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Abstract
Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environ-

ment and sensitized a number of people to allergy. In this study, a mouse model of allergic

rhinitis caused by the cat allergens was developed for the first time and the model was used

for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of

native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair

extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and

intranasally. The allergic mice were treated with eight doses of either liposome (L)-

entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine effi-

cacy evaluation was performed one day after provoking the treated mice with aerosolic

cCE. All allergenized mice developed histological features of allergic rhinitis with rises of

serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus

production of allergic mice reduced significantly after vaccination in comparison with the pla-

cebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine

expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 sup-

pressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions,

a mouse model of allergic rhinitis to cat allergens was successfully developed. The intrana-

sal, liposome-adjuvanted vaccines, especially the refined single allergen formulation,

assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worth-

while testing further for clinical use in the pet allergic patients.

Introduction
Cats contribute a rich source of airborne allergens that sensitize about 5–20% of atopic patients
[1,2]. Clinical manifestations of the cat allergy include chronic allergic rhinitis (AR) and
asthma which impair the patient’s capacity and increase economic burden. The cat allergens
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may be found in places without cats or they remain for many months after the cats were taken
away and the places were regularly cleaned [3,4]. Therefore avoiding cats for morbidity inter-
vention is a difficult practice for the cat allergic subjects. Among the known cat allergens, Fel d
1, which is mainly found in the cats’ hair, dander and/or saliva [4] is the most potent allergen
as it binds to serum IgE of up to 90% of the cat allergic subjects [5]. Currently, allergen-specific
immunotherapy (SIT) is the only disease modifying/curative treatment option of allergy [6].
To do so, the patient is given increasing amounts of the allergen either parenterally (e.g., subcu-
taneous/intradermal) or mucosally (e.g., sublingual), over an extended period of time until the
maintenance dose is reached. The maintenance doses are then given further for many more
years [7]. The aim is to cause a deviation from the pathogenic Th2 towards the non-pathogenic
Th1 and/or regulatory T cell (Treg) responses. However, the SIT receives low patients’compli-
ance as not only it is time-consuming and prolonged, but also confers a possible risk of adverse
reactions, e.g., life-threatening anaphylaxis.

In this study, a mouse model of allergic rhinitis to cat allergens was developed for testing
efficacies of intranasal liposome-entrapped vaccines made of crude cat hair extract (cCE) or
refined Fel d 1. Liposome is a safe vaccine delivery vehicle and promising immunological adju-
vant [8–10]. The intranasal route is non-invasive and relatively immunogen sparing compared
to the sublingual immunization. The immune responses can be expected from the local lym-
phoid tissues which should be effective locally [9]. The native Fel d 1 was used as a vaccine
component as evidences suggested that refined allergen is better than the crude extract in
reducing the allergic immune responses [9,11,12]. The refined allergen is easy to standardize
and also free of other unidentified and non-allergenic components.

Materials and Methods

Reagents
CNBr-activated Sepharose 4B resin was from GE Healthcare, UK; didodecyldimethylammo-
nium bromide (DDAB) was from Fluka, Germany; phosphatidylcholine (soybean lecithin,
Lipoid-S-100) was from Lipoid AG, Switzerland. RNAlater RNA stabilization reagent (RNA
laterTM) was from QIAGEN GmbH, Hilden, Germany; Phusion Hot Start II DNA Polymerase,
Anchored Oligo dT, RevertAid First Strand cDNA Synthesis Kit, HisPurTM Ni-NTA Resin and
ImjectTM Alum Adjuvant were from Thermo Fisher Scientific, MA, USA; Isopropyl-β-D-Thio-
galactopyranoside (IPTG) was from affymetrix, USB, CA, USA; Total RNAMini Kit from
Geneaid Biotech, Taiwan; cholesterol, dichloromethane, paraformaldehyde and Tween-20
were from Sigma-Aldrich, Germany.

