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Abstract
: The topological analysis of networks extracted from differentBackground

types of “omics” data is a useful strategy for characterizing biologically
meaningful properties of the complex systems underlying these networks. In
particular, the biological significance of highly connected genes in diverse
molecular networks has been previously determined using data from several
model organisms and phenotypes. Despite such insights, the predictive
potential of candidate hubs in gene co-expression networks in the specific
context of cancer-related drug experiments remains to be deeply investigated.
The examination of such associations may offer opportunities for the accurate
prediction of anticancer drug responses. 

 Here, we address this problem by: a) analyzing a co-expressionMethods:
network obtained from thousands of cancer cell lines, b) detecting significant
network hubs, and c) assessing their capacity to predict drug sensitivity using
data from thousands of drug experiments. We investigated the prediction
capability of those genes using a multiple linear regression model, independent
datasets, comparisons with other models and our own   experiments.in vitro

 These analyses led to the identification of 47 hub genes, which areResults:
implicated in a diverse range of cancer-relevant processes and pathways.
Overall, encouraging agreements between predicted and observed drug
sensitivities were observed in public datasets, as well as in our in vitro
validations for four glioblastoma cell lines and four drugs. To facilitate further
research, we share our hub-based drug sensitivity prediction model as an
online tool.

: Our research shows that co-expression network hubs areConclusions
biologically interesting and exhibit potential for predicting drug responses in

. These findings motivate further investigations about the relevance andvitro
application of our unbiased discovery approach in pre-clinical,
translationally-oriented research.
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Introduction
The analysis of networks extracted from different types of 
“omics” data is a useful strategy to enable the characterization 
and prediction of meaningful properties of the underlying com-
plex biological systems1–3. Measures of the centrality of genes 
or proteins in such networks have been shown to be indicators 
of biological function4–7. Specifically, the biological significance  
of highly connected genes, i.e., hubs, in different molecular asso-
ciation networks has been determined using data from several 
model organisms, molecular interaction types, phenotypes and 
pre-clinical research applications5,8–10. Other research, however, 
has shown that hub genes in (patient-derived) gene co-expression 
networks may not have sufficient prognostic value in a few 
selected classes of cancer11. Despite such insights, the predictive 
potential of candidate hubs in gene co-expression networks in the  
specific context of cancer-related drug experiments remains to 

be thoroughly investigated. An examination of such associations 
may offer novel opportunities for the accurate prediction and  
understanding of anticancer drug responses.

Addressing the above-mentioned challenge is now possible 
thanks to the availability of large collections of data originating 
from thousands of drug experiments in cancer cell lines. Over 
the past few years, the investigation of cell line-based computa-
tional models for anti-cancer drug sensitivity prediction has been 
accelerated by publicly-funded efforts of large research consor-
tia. In particular, the Cancer Cell Line Encyclopedia (CCLE)12  
and the Genomics of Drug Sensitivity in Cancer (GDSC)13,14 
projects represented significant steps forward for the oncology 
and pharmacogenomics research communities. These projects 
have generated genomic and transcriptomic data from thousands 
of (untreated) cancer cell lines and their accompanying treat-
ment sensitivity measurements for hundreds of experimental 
and clinically-approved drugs. Using these datasets, computa-
tional models for predicting anticancer drug sensitivity based on 
the analysis of transcriptomic and other types of “omics” data 
have shown to be useful in the selection and prioritization of  
candidate compounds for pre-clinical research15–18.

Here, we investigate the relationship between significant  
co-expression network hubs and drug responses (Figure 1). We 

Figure 1. Outline of the research steps, approaches and outcomes of our research.
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identified 47 genes representing “hubs” in a pan-cancer transcrip-
tomic network extracted from more than 1000 (untreated) cell  
lines. These hubs are substantially implicated in a diversity of 
cancer-related biological processes, and their individual expres-
sions (in the untreated cell lines) are correlated with drug  
sensitivity. Next, we validated such findings using an inde-
pendent dataset that also comprises thousands of cell line-drug 
experiments. We observed that a relatively simple model, based 
on multiple linear regression, can make predictions that are  
concordant with the actual drug sensitivity values observed in vitro. 
Moreover, although we do not claim that our model clearly  
outperforms more complex techniques, its prediction perform-
ance is comparable to, and in some cases improves on, previously  
published models. This is particularly interesting because,  
unlike prior work, we followed an unbiased discovery  
approach, i.e.: we did not seek, up-front, a specific set of genes to 
optimize such a prediction task. 

Motivated by these findings, we used our 47 hub-based model 
to predict sensitivity scores for four glioblastoma (GBM) cell 
lines, including three (stem-like) cell lines that were not included 
in the discovery and validation datasets, against 24 drugs. 
We selected the top three drugs predicted as highly effective  
together with a drug predicted as lowly effective (negative  
control), and performed in vitro tests on the 4 cell lines. The  
sensitivity scores predicted by the hub genes tend to be  
concordant with the observed in vitro responses. Lastly, to  
facilitate future research, we offer a Web-based interface that  
allows users to predict drug sensitivity scores for their own  
samples and expression data with our 47-hubs-based model.

Methods
Identification of co-expression network hubs
The published pre-processed CCLE (microarray) gene expres-
sion and drug sensitivity datasets were obtained from the 
CCLE website. In the gene expression dataset, we focused on 
genes with symbols, calculated their standard deviation (SD)  
across all samples (1037 untreated cell lines) and ranked them 
based on their SD. For further analyses, we selected the most  
variable genes: 177 genes with SD values above the 99th  
percentile of the SD value distribution. The 99th percentile was  
chosen as a stringent data filtering threshold that allowed us 
to focus on the most highly variable genes in the dataset. This  
threshold also resulted in a number of genes that was  
suitable for both computational analysis and post-processing 
expert interpretations. We computed the gene-gene (Pearson)  
correlation coefficients between all the 177 genes and merged  
them into a single gene expression correlation network. We 
applied WiPer19 to this fully-connected weighted network to 
detect highly connected nodes (hub genes). This method was 
selected because: a) it was developed in our team; b) unlike 
other methods, it offers strict statistical support, i.e., corrected  
P-values, for each weighted degree value estimated in the  
network; c) we, and others elsewhere, have previously shown 
its usefulness for making biologically-relevant predictions20–22.  
For each network node, WiPer computes the weighted degree 
and a corresponding P-value to assess the significance of the 
observed values, and adjusts it for multiple testing. Genes  

exhibiting (Bonferroni-adjusted) P<0.05 (100K random network 
samples for WiPer permutation test) were considered hubs (47 
genes) (Dataset 1)23. Drug sensitivity information was not used  
to select hubs. The resulting 47 genes were examined with differ-
ent Gene Ontology (GO) and biological pathway analysis tools 
(below). For each hub gene, we estimated the correlation of its 
expression profile (across all samples) with the activity area (AA) 
values available from all sample-drug combinations. The CCLE 
used the AA as indicator of drug sensitivity. It has been shown that 
the AA is: a) an accurate estimator of drug efficacy and potency, 
and b) negatively correlated with the half-maximal inhibitory 
concentration (IC50), which is an alternative measure of drug  
sensitivity12. We compared hubs and non-hubs on the basis of  
such individual expression-sensitivity correlations.

A drug sensitivity prediction model based on network hubs
We represented each CCLE sample (cell line-drug combina-
tion) with the expression values of the 47 hub genes and their 
corresponding AA values. The full list of CCLE drugs and their 
annotations are available in the Supplementary Information  
of 12. We focused on samples with complete expression and AA 
data. The resulting set of 10,981 (cell line-treatment) samples  
was used for training and testing regression models. The  
dataset was standardized by re-scaling each gene so that each  
gene has mean and standard deviation of 0 and 1 respectively. 
For each model, we implemented 10-fold cross-validation (CV)  
for separating training from testing and for assessing prediction  
performance. We also used leave-one-out CV (LOOCV) and 
similar prediction performance results were obtained. Diverse 
regression techniques with different levels of complexity were 
investigated. We focused on a multiple linear regression model 
with Ridge regularization (Ridge parameter = 1E-08) because  
its performance (regression errors) was better than or compa-
rable to those obtained with other techniques, such as support 
vector machines and k-nearest neighbors, and because of its 
interpretability in comparison to relatively more complex mod-
els. Moreover, we applied ridge regression to achieve a balance 
between model simplicity, interpretability and prediction power.  
As in the case of other regularization techniques, by intro-
ducing such a ridge penalty, we aimed to reduce the risk of  
overfitting. Although lasso or elastic net regularizations 
are also suitable approaches, they would have required the  
estimation of additional learning parameters and the removal 
of genes, which were deemed biologically interesting before 
model training. Moreover, ridge regression allows us to address  
the problem of multiple collinearity. This is particularly  
relevant to our research problem as our genes converge to  
different cancer-related pathways and their expression correlations 
offer complementary predictive information.

