaling pathways. In conclusion, multiple pathways together contribute to the development of SLE through
AhR. mTOR, mechanistic target of rapamycin, IFN, interferon, STAT, signal transducer and activator of transcription, TGF, transforming growth
factor, GLK, germinal center kinase-like kinase, SLE, systemic lupus erythematosus.
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found inhumanSLEpatients (188, 189).Although the authors have

not yet elucidated the reason,we speculate that this also seems to be

related to the different affinities of AhR expressed in humans and

mice as mentioned previously.

A variety of factors such as gut microbiota, environmental

toxins (mainly PAHs, dioxins), and genetic susceptibility can

influence SLE development through the AhR pathway. In

addition to being involved in regulation in a ligand-specific

manner, AhR itself is associated with a variety of intercellular

signaling, and these factors together influence the development

of SLE (Figure 5 summarizes the effect of multiple factors on the

occurrence and development of SLE after activation of AhR).

Therefore, in-depth research of the mechanisms of AhR in the

development of SLE will hopefully inspire new ideas and targets

for the prevention or treatment of SLE. However, we still face

many problems: firstly, a further epidemiological investigation is

needed to verify the relationship between AhR ligands and SLE;

secondly, the number of studies related to AhR and SLE is small

and the studies don't far enough, many mechanisms are still

unexplored. At present, various diagnostic tools for SLE are

developing rapidly, such as the application of bioinformatics,

proteomics, biomechanics and functional analysis. Although the

road to a brighter future is bumpy and winding, and it will take a

long time to figure out the way forward, we believe that more

AhR-related researches will also shine in SLE in the near future.
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