Preparation of crude cat hair extract, and native and recombinant Fel d 1
Each gram of the hair of healthy cats was added with 20 ml PBS containing 0.05% Tween-20
(PBST), sonicated (40 kHz) at 4–8°C for 30 min, filtered through a cell strainer, and centri-
fuged at 2,000 ×g, 4°C for 30 min. The supernatant was dialyzed against distilled water at 4°C.
Protein content of the cCE was determined.

Native Fel d 1 (nFel d 1) was purified from the cCE by mouse monoclonal antibody (mAb)
based-affinity resin. Fel d 1-specific mouse mAb was added to the CNBr-activated Sepharose
4B resin (GE Healthcare, UK) and the preparation was rotated at 25°C for 1 h. Excess antibody
was removed; the resin was washed with the coupling buffer and blocked with 0.1 M Tris-HCl,
pH 8.0, for 2 h. After washing several times with 0.1 M acetic acid/sodium acetate, pH 4.0 con-
taining 0.5 M NaCl followed by 0.1 M Tris-HCl, pH 8.0 containing 0.5 M NaCl, cCE was
mixed with the mAb-adsorbed resin and rotated at 25°C for 2 h. After washing, the resin was
packed into a 15 × 80 mm column (PD-10, GE Healthcare). Native Fel d 1 was eluted out using
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0.1 M glycine-HCl, pH 2.5, neutralized immediately with 1 M Tris-HCl, pH 8.0, and dialyzed
against PBS before concentrating to 5 mL.

Recombinant Fel d 1 (rFel d 1) was prepared from a transformed E. coli carrying Fel d 1-
plasmids [13]. The E. coli cells grown under 0.4 mM IPTG induction were sonicated in lysis
buffer (4% glycerol in 10 mM Tris-HCl, pH 7.4) and centrifuged at 15,000 × g for 20 min. The
rFel d 1 was purified from the bacterial lysate by using HisPurTM Ni-NTA Resin (Thermo Sci-
entific, USA).

Cat allergy (allergic rhinitis) model
Animal experiments were approved by Animal Care and Use Committee, Faculty of Medicine
Siriraj Hospital (SiACUC), Mahidol University (COA No. 011/2558). Female BALB/c mice,
6–8 weeks old from the National Laboratory Animal Center, Mahidol University, were sensi-
tized intraperitoneally with three doses of cCE containing 10 μg of nFel d 1 in PBS mixed
(2:1 v/v) with alum adjuvant (Thermo Scientific) (total volume 200 μL) on days 0, 7 and 14. On
days 21–27, each mouse was challenged daily and intranasally (i.n.) with 20 μl of cCE in PBS
containing 1 μg of Fel d 1 (10 μL per nostril). On days 34, 35 and 36, mice were nebulized with
10 mg of cCE in 10 mL PBS. Sham mice received PBS instead of the cCE. One day 37, all mice
were bled and sera were collected. Some mice were sacrificed for monitoring allergic status. S1
Fig shows timeline for cat allergy model development.

Liposome and vaccine formulations
Multi-lamellar liposome was prepared and used as the vaccine/placebo delivery vehicle [9,14].
Briefly, 153 mg of DDAB (Fluka, Germany), 148 mg of phosphatidylcholine (soybean lecithin,
Lipoid-S-100, Lipoid AG, Switzerland) and 72.5 mg of cholesterol (Sigma-Aldrich, Germany)
were mixed (molar ratio 2:1:1) using dichloromethane as a solvent. One ml of the lipid stock
was rotated in a round bottom-flask until a thin film was obtained.

Two vaccine formulations were prepared: liposome entrapped cCE (L-cCE) and liposome
entrapped nFel d 1 (L-nFD1). For L-cCE, 1.67 mg of cCE (containing 150 μg of Fel d 1) in
500 μL PBS were added to the lipid film prepared from 1 ml of the lipid stock solution and
mixed until a milky homogeneous suspension was obtained. For L-nFD1, nFel d 1 (150 μg) in
500 μL PBS was added to the lipid film. Liposome entrapped PBS (L-P) was prepared similarly.
Polydispersity indices (PDI) and zeta-potentials of the liposome particles were measured by
dynamic light scattering and electrophoresis technique, respectively, using a particle size ana-
lyzer (Zetasizer Nano ZS, Malvern Instrument Limited, UK). The percentage of the immuno-
gen entrapment was determined [9].