The accuracy of model predictions was assessed by measuring 
their (Pearson, Spearman and Kendall) correlations with the 
observed values in the CCLE and the concordance index (CI). The 
CI approximates, for a random pair of samples, the probability 
of correctly predicting which sample is more (or less) sensitiv-
ity than the other24. A CI equal to 0.5 indicates that the model’s 
performance is comparable to that from a random predictor,  
while an index equal to 1 represents the perfect predictor.
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Model evaluations with independent data
Raw expression data were obtained from the ArrayExpress data-
base (accession number E-MTAB-3610) and drug sensitivity 
(natural logarithm of the IC50 in μM, LNIC50) were down-
loaded from GDSC database (release 5.0). We normalized raw 
expression data with the RMA function of the R oligo v.1.42.0  
package25. Then we averaged the resulting log2 probe-set  
intensities to estimate the expression of each gene. Associations 
between probe-sets and gene symbols were obtained through 
the hgu219.db v. 3.2.3 annotation package26. For each cell  
line-drug experiment available (sample), we retrieved the  
expression data for the 47 genes used as inputs to our predic-
tion model and retrieved the corresponding drug sensitivity 
values. We focused on the 16 drugs found in both this and the  
CCLE dataset. This resulted in a dataset consisting of 9,984  
samples, each one represented by 47 gene expression values 
and one LNIC50 value. We standardized expression data as in 
the case of the CCLE dataset, reformatted the file and input 
it to the CCLE-derived prediction model (further information 
below). For each sample in the dataset, the model predicted a 
drug sensitivity score (approximation of AA). We compared  
predicted vs. observed values using the indicators applied to 
the CCLE dataset analysis. We adapted the CI to account for 
the fact that AA and LNIC50 are expected to be inversely  
correlated, i.e., for a given sample, concordance is achieved 
when a high (predicted) AA value corresponds to a low  
(observed) LNIC50 value, and vice versa.

Access to the CCLE and GDSC datasets, including extensive  
documentation, are provided in their respective original publica-
tions and data websites.

For CCLE RNA-Seq analyses, the RPKM data were downloaded 
from the CCLE website. Ensembl gene IDs were annotated by 
gene symbols (GRCh37.69), which were used as unique identifiers.  
We intersected features (rows) and experiments (columns)  
of microarray and RNA-Seq datasets and thus obtained two 
expression matrices of the same size with 16,744 rows and  
970 columns. RPKM values of RNA-Seq dataset were addi-
tionally log2-transformed: expression = log2(1+RPKM). Next, 
Spearman correlation was calculated between gene expression 
profiles corresponding to the same samples. Drug sensitivity pre-
diction model was trained and tested as done with the microarray  
data. We investigated gene length as a potential source of bias 
in our analysis as done in 27. As such, we used the maximal  
transcript length of a gene based on the GRCh37.69 annotation.

GBM cell lines and expression data for in vitro validations
U87 cells, initially obtained from the ATCC (Rockville, USA), 
were kindly provided by Prof. Rolf Bjerkvig (Department of 
Biomedicine, University of Bergen, Norway), and were cultured 
as monolayers in DMEM containing 10% FBS, 2 mM  
L-Glutamine and 100 U/ml Pen-Strep (Lonza). GBM stem-like  
cultures (NCH421k, NCH601 and NCH644) were kindly  
provided by Christel Herold-Mende (University of Heidelberg, 
Germany) and were cultured as 3D non-adherent spheres as  
previously described28,29.

We measured the (baseline) gene expression of four GBM cell 
lines using GeneChip Human Gene 1.0 ST Arrays (6 U87,  
6 NCH421k, 3 NCH644 and 3 NCH601 biological replicates), as  
reported29. For our model’s 47 genes, we also validated gene 
expression measurements using quantitative PCR (qPCR) for 
U87, NCH421k and NCH644 cell lines (each one in triplicate). 
To this aim, RNA was extracted from 1x106 cells using  
TRI Reagent® (Sigma-Aldrich). RNA isolated in the aqueous 
phase with a Phase lock gel-Heavy (5 Prime) was precipitated 
with 100% isopropanol and purified using RNeasy® Mini kit 
combined with an on-column DNase treatment (Qiagen). For  
the qPCR, RNA was reverse-transcribed into cDNA using  
Superscript III™ (Invitrogen) following manufacturer’s instruc-
tions. qPCR was performed in 96-well plates using SYBR®  
Green Master Mix (Bio-Rad) and CFX-96 thermal cycler  
(Bio-Rad). Normalized gene expression levels were calcu-
lated using the CFX manager 3.1 software (Bio-Rad) via the 
delta-delta Cq method with “Hspcb, Rps13, 18sRNA” as refer-
ence genes and taking into account the calculated amplification  
efficiency for each primers pair. We provide a MIQE-compliance  
checklist table and details of procedures in Dataset 223.

Drug sensitivity predictions and in vitro validation on GBM 
cell lines
The gene expression dataset was standardized as above. Each 
sample, represented by a 47-gene expression profile, was input to 
the prediction model and a drug sensitivity value was predicted 
for each one of them (18 samples in total), for each of the  
24 drugs included in the model. Predicted values were compared 
between them to determine their relative differences in terms 
of cell lines and drugs. Next, these predictions were compared 
to the in vitro sensitivity values that were obtained as follows. 
We tested four drugs: paclitaxel (Sigma-Aldrich), panobinostat,  
17-AAG and erlotinib (all Selleck Chemicals) independently on 
the selected four GBM cell lines with eight drug concentrations 
(details below and in Dataset 3)23. For each cell line and dose, we 
performed treatment experiments in triplicate (i.e., 3 treated bio-
logical replicates / dose). As a measurement of drug sensitivity, 
WST-1 (Sigma-Aldrich) cell viability assays were implemented.  
U87, NCH421k, NCH644 and NCH601 cell lines were seeded 
into 96-well plates at densities of 1,500, 5000, 4000 and 6000 
cells per well, in appropriate culture medium29. Cells were 
incubated, 24h hours after seeding, with the 8 different drug 
concentrations ranging from 10 μM to 6.1×10-4 μM, with a  
final volume of DMSO not exceeding 0.1% and each condition 
was tested with six technical replicates. After a 72-h incubation, 
WST-1 reagent was added in medium to a final concentration 
of 10%. The adherent cell line (U87) was incubated at 37°C  
for 2 hours and 3D sphere stem-like cell lines (NCH421k,  
NCH644 and NCH601) were incubated at 37°C for 6–8 h.  
Absorbance was measured against a background control at 
450 nm on a FLUOstar OPTIMA Microplate Reader (BMG  
LABTECH). Using the normalized viability measurements, we 
generated drug dose-response curves and estimated IC50 values 
(μM) for each sample-drug combination. The dose-response curves 
were fitted with a four-parameter logistic regression model, whose 
parameters were calculated using GraphPad Prism 7 (GraphPad).
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Comparisons with other prediction models
We performed multiple comparisons of our hub-based prediction 
model versus other approaches, including published research. To 
compare our results with those reported previously30, we imple-
mented an elastic net model. The elastic net model selected has 
λ and α parameters equal to 0.00105 and 0.95, respectively. 
The λ value was estimated using the cv.glmnet function  
(λ value reporting the lowest MSE in a 10-fold cross-validation) 
in R. The models were trained and tested using 5-fold cross- 
validation, and were compared on the basis of the CI between 
the predicted and observed activity areas. To compare our results 
with those reported previously31, we implemented a SVM using 
the R package e1071 v. 1.6.8 with default settings excepted 
for gamma. For this parameter, we used the optimal values  
determined by Dong et al. for each drug31.

LASSO models that optimize drug sensitivity estimation were 
also investigated. Such models were generated in R using 
the glmnet v. 2.0.16 package (α = 1). We built models and  
evaluated prediction performance using a nested CV pro-
cedure, and CIs between predicted and observed sensitivity  
values were reported. We ensured that each of the 10-folds had 
the same proportion and distribution of sensitivity values for each 
drug. Within each CV iteration, the cv.glmnet function was used 
to determine the optimal lambda (using 10-fold CV and based 
on the minimum RMSE). For model applied to our 47 genes:  
Optimal λ mean value = 0.0004 (range: [0.00037, 0.0007]).

Software and web-based tool
We used the R statistical environment for data analysis and visu-
alization (www.r-project.org), packages: ggplot2 v.2.2.1, pheatmap 
v. 1.0.10, ComplexHeatmap v.1.17.1 and SNFtool v.2.3.032. 
Concordance indexes24 were calculated based on rescaled  
Kendall rank correlation coefficients, which were also used to  
estimate confidence intervals (by Fisher’s transformation). For  
network analyses, we applied Cytoscape for visualization33, 
MINE for similarity exploration34 and WiPer for network hub  
identification19. REViGO35 and g:Profiler36 were applied for  
biological process and pathway enrichment analyses. The Weka  
workbench was used for building and testing regression  
models37,38, and GraphPad Prism 7 for analyzing drug response 
curves. A two-tailed, Student’s t-Test was used to estimate  
statistical differences between correlation values from hubs and 
non-hub genes. We provide researchers with a Web-based appli-
cation to enable them to predict anticancer drug sensitivity  
using their own (47-gene) transcriptomic data (Results). The tool 
is based on the R Shiny package. Although this package offers 
useful functionality for generating an interactive user interface, 
we customized available code using the R Shinyjs package. 
Users can input pre-processed expression datasets. Alternatively,  
our application can also implement z-score rescaling of the 
input data. Figures containing the prediction results can be 
downloaded and stored as either .png or .jpeg files. Results are  
also shown as tables with sample-specific predictions (in rows) 
with their corresponding drugs (in columns), and may be stored  
as either .csv or .tsv files.

Results
Hubs in a pan-cancer transcriptomic network display drug 
sensitivity predictive potential
Our hypothesis was that genes highly connected within co- 
expression networks, i.e., hubs, may be reflective of molecular  
activity relevant to drug response, across biological processes 
and tissue sites. To test this hypothesis, we analyzed the CCLE  
gene expression dataset, which was derived from 1037 
(untreated) cell lines representing different cancer types from 
18 tissue sites. To reduce network complexity while aiming at  
preserving potentially relevant information across all samples, 
we selected genes with highly variable expression pattern  
across cell lines (i.e., 177 genes with standard deviation of 
expression values across cell lines located above the 99th  
percentile). Using the pan-cancer expression profiles from these 
genes, we calculated all the between-gene (Pearson) correlation 
values and merged them into a fully-connected weighted net-
work (Figure 2A), which included 177 nodes and more than 15K  
edges, i.e., correlations (Dataset 1)23.

We identified network hubs by extracting those genes with sta-
tistically detectable connectivity scores (i.e., weighted degree 
values) using WiPer19. This resulted in 47 hubs (WiPer-adjusted 
P < 0.05, Supplementary Data S1), one of which (ANAX1)  
is illustrated in Figure 2A together with an example of a non-hub 
node (HCLS1). A hub is distinguished by the weighted degree, 
i.e., sum of the edge weights linked to the gene, together with 
its associated statistical significance (Methods). In Figure 2A,  
this is in part illustrated by the intensity of the edges (i.e.,  
HCLS1’s edges are lighter than ANAX1’s edges). The 47 hub  
genes are significantly implicated in a wide diversity of  
biological processes and pathways of relevance to cancer progres-
sion and therapeutic response. They include cell proliferation, 
death, migration, adhesion, angiogenesis, kinase signaling and the 
extracellular matrix (Figure 2B and Supplementary Figure S1 in 
Dataset 3)23.

We also investigated the connections between the enriched bio-
logical processes (Figure 2B; GO terms) and known drug targets. 
Genes associated with a particular GO term were matched to 
known drug targets annotated in the DGIdb database39. We found  
that within each biological process term, different genes are  
known targets of different drugs, though the majority of them 
are not known to be targets for the drugs investigated here  
(Supplementary Figure S2 in in Dataset 3)23. We did not find 
validated evidence that our hub list contains known drug  
targets. Using DGIdb, we found potential associations between 
4 hubs and 2 drugs: DKK1 (with Irinotecan), MYB, SPARC  
and TUBB6 (the latter three with paclitaxel). However, these 
associations cannot be interpreted as drug-target interactions and  
require further investigation.

A GO enrichment analysis of all the genes in the network 
reported a larger number of statistically enriched GO terms in 
comparison to the analysis focused on the 47 hubs (biological  
processes: 196 vs. 74 terms). This may be explained by the 
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increase in the number of genes analyzed. Both gene sets shared 
in common several significantly enriched processes, including: 
cell adhesion, proliferation and death. However, there are  
biological processes that were statistically overrepresented in the 
47 hubs exclusively, including endocytosis and several processes 
specialized in responses to different biological stimuli. These 
results underscore the significant implication of the 47 hubs in a 
wide range of cancer-relevant biological processes.

Next, we analyzed the drug sensitivity data (activity areas 
(AA)) available for these cell lines (11670 cell line-drug experi-
ments) in the CCLE. The AA, which is inversely correlated with 
the IC50, was defined by the CCLE to approximate the efficacy 
and potency of a drug simultaneously12. We stress that such 

data were not considered during the network generation and  
analysis steps outlined above. For each gene in the network, we 
calculated the correlation between gene expression and AA 
across all available (cell line-drug) data, and observed that:  
a) the expression of hub genes tend to be anti-correlated with 
drug sensitivity, and b) although such correlations are weak, 
they are stronger than in the case of non-hub genes (Figure 2C, 
P < 0.0001, two-tailed, Student’s t-Test). The 47 hub genes did 
not include previously reported markers of drug sensitivity, e.g., 
ALK, BRAF, ERBB2, EGFR, HGF, NQO1, MDM2, MET and  
VEGFRs12,40. A possible explanation is that our discovery strategy 
was not oriented or biased to specific drugs or target families. 
Moreover, different genes may be associated with a specific drug 
response without actually representing known targets for the drug.

Figure 2. Hubs in a pan-cancer transcriptomic network display drug sensitivity predictive potential. (A) Snapshot of a (fully connected) 
weighted gene correlation network from untreated cell lines. Nodes and edges representing genes and their correlations respectively. 
Network hubs and non-hubs are colored in green and black respectively. Nodes are connected by edges, which are depicted in a white-to-
grey gradient (the darker the edge, the higher the correlation). A zoom-in view of examples of hub and non-hub nodes reveals that the hub 
node has more edges with higher weights compared to the non-hub node. (B) Graphical summary of (non-redundant) Gene Ontology terms 
statistically over-represented in the list of 47 hub genes. Significant Biological Processes terms, represented as bubbles, are projected onto 
a scatterplot using REVIGO33. Terms sharing common ancestors in the Gene Ontology database are close together; leading to a cluster of 
GO terms characterizing highly related biological annotations. To facilitate visualization, only a small selection of terms are labeled on the 
figure. Color and size indicates the term’s level of statistical enrichment in our list of hubs and frequency in the GO database respectively.  
(C) Comparison of hubs vs. non-hubs on the basis of their individual associations with drug sensitivity (P < 0.0001, two-tailed, Student’s  
t-test). The boxplot depicts the mean correlation between the gene expression and the Activity Area (AA) values across CCLE cell lines. 
Box notches indicate 95% confidence interval for each median value. Non-overlapping notches indicates a significant difference at the 95% 
level. (D) Cell line-drug experiments are visualized in terms of the 47-gene expression data. The panel above the gene expression heat map 
illustrates the AA values observed for selected sets of cancer cell lines (grouped by tissue site) and two compound examples (erlotinib and 
paclitaxel) for illustration purposes.
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To further illuminate the information encoded by the 47 hubs, 
we clustered the samples (available cell line-drug experiment 
data) based on their (baseline) expression profiles (Figure 2D). 
Although, this analysis is based on a simple hierarchical  
clustering technique and the genes do not clearly segregate all 
samples in terms of drug responses, these results illustrate the 
heterogeneity of gene expression profiles and motivated us to  
further investigate their predictive potential. Using an alterna-
tive visualization and (unsupervised) clustering technique, a  
similar observation could be made (Supplementary Figure S3 
in Dataset 3)23. Overall, these results suggest that our 47 hubs  
represent a novel, biologically meaningful gene set with drug  
sensitivity prediction potential.

Predicting drug sensitivity based on network hubs
We used the expression values from the 47 network hubs and 
drug sensitivity data (n = 10,981, untreated cell line-drug  
experiments, i.e., samples, with full expression and AA data 
available in the CCLE) to generate a drug sensitivity prediction 
model based on multiple linear regression. For a given sample 
(47-gene expression profile) and drug (identity of one of the  
24 CCLE drugs), the model estimates a sensitivity score that  
approximates the AA values observed in the CCLE. For model  
training and testing, we used separate datasets respectively  
through a 10-fold cross-validation sampling procedure. Pre-
diction capability was evaluated with multiple performance 
indicators that compare the predicted and observed sensitivity 
values: Pearson, Spearman and Kendall correlations, and a  
concordance index (CI) (Figure 3). The R code specifying our  
prediction model is available on Zenodo41.

Figure 3A and Supplementary Figure S4 (Dataset 3)23 show 
that the predicted and actual AA values are positively correlated 
(Pearson, Spearman and Kendall, correlations coefficients: 0.86, 
0.73 and 0.54 respectively). In Figure 3A, it is also possible 
to distinguish a number of clusters that are linked to several 
drugs with different observed (and predicted) drug sensitivities  
(Supplementary Figure S5 in Dataset 3)23. For example, the 
cluster located on the top-right of the plot corresponds to  
Paclitaxel, followed by a cluster associated with panobinostat, 
and a third cluster consisting of a mixture of samples tested with  
17−AAG, Irinotecan and topotecan. Interestingly, we observe that 
drugs belonging to the same drug class tend to cluster together 
according to their predicted (and observed) drug response values. 
For example, samples treated with cytotoxic drugs (e.g., Irinote-
can and Topotecan) and kinase inhibitors (e.g., AZD6244 and 
RAF265) are closely located on the observed vs. predicted sensitiv-
ity plot (Supplementary Figure 5). Figure 3B includes a focused 
view of the predicted vs. actual sensitivity for panobinostat, one 
of the drugs displaying the highest (observed and predicted)  
AA values. This plot and others in Supplementary Figure S5  
(in Dataset 3)23 indicate that there are drugs for which our 
model can make relatively accurate sensitivity predictions in  
comparison to other drugs in this dataset.

To provide further insights into our model’s prediction capac-
ity, Figure 3C displays the CI for a selected set of drugs. For a 
random pair of samples, the CI estimates the probability of  

correctly predicting the relative sensitivities of such samples  
(e.g., sample X is more sensitive than sample Y) in relation to 
the observed relative sensitivities. Perfect and random prediction  
performances are indicated by concordance indices equal to 1 and 
0.5 respectively. Our model reported concordance indices with 
median values above 0.5. Altogether, these results suggest that 
our 47 hubs are linked to drug responses in vitro, and that their  
predictive potential deserves further investigation.

Hubs and their drug sensitivity associations are 
measurement-platform independent
We compared our results to those obtained from the CCLE’s 
RNA-Seq dataset, which was made publicly available last year. 
First, we investigated the similarity of the (original) microarray 
and RNA-Seq datasets and observed a high level of concordance  
between these datasets, with mean Spearman correlation 
between gene expressions profiles of 0.87 (confidence interval 
at 95%: 0.870–0.871). The correlations for our network hubs 
was even higher: 0.94 (global expression of 47 genes among all 
cell lines) (Supplementary Figure S6 in Dataset 3)23. Also we  
generated a mean-standard deviation representation of the genes  
characterized by both techniques (Supplementary Figure S7 
in Dataset 3)23. In both platforms, the 47 genes show high  
variability and moderate average expression, and none of them 
was lowly expressed. These observations indicate the inter-
platform robustness of the network hubs in terms of their  
gene expression.