Mouse vaccination and provocation and vaccine efficacy evaluation
Two weeks after the cCE nebulization, the remaining allergic mice were divided into 3 groups.
Group 1 (placebo) mice were given L-P (20 μL) i.n. Groups 2 and 3 were treated i.n. with 20 μL
of L-cCE (containing 66 μg of cCE) and L-nFD1 containing 6 μg of nFel d 1, respectively.
Seven booster doses were given on every alternate day. One week after the last booster (day 71),
mice were provoked with 10 mg of cCE in 10 mL PBS using nebulizer. S2 Fig shows timeline
for mouse vaccination, provocation and vaccine efficacy evaluation.

Immediately after provocation, frequencies of nose rubbing and sneezing of all mice were
recorded by a person who was blinded of the mouse treatments during the following 15 min.
Mice were bled on day 72 (one day post-provocation) and serum samples were collected for
measuring the levels of specific Fel d 1 antibodies. Thereafter, mice were sacrificed. The mouse
nasal tissues were used for cytokine gene expressions and histopathology.
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Indirect ELISA
Levels of rFel d 1-specific IgE, IgG1 and IgG2a in mouse sera were determined by indirect
ELISA [9]. Individual sera were diluted 1:10 for IgE and 1:1,000 for IgG1 and IgG2a determina-
tion. Mice with specific IgE higher than mean + 2 SD of the sham sera were regarded as allergic
mice.

Histopathological study
For histopatholical study, right side of each mouse head was fixed in 5% paraformaldehyde and
4% sucrose in PBS. Five μm tissue sections were prepared and they were stained either with
hematoxylin and eosin dyes (H & E) for neutrophil, lymphocyte and eosinophil; toluidine blue
dye for mast cells; and Periodic acid-Schiff (PAS) reagent for mucus. All stained sections were
observed under a light microscope (400×) (BX41, Olympus,Tokyo, Japan) with DP2-BSW soft-
ware by a pathologist who was blinded on the mouse treatment groups. The cells along the epi-
thelium in at least 10 microscopic fields per section per mouse were counted. PAS-stained
mucus glands in the tissues were graded arbitrarily based on the intensity of the tissue color
(magenta) by using scales 1–3. Percentages of individual mucus stained grades were calculated
from a total number of the microscopic fields of each grade divided by a total number of the
inspected fields in each group ×100.

Cytokine study
Quantitative real-time PCR (qPCR) was used for monitoring cytokine gene expression. Left
side of the mouse head was put in RNAlater RNA stabilization reagent (RNA laterTM, QIA-
GEN GmbH, Hilden, Germany). Total RNA was extracted from the soft nasal tissues by using
Total RNAMini Kit (Geneaid Biotech, Taiwan). Complementary DNA (cDNA) was synthe-
sized (SuperScript1III CellsDirect cDNA synthesis system; InvitrogenTM, Life Technologies,
Thermo Fisher Scientific, USA). Cytokine mRNAs including IL-4, IL-5, IL-13, TNF-α, IL-12a
(p35), IL-12b (p40), IL-23 (p19), IFN-γ, IL-10, TGF-β, and IL-35 (ebi3) were quantified using
the cDNA as templates and β-actinmRNA for normalization. The nucleotide primers [15–22]
are listed in S1 Table. The PCR mixture contained 1 μL of cDNA and 100 nM of each primer in
a SYBR Green PCR Master Mix (Applied Biosystems, USA). MxPro QPCR software for
Mx3005P QPCR System (Agilent Technologies, USA) was used for data analysis.