We also investigated the predictive performance of our model 
when RNA-Seq data were used instead of microarrays. The 
overall prediction performance obtained in both application 
scenarios was almost identical. CI: 0.772 vs. 0.770, and  
Spearman correlation: 0.728 vs.0.725 (microarray and sequencing  
data respectively). Lastly, we further compared the connectivity 
of our 47 genes in networks generated with data from the two 
platforms independently. We regenerated gene networks based 
on microarray and sequencing data, and this time considered 
the sum of R2 as a measure of degree of each gene (node) 
and visualized the distribution for all genes and the 47 hubs.  
We observed that, in both platforms, our 47 genes are shown as 
top hub genes (Supplementary Figure S8 in Dataset 3)23. These  
analyses corroborate the robustness of the gene expression  
profiles and predictive properties of our hub-based signature in 
microarray and RNA-Seq platforms. Also we assessed the length 
of the genes in our signature and found that 42 of 47 genes 
were longer than 2000 nt. Based on our previous experience27,  
we should not expect negative effects switching from arrays to 
sequencing for the vast majority of the genes.

Assessment of drug sensitivity prediction potential on an 
independent dataset 
We tested the drug sensitivity prediction capacity of our 47 hubs 
on the 2016 release of the GDSC dataset, which partially over-
laps with the CCLE in terms of cell lines and drugs42. To allow 
our CCLE-derived model to make predictions on this dataset,  
we focused on the 16 drugs that are found in both data-
sets. First, as in the case of the CCLE data, we show that the  
(baseline) expression profiles of these 47 genes are diverse across 
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samples and drugs (Figure 4A, and Supplementary Figure S3 in 
Dataset 3)23. Note that in the GDSC dataset drug sensitivity is  
represented as the logarithm of IC50 (LNIC50) values (AA values  
were not provided in this dataset).

Next, we applied our (CCLE-derived) prediction model to the 
GDSC data and made sensitivity predictions (AA values) for all 
the samples (cell line-drug experiments) available (Methods). 

The resulting predictions were then compared with the actual 
sensitivity values in the GDSC dataset (Figure 4B, and  
Supplementary Figure S4 in Dataset 3)23. As required, the pre-
dicted (AA) and actual sensitivity (LNIC50) values for these 
samples (n = 9,984) are anti-correlated (Pearson, Spearman 
and Kendall, correlations coefficients: -0.72, -0.71 and -0.50, 
respectively). This indicates that our 47-hub-based model is, in  
general, estimating sensitivity values that are in agreement 

Figure 3. Different views of our model’s predictive capacity on the CCLE dataset using alternative performance indicators.  
(A) Density plot of predicted vs. actual sensitivity values (n=10981). Pearson, Spearman and Kendall correlation coefficients: 0.86, 0.73 
and 0.54, respectively. (B) Focused view of the predicted vs. actual sensitivity for panobinostat, one of the drugs displaying the highest  
(actual and predicted) activity area (AA) values. Additional examples in Supplementary Figure S5. (C) Concordance indices between 
the predicted and the observed AA values for a selected set of drugs. An index value = 0.5 is the expected value from random prediction. 
Error bars: 95% confidence interval of the estimated concordance index.
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with those observed in a test dataset, i.e., higher predictive  
agreement is reached when high AA (prediction) relates to a low 
LNIC50 (actual) values, and vice versa.

Figure 4C summarizes the assessment of our model’s predic-
tive performance on the GDSC dataset based on (drug-specific) 
CIs, as done for the CCLE dataset (Figure 3). Concordance  
indices > 0.5 were obtained for 12 out of the 16 drugs, and 
(among those 12 drugs) concordance estimates for 9 drugs 
can be reliably interpreted as larger than 0.5 (95% confidence  
intervals of the estimated indices). The predictive performances 
for several drugs (e.g., Nilotinib, Nutlin-3 and Sorafenib) are 
very similar to those estimated in the CCLE dataset. As in 
the CCLE dataset, the sensitivity observed in samples treated 
with AZD0530 and Lapatinib proves to be more difficult to  
accurately predict. Although concordance indices > 0.5 were 

obtained for irinotecan and paclitaxel predictions, this rep-
resents a reduction of prediction performance in comparison 
to the predictions made for CCLE samples. The prediction  
performance of 17-AAG, PD-0325901 and TAE684 were also  
diminished. Overall, our findings further suggest that our network 
hubs are relevant for predicting drug sensitivity, and highlight  
challenges in a drug-specific context.

Further evaluations and comparison with alternative 
modeling approaches
As the GDSC dataset shares cell lines in common with the CCLE, 
we also assessed the prediction performance of our hub-based 
prediction model on GDSC cell lines that are not included in the 
CCLE. To do this, we applied our CCLE-based model on the  
GDSC dataset and made a distinction between predictions for 
overlapping and unique cell lines. When focused on experiments 

Figure 4. Different views of our model’s prediction capacity on the GDSC dataset. (A) Cell line-drug experiments are visualized in terms 
of the 47-gene expression data. The panel above the gene expression heat map illustrates the natural logarithm of half-maximal inhibitory 
concentration LNIC50 (μM) values observed for selected sets of cancer cell lines (grouped by tissue site) and two compounds (erlotinib 
and paclitaxel). (B) Application of CCLE-derived model to the GDSC data. Density plot of predicted (activity area (AA)) vs. actual sensitivity 
(LNIC50) values for drugs that are common between the CCLE and GDSC (n = 9,984). Pearson, Spearman and Kendall, correlations 
coefficients: -0.72, -0.71 and -0.50 respectively. (C) Concordance indices between the predicted and the observed sensitivity values. An 
index value = 0.5 is the expected value from random prediction. Indices are corrected to account for the notion that higher concordance is 
reached when high AA (prediction) corresponds to a low LNIC50 (observed) values, and vice versa. Error bars: 95% confidence interval of 
the estimated concordance index.
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with cell lines found in both data sets, we obtained the following 
correlations between predicted (AA) and observed sensitivity 
values (IC50): -0.73 (Pearson), - 0.72 (Spearman) and -0.52 
(Kendall). For cell lines uniquely represented in the GDSC, 
we obtained the following correlations: -0.72, -0.68 and -0.48.  
Although a slight reduction in prediction performance is 
observed, these results are comparable and stress the robustness 
of our prediction results for different types of cell lines, including  
those not included in our hub discovery and model training  
dataset.

Also we investigated the stability of hubs across the CCLE 
and GDSC datasets. To do this, we repeated the network  
generation and hub identification procedures on the GDSC with 
WiPer (Methods). This analysis resulted in the detection of 69  
network hubs (as before, WiPer adjusted P-value < 0.05). Among 
such genes, 23 genes are also found in our 47-gene signature, 
such as: VEGFC, CAV2, MYOF, CAV1 and TM4SF1. Although  
this overlap does not include the full set of hubs obtained in 
our CCLE analysis, it gives an indication of the robustness of a 
set of such genes despite the important differences between the  
datasets in terms of the numbers and types of cell lines.

To further demonstrate the robustness of our predictions, we 
implemented multiple runs (or iterations) of the 10-fold cross-
validation (CCLE data) and assessed their reported performances. 
For 100 independent (10-fold) cross-validations, the prediction 
performance is very similar: all iterations reporting CIs 
between 0.765 and 0.77, and a coefficient of variation = 0.026%  
(Supplementary Figure S9 in Dataset 3)23. 

Using our 47-hub signature, we also investigated (multiple  
linear regression) models trained on the GDSC and tested on the 
CCLE datasets. Although comparable with the cross-validation 
results obtained with the CCLE dataset, the GDSC-based cross-
validation showed an overall improvement in drug sensitivity 
prediction performance: CI = 0.82, rs = 0.82 and rk = 0.64  
(Supplementary Figure S10 in Dataset 3)23. Next, we applied the 
resulting model to the CCLE dataset. The prediction perform-
ance is similar to that obtained with the CCLE-derived model  
(Supplementary Figure S11 in Dataset 3)23. Moreover, as in the 
CCLE-derived model, we observed that the predictive quality is 
relatively higher or deteriorated according to specific drugs.

We also investigated the impact of reducing the 47-gene set 
on prediction performance. We used our 47 genes as inputs to 
LASSO modeling, and we observed that is possible to generate 
models with an average of 44.6 genes (range: 43 to 46 genes). 
However, LASSO-based models offered very similar prediction  
performance in comparison with our 47-gene model (CCLE,  
using a nested 10-fold CV, mean CI: 0.77 ± 0.004).

We also implemented a drug sensitivity prediction model based 
on LASSO using all gene expression features as inputs to the 
model. The resulting model consisted of 605 genes, which did 
not include any of our 47 hubs. When comparing the prediction  
performance of our 47-gene model vs. the 605-gene LASSO 
model, we did not observe significant differences, though the 
latter offered a slightly higher prediction performance (CCLE,  

nested 5-fold CV, CI: 0.77 vs 0.80). This relative improvement in 
performance is not surprising as the LASSO model, unlike our 
hub discovery strategy, explicitly sought to identify the best set  
of genes for optimizing this specific regression task.