Statistical analyses
SPSS 17.0 statistical software was used. One-way ANOVA, post hoc comparison using least sig-
nificant difference (LSD) and independent-t-test were applied for analyses of antibody levels
and histopathological and cytokine data. Percentages of mucus grades were compared by Chi-
square test. P<0.05 was significantly different.

Results

Allergy model
Frequencies of nose rubbing and sneezing of the allergenized mice after aerosolic cCE challenge
were significantly higher than those of the sham group (p< 0.05).

Normal and sham mice did not have detectable serum specific IgE, IgG1 and IgG2a to rFel
d 1 at the serum dilutions used in the indirect ELISA (1:10 for IgE and 1:1000 for IgG1 and
IgG2). The means ± SDs of the OD405nm of specific IgE, IgG1 and IgG2a in sera of allergenized
mice were 0.582 ± 0.273, 1.212 ± 0.152, and 0.051 ± 0.057, respectively. Based on their serum
specific IgE levels, all sensitized mice were allergic to the cCE.
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Normal and sham mice had fewer neutrophils, lymphocytes, and eosinophils than the aller-
genized mice. The number of combined neutrophils, lymphocytes, and eosinophils in the nasal
tissues of cCE-allergenized mice was significantly higher than those of normal and sham mice
(p< 0.05) (Fig 1). Mast cells were predominant at the tip of the mouse nose, and almost negli-
gible in the nasal tissue elsewhere. Allergenized and sham mice had many more mast cells than
the normal mice (p< 0.05) (Fig 1).

Fig 2 shows intensity of grades 1–3 of PAS-stained mucus glands in the mouse nasal tissues.
Percentages of individual grades of the PAS-stained mucus in nasal tissues of normal, allergen-
ized, and sham mice are shown in Table 1. The grade 3 mucus gland intensity was found only
in the cCE-allergenized mice indicating that these mice had more active mucus glands than the
normal and sham mice.

Characteristics of liposome and liposome entrapped vaccines/placebo
The sizes, zeta potentials, PDI and percentages of immunogen entrapment of the two vaccine
formulations and the placebo (L-P) are shown in Table 2. Sizes of the liposome of all formula-
tions were 3.5–5.4 μmwith small PDI, indicating high homogeneity of the vesicles. The L-cCE
had a slightly anionic charge while the L-nFD1 and L-P were carrying cathodic surface charge.
The average percentages of the immunogen entrapment were 74.63 and 73.48% for L-cCE and
L-nFD1, respectively.

Symptom scores, inflammatory cells and mucus in nasal tissues and
serum specific antibodies of vaccinated/placebo mice
Frequencies of sneezing and nose rubbing among the vaccinated and placebo mice were not
different during the 15 min post-provocation.

The average numbers of inflammatory cells of placebo/vaccinated mice in nasal epithelia
were not different after placebo/vaccine treatments and provocation (p> 0.05).

There was a significant reduction of the grade 3 mucus glands in both L-cCE and L-nFD1
treated mice. On contrary, the placebo mice had a percent increment of the grade 3 mucus
glands (Table 1).

Fig 1. Mean ± SD numbers of inflammatory cells in nasal tissues of normal, sham, and allergenized
mice. * P < 0.05, ** P < 0.01.

doi:10.1371/journal.pone.0150463.g001
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Specific IgE, IgG1 and IgG2a to Fel d 1 of the cCE allergic mice after receiving vaccines/pla-
cebo + provocation are shown in Fig 3. The mean IgE levels of L-cCE and L-nFD 1 vaccinated
allergic mouse groups were not different (p> 0.05) and both were lower significantly than of

Fig 2. (A-C) Grades 1–3 of color intensity of the PAS-stainedmucus glands in nasal tissues of mice
(original magnification 400×). The color (magenta) is a result of the reaction between PAS dye and
glycogens in the mucus.

doi:10.1371/journal.pone.0150463.g002
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the placebo (p< 0.05) and was not different from the L-nFD1 group Allergic mice that received
L-cCE treatment had significant increase of the allergen specific IgG1 and IgG2 when compared
to placebo (p< 0.05). Specific IgG1 and IgG2 levels in the L-nFD1 vaccinated allergic mice were
not different from the placebo mice (p> 0.05). Nevertheless, when the IgE:IgG1 and IgE:IgG2
ratios of all groups were worked out, it was found that both vaccinated mouse groups had signifi-
cantly less values of the antibody ratios compared to the placebo mice (S2 Table).

Cytokine genes expressions
Fold changes of cytokine mRNAs in nasal tissues of allergic mice after treatments in compari-
son with the normal mice are shown in Fig 4. IL-4, IL-5 and IL-13mRNAs in the L-nFD1 vacci-
nated allergic mice were lower than the placebo mice (p< 0.05) (Fig 4A, 4B and 4C). Among
the three Th2 cytokines, only IL-5mRNA in the L-cCE mice was lower than the placebo mice
(Fig 4B). TNF-αmRNAs of both vaccinated mouse groups reduced markedly compared to the
placebo (p< 0.05) (Fig 4D). The levels of the IL-12a (p35), IL-12b (p40) and IL-23 (p19)
mRNAs of L-cCE and L-nFD1 groups were lower than the L-P group (p< 0.05) (Fig 4E, 4F
and 4G, respectively). IFN-γmRNAs in the vaccinated and placebo mice were not different
(Fig 4H). The vaccinated mice had significant increase in IL-10 and TGF-βmRNA levels
(p< 0.05) (Fig 4I and 4J) compared to the placebo and normal mice, while those of the L-P
treated mice were significantly lower than the normal mice (p< 0.05) On contrary, expressions
of IL-35 gene (ebi3) in the L-cCE and L-nFD1 groups were significantly lower than the placebo
(p< 0.05) (Fig 4K).

Table 1. Percentages of the PAS StainedMucus Grades in Nasal Tissues of Normal, Sham and Aller-
genized Mice and Allergic Mice after Receiving Vaccines and Placebo.

Group of mice (Total microscopic fields) % mucus grade*

Grade 1 Grade 2 Grade 3

Normal (31) 83.87a 16.13a 0a

Cat CE allergenized (23) 56.52b 26.09a 17.39b

Sham (53) 81.13a 18.87a 0a

L-P (78) 48.71a 23.08a 28.21a

L-cCE (92) 55.44a 42.39b 2.17b

L-nFD1 (55) 47.27a 40.00b 12.73b

L-P, L-cCE and L-nFD1 are allergic mice after receiving placebo and vaccines (5 mice per group). Five to

twenty microscopic fields (400×) of the mucus glands in the stained nasal tissues were graded according to

the color intensities.
* Percentages of individual PAS stained mucus grades were analyzed by Chi-square test.

Entries with different superscripts along vertical axis (a versus b) are statistically different at p < 0.05.

doi:10.1371/journal.pone.0150463.t001

Table 2. Characteristics of the Liposome Entrapped Vaccines and Placebo.

Vaccine Placebo

Parameter L-cCE L-nFD1 L-P

Average size (nm) (Mean ± SD) 5,345.33 ± 170.9 3,526.33 ± 284.01 4,519.33 ± 191.11