To assess the effect of network size on the identification of hubs,  
we applied our hub detection analysis to a larger network con-
sisting of 530 genes. These genes were selected with a more 
flexible filtering criterion (Methods): Genes showing SD of  
expression above the 97th percentile of the SD value distribu-
tion. As expected, a larger number of significant hubs were 
detected in this network (203 hubs, at corrected P-value < 0.05).  
Among them, our original set of 47 hubs were included, which 
reiterates their statistical significance and robustness of our 
analysis. This was also observed when repeating the analysis 
using a far less stringent procedure for estimating statistically 
significant hubs, i.e., P-value estimation. Using only 1000K  
permutations to estimate P-values, we detected 212 candidate  
hubs (corrected P-values < 0.05) that also included our original  
set of 47 hubs.

Comparisons with published prediction models
We re-implemented models previously reported30,31, and com-
pared their performance with our model. We chose these works 
because of their model coverage and analytical depth using  
different supervised prediction techniques. However, note that 
unlike our discovery strategy, their models were based on input 
genes that were explicitly sought to optimize drug sensitivity  
prediction. Also, unlike our model, Dong et al.31 considered  
prediction of drug sensitivity as a classification problem. Given 
a gene expression dataset, their approach aimed at assigning 
each sample to one of two pre-established response classes: 
resistant and sensitive. They used CCLE data to build their 
models. For each drug, they started by discretizing a “scaled 
AA” (sAA) into three categories: resistant if sAA < -0.8 SD  
(standard deviation which is equal to 1), sensitive if sAA > 0.8 
SD and intermediate otherwise. After removing samples with an  
intermediate response, they focused on the classification of 
the extreme response classes (resistant vs, sensitive). Their 
drug-specific models were based on a support vector machine  
(SVM) and recursive feature selection using gene expression  
data. They reported an accuracy of 0.81 (on average) when their 
models were cross-validated on the CCLE. The performance 
was considerably reduced when tested on GDSC data (only 3 out of 
11 drug models reported an average AUC equal to or above 0.69).

Therefore, to directly compare Dong et al.’s models with ours, 
we had to re-specify and re-implement our drug sensitivity 
prediction approach. This is needed because our approach is 
defined as a regression problem and is not constrained to pre-
determined sensitivity classes. Hence, we first labeled the  
samples as sensitive and resistant as done by Dong et al. We then  
tested whether the predicted sensitivities (predicted AA values 
from our model) correctly assign each sample to the “right” sensi-
tive and resistant classes. The predictive performances of our and 
Dong et al.’s models are comparable with a small advantage for  
Dong et al.’s models (average AUCs = 0.79 vs. 0.73, Supplemen-
tary Figure S12 in Dataset 3)23. However, this advantage is not  
surprising since Dong et al.’s models optimizes the separation 
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of two well-distinguished sensitivity classes. Our predictions are  
obtained from a regression model trained and tested on all  
samples with all available sensitivity values. Despite such a 
caveat, the prediction performance achieved by our 47-hub model 
was very similar to the performance from Dong’s drug-specific 
models except for five drugs (AZD0530, erlotinib, lapatinib, 
LBW242, PD-0325901) out of 21 models (drugs), and our model  
clearly outperformed their model for one drug (PD-0332991).

In the comprehensive study by Jang et al.30, thousands of  
models were compared and the authors concluded that an elastic 
net-based model was the best choice. Therefore, we trained and 
tested an elastic net model, and compared it to our model. The 
models were trained and tested using 5-fold cross-validation, 
and were compared on the basis of the concordance between 
the predicted and observed activity areas. The elastic net model,  
overall, outperformed our 47-hub model (average CI of 0.81 
vs. 0.77). However, the elastic net model required 614 genes 
as input features to achieve this performance (with no genes 
in common with the 47 hub genes). As the difference in  
concordance between these models was only 0.04 on average, 
we also compared the individual predicted sensitivity values 
generated by the two models. We found that their predicted  
sensitivity values are highly correlated (0.99 of correlation and  
average difference of 0.02). These results, which are graphically 
illustrated in Supplementary Figure S13 (in Dataset 3)23, indicate 
that these models’ prediction performances are comparable.

Additionally, we implemented prediction models based on the 
gene expression of well-known markers for drugs used in clini-
cal practice, and which were also included in our datasets. Here 
we report results for two such markers: PDGFR (a target of  
Sorafenib) and EGFR (and target of Erlotinib), which were 
used as inputs to prediction (linear regression) models. To make  
an unbiased comparison, we compared prediction perform-
ances specific to each drug. For both drugs, we found that mod-
els built with our 47 hub genes outperformed models built with 
the gene expression of these targets. For erlotinib, our model 
reported a CI = 0.62, while the EGFR-based model showed a  
CI = 0.57. The difference was more significant for sorafenib: 
Our model reached a CI = 0.57, whereas models built with  
either PDGFRA or PDGFRB reported CIs below 0.5 (0.48 and  
0.47 respectively).

Independent in vitro validation
To further validate the prediction potential of our network hubs 
on independently-generated data, we made predictions and  
performed in vitro tests for several GBM cell lines and  
compounds in our lab. First, we measured the (baseline) expression  
profiles of four (untreated) GBM cell lines that have been  
well-characterized in our lab: U87, NCH644, NCH601 and 
NCH421k. While the CCLE and GDSC datasets included U87,  
the latter three are stem-like GBM cell lines that were not  
included in our previous analyses.

Although genome-wide expression data can appropriately  
cluster multiple samples (biological replicates) from such cell 
lines, we found that the expression profile of our 47 genes are  

sufficient to achieve the same biologically-meaningful seg-
regation while offering a clearer, fine-grained view of their  
differences (Supplementary Figure S14 in Dataset 3)23. We also 
verified the platform-independent replicability of these results 
with another 47-gene expression dataset derived from three  
of these cell lines measured with qPCR (Supplementary  
Figure S14 in Dataset 3)23. These results show the biologically- 
relevant discriminatory capacity and reproducibility of our 
47-hub expression profiles in our set of brain cancer cell  
lines using microarrays and qPCR. Raw qPCR Cq values are  
available on Zenodo23.

Next, our model predicted the sensitivity of the four GBM cell 
lines (18 samples in total, Methods) against the 24 drugs included 
in the model. The baseline 47-hub expression profiles of these 
cells were input to the prediction model (six U87, three NCH644, 
three NCH601 and six NCH421k gene expression profiles).  
Figure 5A summarizes the 432 predicted sensitivity (AA)  
values according to drug (18 predictions per drug). To inves-
tigate such predictions in vitro, we focused on the top-3 drugs 
associated with the highest predicted sensitivities (paclitaxel,  
panobinostat and 17-AAG), as well as on erlotinib, which was  
predicted as an ineffective compound. The main reason for the 
selection of these compounds was our interest in investigating  
compounds predicted to be highly active (3-top drugs) together 
with a “negative” control that was predicted, and expected, to have 
lower activity (Erlotinib). Moreover, these drugs correspond to 
four different drug classes: cytotoxic, histone deacetylase inhibi-
tor, antibiotic derivative and an EGFR inhibitor respectively. 
In the case of erlotinib, the predictions are consistent with the  
fact that the tested cells do not (NCH644, NCH421k) or very  
lowly (U87, NCH601) express EGFR. Figure 5B and  
Supplementary Figure S15 (in Dataset 3)23 show a more focused 
view of the predicted sensitivity values for our samples against 
these four drugs.

We tested the selected drugs on each cell line, in triplicates, and 
measured their response based on their relative viability (i.e., 
normalized to vehicle-treated samples) for eight drug concen-
tration values (μM). For each treated cell line, we estimated the 
IC50 values and compared them on the basis of cell line and 
drug groups. Figure 5C summarizes the results with boxplots  
showing the LNIC50 values. Drug response data for NCH601 
samples and erlotinib were not available (not tested), and 
data for NCH644 samples and erlotinib are not shown due 
to lack of effect. Supplementary Figure S16 (in Dataset 3)23  
includes all the drug response curves and additional details.

As predicted by our model, all our cell lines exhibited the lowest 
sensitivity, i.e., the highest IC50 values, when treated with erlo-
tinib (median LNIC50 = 0.74 μM). Overall, U87 tended to be 
the least sensitive cell line in relation to all four drugs (median 
LNIC50 = -1.27 μM across all sample-drug experiments),  
though it did not show the lowest sensitivity for every single  
compound or biological replicate. Our model consistently 
predicted NCH601 as the most sensitive cell line against all 
drugs (Supplementary Figure S15 in Dataset 3)23. Our in vitro  
tests showed that NCH421k tends to be more sensitive than 
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Figure 5. Drug sensitivity predictions and in vitro validation for different glioblastoma cell lines and compounds. (A) Sensitivity 
predictions (horizontal axis) for 24 drugs (vertical axis). Box plot summarizes the (432) predicted sensitivity (activity area (AA), as defined in 
the prediction model) values for four glioblastoma cell lines: U87, NCH644, NCH601 and NCH421k. Only the U87 cell line was included in 
the model learning phase. The 47-gene expression profiles of multiple biological replicates (18 samples in total) were input to the prediction 
model (six U87, three NCH644, three NCH601 and six NCH421k samples). (B) Alternative boxplot summary of the prediction results for four 
drugs (erlotinib, 17-AAG, panobinostat and paclitaxel) and the different cell lines. These drugs, which were selected for subsequent in vitro 
tests, were predicted to be relatively highly (17-AAG, panobinostat and paclitaxel) and lowly (erlotinib) effective against the four cell lines.  
(C) Summary of in vitro test results. The selected drugs were tested on each cell line in triplicates, relative viability (vs. vehicle-treated 
samples) was measured for eight drug concentration values (μM) and half-maximal inhibitory concentration (IC50) values were estimated 
for each drug-sample experiment. The boxplot shows the resulting natural logarithm of IC50 (LNIC50) values obtained. Drug response data  
for NCH601 samples and erlotinib are not available, and for NCH644 samples and erlotinib not shown because of lack of effect. Boxes  
show the median, the 25th and 75th percentiles (lower and upper hinges), and (1.5x) interquartile ranges. 

Page 13 of 28

F1000Research 2019, 7:1906 Last updated: 06 MAR 2019



NCH601 (median logIC50: -1.64 vs. -1.54 μM). Despite this 
particular discrepancy, we found a global agreement between  
predicted and observed sensitivities on the basis of cell type 
(Spearman correlation between the median sensitivity values, 
predicted (AA) vs. observed (LNIC50) in the four cell line  
groups: -0.40).

In accordance with the predictions, Paclitaxel was the most effec-
tive drug across all treated samples (median LNIC50 = -2.35 μM).  
Lesser agreement between predicted and observed sensitivities  
were obtained in the case of the remaining two drugs. For 
all samples, our model predicted overall higher sensitivity 
for panobinostat than for 17-AAG (Figure 5B). Relatively similar  
responses were obtained, in vitro, for panobinostat (median 
LNIC50 = -1.29) and 17-AAG (median LNIC50 = -1.33 μM),  
though a larger variability of sensitivity values was observed 
in the former case. Nevertheless, predictions and in vitro tests 
concordantly showed that NCH421k and U87 samples treated 
with panobinostat were consistently more sensitive than  
all samples treated with 17-AAG (Figure 5C and Supplementary 
Figure S16 in Dataset 3)23.

We had a closer look at topotecan, a drug that may be expected 
to exhibit differential activity for at least one (but not all) of the 
cell lines investigated. This drug is known to target TOP1 (DNA 
Topoisomerase I). In our set of GBM cell lines selected for  
validation, TOP1 is relatively highly expressed in NCH601 and 
weakly expressed in U87. Moreover, this target is not included 
in our 47-gene signature. As illustrated in Supplementary  
Figure S17 (Dataset 3)23, our model predicted relatively higher 
sensitivity values for NCH601 than for U87. Furthermore, 
Topotecan is predicted to be more effective than Erlotinib in all  
4 cell lines. Taken together, these results provide further evidence 
of the potential of our 47-hub-based model for predicting drug  
sensitivity in vitro, and will encourage future investigations.

Dr.Paso online
To enable further research, we developed a web-accessible tool 
that allows researchers to upload their own gene expression data, 
make sensitivity predictions and visualize results in a few steps 
(Figure 6). We term this tool: Dr.Paso (Drug Response Predic-
tion and Analysis System for Oncology Research)41. The Help  
section of the website offers a guided application example 
using CCLE data. Users provide their input data as a text file  
containing the (baseline) 47-gene expression for different samples, 
and then can select all or specific drugs for making predictions  
(Figure 6A). Dataset re-scaling (feature standardization with 
means and standard deviations equal to 0 and 1, respectively) 
can be applied to harmonize the input dataset with the feature  
representation used in our model. Prediction results are  
presented with graphical displays and tables in different panels. 
Moreover, users can control the amount and focus of informa-
tion at the drug and sample levels (Figures 6B–D). Results can be 
saved in different graphical and tabular file formats. The tool is  
freely available at www.drpaso.lu.

Discussion
The biological relevance of hubs in different types of molecular  
networks has been previously investigated, e.g., in the context  

of gene lethality. The predictive potential of candidate hubs 
in gene co-expression networks in the specific context of  
cancer-related drug experiments deserve deeper investigations.  
This is important not only for further understanding the  
biological roles of network hubs, but also because such  
knowledge may offer new opportunities for the accurate  
prediction of anticancer drug responses. Here we investigated the  
relationship between hubs detected in a pan-cancer co-expression 
network and drug sensitivity in vitro.

The development of computational models for estimating drug 
sensitivity based on gene expression data from large collections  
of cancer cell lines is important to support pre-clinical 
research, and provides a basis for future clinically-oriented 
applications. Our research offers insights into such challenge 
through the integration of network-based and statistical modeling  
approaches. For a given drug, we showed that in principle it 
is possible to predict anti-cancer drug sensitivity based on the 
gene expression profile of 47 genes, which represent significant 
hubs in a pan-cancer transcriptomic network and are prominently 
implicated in a variety of cancer-relevant biological processes. 
This is particularly appealing because at the start of our  
investigation we did not aim to select a specific set of  
genes that could optimize the supervised prediction of drug  
sensitivity. We implemented an unbiased discovery approach,  
which was motivated by the hypothesis that co-expression  
network hubs encode useful information for investigating drug 
response in vitro.

The prediction model resulting from our network hub analysis 
is not proposed as a competitor for existing approaches for drug 
sensitivity prediction. Nevertheless, our study and other previ-
ous research highlight the challenges and complementary pre-
dictive capacity exhibited by different modeling approaches15,43.  
No single model can consistently make accurate predictions for 
all drugs and cell lines available in the CCLE and GDSC data-
sets, including models that include genomic data and more 
complex learning parameters30,44,45. Different models can offer 
more, or less, accurate predictions for certain drugs, and there 
is no conclusive evidence about the dominance of a particular  
modeling technique46. For example, our model makes good  
predictions for irinotecan, panobinostat and PF2341066, all 
of them with AUC > 0.85 and CI > 0.6. Moreover, these exam-
ples are highly comparable with the performance obtained by 
previous work, e.g., in 31. Also in comparison to Dong et al.31,  
our model made more accurate predictions for PD-0332991 
(AUC=0.84 vs. 0.75), but weaker predictions for lapatinib  
(AUC = 0.62 vs. 0.74). Such limitations may be partially 
explained by a lack of sufficient molecular information to account  
for the complexity of cell lines and their drug responses, choice 
of surrogate measures of drug sensitivity and inconsistencies of  
sensitivity data between the CCLE and GDSC40,47,48. The latter  
may also partly explain the overall degradation of predictive  
performance when training models on the CCLE and testing  
them on the GDSC.

The predictive capacity of our 47-hub model is grounded in an 
unbiased network-guided selection of model inputs prior to the 
fitting of a regression model. Future investigations, motivated 
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Figure 6. Dr.Paso online: a Web-based tool for predicting drug sensitivity and enabling further research. Screenshots of: (A) Main page 
with user input and analysis options; (B) Global view of predicted sensitivity values for a given input gene expression dataset and all drugs 
available in the CCLE; (C) Alternative view of predictions focused on a specific input sample and all drugs; (D) Tabular-based view of results. 
All views can be selected and downloaded according to user requirements.
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by new datasets and clinically oriented questions, are certainly 
envisaged and are expected to include new biomarker discovery  
and prediction modeling strategies. There is a need, for example, 
for additional research on the connection between network  
hubs and drug sensitivity with a focus on particular cancer types 
or drugs. Our analyses indicate that on the basis of tissue sites, 
the top-3 cancer types for which our model makes relatively 
highly accurate predictions are: thyroid, pancreas and prostate 
cancers, with CIs = 0.8, 0.86 and 0.86 respectively (CCLE data  
and using 10-fold cross-validation). Predictions for breast-derived 
samples reported lower performance (CI = 0.74). Importantly, 
although gene expression profile of hematopoietic and lymphoid 
samples differ from all other samples, our 47-hub model was 
able to predict their responses with a relatively good accuracy 
(CI = 0.75). Our investigation was limited to the drugs avail-
able in two well-established datasets. As larger collections of data 
from drug experiments become publicly available, it will be pos-
sible to develop more extensive analyses for newly approved or 
experimental compounds. Although we provided evidence of the 
robustness of our analyses when using microarray, RNA-Seq and 
qPCR data, the impact of expression data generation platforms 
on drug sensitivity prediction deserves further research. Also  
the analysis of larger networks, including those generated using 
different data filtering methods, is an interesting topic that  
deserves future research.

Here, we focused on gene expression data for two reasons:  
i) Our network-based biomarker discovery strategy is based on 
the analysis of gene expression data; and ii) previous research 
(using CCLE and GDSC datasets) has indicated that, although 
mutation and copy number alterations can be informative, the 
most powerful prediction models are those based on gene expres-
sion data12,13,17,42. Nevertheless, future work could benefit from 
the incorporation of other “omics” data types to investigate  
different types of networks and hubs. Although we did not iden-
tify major effects when using the latest version of the CCLE 
gene expression data (RNA-Seq), future work could include 
additional analyses and models based on such a dataset. In this  
article, we started using the microarray version because it was 
the only gene expression dataset available at the beginning of our 
project. Future work may also be motivated by the fact that the  
CCLE RNA-Seq dataset could allow the analysis of transcript-
level (gene isoform) data for predicting drug response. Such 
information has been recently shown to be a useful source of 
features for drug sensitivity prediction49. Moreover, the inves-
tigation of the biological role of hubs in gene isoform networks 
may open new directions for drug sensitivity research and other 
applications. Furthermore, there are other opportunities to be 
investigated such as the analysis of genomic alterations, non-
coding RNAs and epigenetic markers, which may enhance or  
complement existing models for predicting drug sensitivity.

Inconsistencies in drug sensitivity as measured for the same 
cell lines across different studies, i.e., independent datasets, 
can also limit the application of insights derived from a single  
dataset. We expect that in the future we can address this point by 
either: a) weighing sensitivity values according to the available 

experimental evidence derived from multiple datasets, b) building 
global models that can generate predictions in an integrated 
fashion using multiple, independent datasets, or c) investigating  
models based on harmonized versions of datasets obtained from 
different studies50. Another limitation of our study is the use of 
two drug sensitivity measures, AA and IC50, as provided by the 
CCLE and GDSC datasets, to assess prediction performance. 
Further investigations will involve prediction performance analy-
sis based on common measures of sensitivity. Such analyses 
will, nevertheless, be limited by potential inconsistencies in  
experimental sensitivity measurements across studies, as reported 
in the case of the CCLE and GDSC data40. Therefore, future 
work will require the incorporation of harmonized versions of 
such and other datasets, such as those recently generated by the  
PharmacoDB project50.

Beyond a connectivity-centric interpretation of hubs, an inter-
pretation of their potential functional roles in co-expression 
networks is not straightforward. Based on their implication 
in different cancer-related biological processes and their high  
expression correlations with many genes involved in different  
pathways, it is reasonable to postulate that our 47 hubs may 
have relevant mechanistic roles in the drug response context. 
Moreover, we found that these genes are related to different  
known drug targets via multiple biological processes, which may 
offer clues about the potential signaling controlling role of the 
hubs. However, these and alternative interpretations will require  
further investigations.

Overall, while further investigations are needed, our study 
offers evidence of the relevance of gene co-expression network 
hubs in the context of drug sensitivity and cancer research. We 
hope that our findings will enable deeper investigations and  
pre-clinical research applications.
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Underlying data
Full qPCR data (including raw Cq values) are available on  
Zenodo23.

Data are available under the terms of the Creative Commons  
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Extended data
Extended data associated with this study are available on  
Zenodo23.

Dataset 1. Gene co-expression network data. It contains network 
nodes, weighted network and list of hubs.

Dataset 2. qPCR data from independent validation, including MIQE 
and additional information.

Dataset 3. Supplementary Figures. Legends are included under 
each figure.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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I am satisfied with the revisions the authors have made to the manuscript.

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Computational biology, pharmacology, network biology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 15 February 2019Referee Report

https://doi.org/10.5256/f1000research.18749.r42997

   Therese Commes
Universite de Montpellier, Montpellier, France

The authors present an interesting work for predicting cancer cells drug responses based on "the gene
from untreatedexpression profile of 47 genes representing significant hubs in pan cancer transcriptomes" 

cells lines. The approach is original, as they did not select a specific set of genes from drug sensitivity
experiments, but proposed "an unbiased discovery approach, motivated by the hypothesis that

Next, theyco-expression network hubs encode useful information for investigating drug response in vitro". 
investigated co-expression network hubs and drug responses and validated their approach using
independant data sets including cell line-drug data.
The study is well conceived and executed. The approaches used are suitable, and the description of work
is adequately detailed. Data are clearly presented, and for the most part conclusions are reasonable. The
method appears interesting, I think the paper would be a nice contribution that will be well-cited. Despite
the difficulty of comparison, prediction performance of the model was compared to existing published
methods and shows comparable results. Moreover the manuscript is well written.
The authors need to clarify on the following points:

Figure1:
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Figure1:
It will be better to specify the type of data (microarrays?) and source (CCLE?) in input for "transcriptomic
data from untreated cell lines". 

Methods, page 4 : 
The reason why removal of genes is needed is not clear: "Although lasso or elastic net regularizations are
also suitable approaches, they would have required the estimation of additional learning parameters and
the removal of genes, which were deemed biologically interesting before model training......."

Methods, page 5 (line 24) :
The authors should specify what they mean by "  which kind of files they used (raw data,the original data"
gene counts ...). (line 28: RNS-seq instead of RNA-seq).

Results, page 9:
Could the authors specify if drugs with nearest clusters or CI values belong to a same drug "class" or not?
Is there a relationship between performance prediction and drug classes?

Results, page 9:
This sentence is not clear: " ..."As the GDSC dataset shares "different" cell lines in common with CCLE

Results, page 12:
" : Does this set include the 47-hub modelHowever elastic net model required 613 genes as input features"
genes?

Discussion, page 14:
Prediction performance and cancer types is discussed, what about "hematopoietic and lymphoid
tissues"? This cancer type seems to strongly differ from other types in their drug responses and gene
expression (see Figures 2 and 4). Could the authors comment on these data?

Discussion, page 16:
"Nevertheless future work could benefit from the incorporation of other "omics" data .. CCLE RNA-seq

However RNA-seq technology has adataset could allow the analysis of transcript-level ( gene isoform)". 
larger potential than extracting transcript isoform and allows to extract genomic (mutation, indels, gene
fusion, ...) and transcriptomic events (gene expression, splice variant, non-coding RNA), could the
authors enlarge their comment about this potential and their prediction method? Also what about
epigenetics data to predict drug sensitivity?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Transcriptomics, cancer, bioinformatics, RNA-seq

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 22 Feb 2019
, Luxembourg Institute of Health (LIH), LuxembourgFrancisco Azuaje

Response to Reviewer# 2: Therese Commes
 
“The authors present an interesting work for predicting cancer cells drug responses based on "the
gene expression profile of 47 genes representing significant hubs in pan cancer transcriptomes" 
from untreated cells lines. The approach is original, as they did not select a specific set of genes
from drug sensitivity experiments, but proposed "an unbiased discovery approach, motivated by
the hypothesis that co-expression networkhubs encode useful information for investigating drug

Next, they investigated co-expression network hubs and drug responses andresponsein vitro". 
validated their approach using independant data sets including cell line-drug data.

The study is well conceived and executed. The approaches used are suitable, and the description
of work is adequately detailed. Data are clearly presented, and for the most part conclusions are
reasonable. The method appears interesting, I think the paper would be a nice contribution that will
be well-cited. Despite the difficulty of comparison, prediction performance of the model was
compared to existing published methods and shows comparable results. Moreover the manuscript
is well written.

The authors need to clarify on the following points:”
 
Response:
 
We thank the reviewer for her interest in our article and helpful feedback.
 
"Figure1:
It will be better to specify the type of data (microarrays?) and source (CCLE?) in input for 
"transcriptomic data from untreated cell lines"."
 
Response:
 
Figure 1 has been modified with the inclusion of the data type and the source as follows:
 
“(CCLE microarray data)”.
 
“Methods, page 4:
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“Methods, page 4:
The reason why removal of genes is needed is not clear: "Although lasso or elastic net
regularizations are also suitable approaches, they would have required the estimation of additional
learning parameters and the removal of genes, which were deemed biologically interesting before
model training......."”
 
Response:
 
We agree that, in general, the removal of genes is not required. However, note that we compared
our 47-gene model with a Lasso model that consists of a reduced set of input genes. This gene
selection process is embedded into the Lassso algorithm, which aims at selecting a subset of
covariates with a good prediction ability. To do so, the algorithm constraints the sum of the
absolute values of the coefficients. During this process, some coefficients will be set to zero and
therefore are removed from the model. The elastic net, which can be seen as a compromise
between Lasso and Ridge regression, also incorporates feature selection.
 
“Methods, page 5 (line 24):

The authors should specify what they mean by "  which kind of files they used (rawthe original data"
data, gene counts ...). (line 28: RNS-seq instead of RNA-seq).”
 
Response:
 
In the main text, we have corrected “original data” with “RPKM data”.
 
We have also corrected “RNS-Seq” with “RNA-Seq”.
 
“Results, page 9:

Could the authors specify if drugs with nearest clusters or CI values belong to a same drug "class"
or not? Is there a relationship between performance prediction and drug classes?”
 
Response:
 
To address the reviewer’s request, the following sentence has been added in “Result” section
(page 9):
 
Interestingly, we observe that drugs belonging to the same drug class tend to cluster together
according to their predicted (and observed) drug response values. For example, samples treated
with cytotoxic drugs (e.g., Irinotecan and Topotecan) and kinase inhibitors (e.g., AZD6244 and
RAF265) are closely located on the observed vs. predicted sensitivity plot (Supplementary Figure
5).

“Results, page 9:

This sentence is not clear: "As the GDSC dataset shares "different" cell lines in common with
..."”CCLE

Response:
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The sentence has been corrected:
 
“As the GDSC dataset shares cell lines in common with CCLE..."”
 
“Results, page 12:

" : Does this set include theHowever elastic net model required 613 genes as input features"
47-hub model genes?”
 
Response:
 
There are no genes in common between these models. This is now clarified in the manuscript.
 
Also, we note that there was a typo in this sentence: It should be 614 genes.
 
We have corrected this typo in the main manuscript and have changed the caption of the
Supplementary Figure 13. We have also changed the URL address that contains all supplementary
files (reference 23 in the main manuscript).
 
We include the following in the main manuscript:
 
“However, the elastic net model required 614 genes as input features to achieve this performance
(with no genes in common with the 47 hub genes).”
 
“Discussion, page 14:

Prediction performance and cancer types is discussed, what about "hematopoietic and lymphoid
tissues"? This cancer type seems to strongly differ from other types in their drug responses and
gene expression (see Figures 2 and 4). Could the authors comment on these data?”
 
Response:
 
To address the reviewer’s request, the following sentence has been added:
 
Importantly, although the gene expression profiles of hematopoietic and lymphoid samples differ
from all other samples, our 47-hub model was able to predict their responses with a relatively good
accuracy (CI = 0.75).
 
“Discussion, page 16:

"Nevertheless future work could benefit from the incorporation of other "omics" data. CCLE
However, RNA-seqRNA-seq dataset could allow the analysis of transcript-level (gene isoform)". 

technology has a larger potential than extracting transcript isoform and allows to extract genomic
(mutation, indels, gene fusion, ...) and transcriptomic events (gene expression, splice variant,
non-coding RNA), could the authors enlarge their comment about this potential and their prediction
method? Also what about epigenetics data to predict drug sensitivity?”
 
Response:
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To address the reviewer’s comment, the following text has been added:
 
Furthermore, there are other opportunities to be investigated such as the analysis of genomic
alterations, non-coding RNAs and epigenetic markers, which may enhance or complement existing
models for predicting drug sensitivity. 

 No competing interests were disclosed.Competing Interests:

 08 January 2019Referee Report

https://doi.org/10.5256/f1000research.18749.r42324

   Elizabeth A. Coker
Translational Cancer Genomics, Wellcome Trust Sanger Institute, Hinxton, UK

In this paper, Azuaje  ., utilise transcriptional data from the Cancer Cell Line Encyclopedia to constructet al
gene co-expression networks and identify hubs within them. They assess the biological relevance of the
hub genes, and through the use of comparatively simple linear regression-based approaches, can use
gene expression of these hubs to predict drug sensitivity  . Despite not initially aiming to predictin vitro
drug sensitivity, the authors’ models are able to perform comparably to previously published approaches.
Azuaje  ., have performed extensive and appropriate validation of their work both   and  ,et al in silico in vitro
including assessing the inter-platform robustness of network hubs, cross-validation of the 47-hub
signature, investigating the effect of network size on hub detection, and re-implementation of their own
predictive approach to allow comparison with previously published drug sensitivity predictors.   
 
The paper is well-written and clear, with a thorough and precise account of the approaches used to
assess the performance of the predictive model. The authors have produced a thoughtful and detailed
account of their work which I enjoyed reading. The online Dr Paso resource is easy to use and has good
documentation, although I have only tested it with the example datasets provided. I was unable to access
the extended data via Zenodo as described in the manuscript (see comment below).
 
My current recommendation is for “ ”, as there are a number of points I feelApproved with reservations
should be addressed prior to approval:
 
“Furthermore, only four genes in our list of hubs are known drug targets: DKK1 (Irinotecan), MYB, SPARC
and TUBB6 (the latter three targeted by paclitaxel).” I disagree with this statement. I have been unable to
find any evidence of irinotecan targeting the protein DKK1, apart from an entry in DGIdb that states there
is an interaction of type ‘n/a’ between DKKI and irinotecan, based solely upon a paper in Oncotarget that
states DDK1 does not affect sensitivity to irinotecan in two cell lines. Equally, MYB and SPARC are not
targets of paclitaxel, although they are shown in the DGIdb database as interacting with paclitaxel based
on little or no evidence. I recommend the authors remove this sentence from the manuscript as it is based
on a misinterpretation of DGIdb results and as such is misleading.
 
I was able to access the code for the Dr Paso tool via Zenodo, but not the extended data associated with
this study. Please ensure this is added and the appropriate link included.
 
Figure 1: Please update this figure to highlight the filtering stage between collecting transcriptomics data

and building co-expression networks. Listing the number of genes present before and after filtering would
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and building co-expression networks. Listing the number of genes present before and after filtering would
also be informative.
 
Figure 2a: Here, the weight of edges is used to represent the expression correlations between nodes, but
at present it is very difficult to see this in the examples highlighted. A larger, higher-resolution image of the
network and examples is required.
 
Figure 2b: I am not familiar with the concepts of semantic space and so do not know how to interpret this
plot. Consider adding extra discussion in the main text or presenting this data in another way.
 
Figure 2d: This figure is currently very difficult to read and could be enlarged if 2c is concurrently
decreased in size.
 
Figure 3a: The density plot requires further annotation in relation to the clusters described in the
manuscript, for example by arrows or circling the appropriate regions of the plot.
 
Figure 4a: This figure is currently very difficult to read and could be enlarged.
 
In conclusion this is an interesting paper illustrating how co-expression hubs can be used to predict drug
responses   with reasonable accuracy. The authors have clearly put a great deal of time andin vitro
thought into this project and should be pleased with the resulting paper.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 22 Feb 2019
, Luxembourg Institute of Health (LIH), LuxembourgFrancisco Azuaje

Response to Reviewer #1: Elizabeth A. Coker
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Response to Reviewer #1: Elizabeth A. Coker
 
“In this paper, Azuaje et al., utilise transcriptional data from the Cancer Cell Line Encyclopedia to
construct gene co-expression networks and identify hubs within them. They assess the biological
relevance of the hub genes, and through the use of comparatively simple linear regression-based
approaches, can use gene expression of these hubs to predict drug sensitivity in vitro. Despite not
initially aiming to predict drug sensitivity, the authors’ models are able to perform comparably to
previously published approaches. Azuaje et al., have performed extensive and appropriate
validation of their work both in silico and in vitro, including assessing the inter-platform robustness
of network hubs, cross-validation of the 47-hub signature, investigating the effect of network size
on hub detection, and re-implementation of their own predictive approach to allow comparison with
previously published drug sensitivity predictors.
 
The paper is well-written and clear, with a thorough and precise account of the approaches used to
assess the performance of the predictive model. The authors have produced a thoughtful and
detailed account of their work which I enjoyed reading. The online Dr Paso resource is easy to use
and has good documentation, although I have only tested it with the example datasets provided. I
was unable to access the extended data via Zenodo as described in the manuscript (see comment
below).
 
My current recommendation is for “Approved with reservations”, as there are a number of points I
feel should be addressed prior to approval:”
 
Response:
 
We thank the reviewer for her interest in our article and helpful feedback.
 
 “Furthermore, only four genes in our list of hubs are known drug targets: DKK1 (Irinotecan), MYB,
SPARC and TUBB6 (the latter three targeted by paclitaxel).” I disagree with this statement. I have
been unable to find any evidence of irinotecan targeting the protein DKK1, apart from an entry in
DGIdb that states there is an interaction of type ‘n/a’ between DKKI and irinotecan, based solely
upon a paper in Oncotarget that states DDK1 does not affect sensitivity to irinotecan in two cell
lines. Equally, MYB and SPARC are not targets of paclitaxel, although they are shown in the DGIdb
database as interacting with paclitaxel based on little or no evidence. I recommend the authors
remove this sentence from the manuscript as it is based on a misinterpretation of DGIdb results
and as such is misleading.”
 
Response:
 
We agree that this sentence is not accurate. As requested, we have adapted it as follows:
  
We did not find validated evidence that our hub list contains known drug targets. Using DGIdb, we
found potential associations between 4 hubs and 2 drugs: DKK1 (with Irinotecan), MYB, SPARC
and TUBB6 (the latter three with paclitaxel). However, these associations cannot be interpreted as
drug-target interactions and require further investigation.

“I was able to access the code for the Dr Paso tool via Zenodo, but not the extended data
. Please ensure this is added and the appropriate link included.”associated with this study

 

Response:
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Response:
 
We confirm that the extended datasets are available in Zenodo, and they can be accessed via the
web link included in reference 23.
 
“Figure 1: Please update this figure to highlight the filtering stage between collecting
transcriptomics data and building co-expression networks. Listing the number of genes present
before and after filtering would also be informative.”
 
Response:
 
Change made, as requested.

“Figure 2a: Here, the weight of edges is used to represent the expression correlations between
nodes, but at present it is very difficult to see this in the examples highlighted. A larger,
higher-resolution image of the network and examples is required.”
 
Response:
 
The figure has been modified to improve its clarity. The edges are represented with a white-to-grey
gradient: the darker the edge, the higher the correlation.

Although the edges connected to the non-hub node are expected to be more difficult to visualize
because they are weaker, the modified figure now shows a better contrast between the hub and
non-hub examples in terms of their corresponding edges.
 
The figure caption has also been adapted to improve clarity:
 
“(A) Snapshot of a (fully connected) weighted gene correlation network from untreated cell lines.
Nodes and edges representing genes and their correlations respectively. Network hubs and
non-hubs are colored in green and black respectively. Nodes are connected by edges, which are
depicted in a white-to-grey gradient (the darker the edge, the higher the correlation). A zoom-in
view of examples of hub and non-hub nodes reveals that the hub node has more edges with higher
weights compared to the non-hub node.”
 
“Figure 2b: I am not familiar with the concepts of semantic space and so do not know how to
interpret this plot. Consider adding extra discussion in the main text or presenting this data in
another way.”
 
Response:
 
We have expanded the caption of the figure with additional text to facilitate interpretation, as
follows:
 
“(B) Graphical summary of (non-redundant) Gene Ontology terms statistically over-represented in
the list of 47 hub genes. Significant Biological Processes terms, represented as bubbles, are
projected onto a scatterplot using REVIGO (33). Terms sharing common ancestors in the Gene
Ontology database are close together; leading to a cluster of GO terms characterizing highly
related biological annotations. To facilitate visualization, only a small selection of terms are labeled

on the figure. Color and size indicates the term’s level of statistical enrichment in our list of hubs
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on the figure. Color and size indicates the term’s level of statistical enrichment in our list of hubs
and frequency in the GO database respectively.”
 
“Figure 2d: This figure is currently very difficult to read and could be enlarged if 2c is concurrently
decreased in size.”

Response:
 
Changes made, as recommended.
 
“Figure 3a: The density plot requires further annotation in relation to the clusters described in the
manuscript, for example by arrows or circling the appropriate regions of the plot.”

Response:
 
Changes made, as requested.
 
“Figure 4a: This figure is currently very difficult to read and could be enlarged.”

Response:
 
Figure has been enlarged, as requested.
 
“In conclusion this is an interesting paper illustrating how co-expression hubs can be used to
predict drug responses   with reasonable accuracy. The authors have clearly put a great dealin vitro
of time and thought into this project and should be pleased with the resulting paper.” 
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