Polydispersity index (PDI) (Mean ± SD) 0.244 ± 0.11 0.535 ± 0.06 0.489 ± 0.003

Zeta potential (mV) (Mean ± SD) -2.31 ± 0.25 +41.40 ± 0.0 +26.73 ± 0.12

% immunogen entrapment 74.63 73.48 N/A

N/A, not applicable

doi:10.1371/journal.pone.0150463.t002
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Discussion
Asthma models of cat allergy have been developed previously [23–26] but the model of allergic
rhinitis (AR) has not been established as yet as far as the literature review. Therefore in this
study, the AR model to cCE was developed in mice by using the method and timeline that were
modified from previously successful allergy model development [9,17,26,27]. Nasal symptom
scores [27–29] were used for monitoring AR of the allergenized mice. The cCE allergenized
mice had more frequent nose rubbing and sneezing, more inflammatory cell infiltration into
the nasal tissues, more nasal mucus production, and higher serum specific IgE and IgG1 than
the sham mice. The overall features indicate that the allergenized mice had allergy (allergic rhi-
nitis) [30] even though the mast cell number at the tips of the allegenized mouse noses were
not different from the sham mice. Usually the mouse mast cells predominate at the body sur-
face areas that exposed to the external environment [31]. The cells are not involved only in ana-
phylaxis or allergy but they also mediate immune reaction (innate immunity) to foreign
matters that have arrived at the respiratory tissues [32]. Irritation of the mouse nasal tissues by
allergen and buffer instillation and nebulization could recruit the mast cells to the nasal tissues
in, more or less, similar degree.

Multi-lamellar liposome was chosen as the vaccine delivery vehicle/adjuvant as it is non-
toxic, biodegradable, and compatible with mammalian tissues. The encapsulated cargo can be
protected from the host hostile environment, e.g., enzymatic degradation [33]. The antigen is
released slowly from the micelles; thus reducing possibility of the antigen-mediated toxicity.
Liposome is known to be a Th1 adjuvant [34]. Nevertheless, types of the induced immune
response depend also on the liposome sizes [35]. The large vesicles (� 225 nm) were usually
phagocytosed by macrophages which involved in Th1 response [36,37] while the small vesicles
(� 155 nm) were captured by B lymphocytes [35,36]. The sizes of all liposome-entrapped vac-
cines in this study were above 3.5 μm; therefore, they should stimulate the Th1 response to the
entrapped components. The liposome composed of the phosphatidylcholine (neutral phospho-
lipid) and cholesterol were used successfully as the vaccine delivery vehicle and adjuvant for
treatment of allergies in mouse models [9,38]. The cationic liposome have more chance of coa-
lescing with the negatively charged host cell membrane and able to retain antigen at the site of
administration with higher ability to stimulate dendritic cells than the neutral or anionic vesi-
cles [39,40]. The cationic surfactant, i.e., DDAB, was used in an attempt to create the positive
surface charges to the liposome-vaccines. The L-nFD1 and the L-P were cathodic as expected,
but the L-cCE had a slightly anionic charge (-2.31 ± 0.25 mV), most possibly due the unknown
components in the crude extract which are beyond the control. The concentration of nFel d 1
for each vaccine dose in this study was based on the previous intranasal liposome-adjuvanted
refined major American cockroach allergen vaccine which was effective in treatment of the
cockroach allergy in a mouse model [9].

Levels of serum-specific IgE, a pathogenic antibody isotype for allergy, in both vaccinated
groups were reduced compared to the placebo. The role of IgG in allergy development has
been controversial because of their binding affinity to different Fcγ receptors which may lead
to different immune response outcomes [41–44]. In SIT, IgG can block the allergen binding to
IgE on the mast cell/basophil surface and thereby inhibits the allergic responses [44–46]. In
this study, both IgG1 and IgG2a rose in vaccinated allergic mice. The rise of specific IgG
responses with the reduction of IgE levels has lowered the IgE:IgG1 and IgE:IgG2 ratios among

Fig 3. Means of indirect ELISA OD405nm of rFel d 1 specific serum (A) IgE, (B) IgG1 and (C) IgG2a of cCE
allergic mice after receiving vaccines/placebo + provocation with aerosolic cCE. * P < 0.05 compared with
L-P by independent t-test.

doi:10.1371/journal.pone.0150463.g003
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Fig 4. Fold changes of cytokine mRNAs (A) IL-4, (B) IL-5, (C) IL-13, (D) TNF-α, (E) IL-12a (p35), (F) IL-12b
(p40), (G) IL-23 (p19), (H) IFN-γ, (I) IL-10, (J) TGF-β and (K) IL-35 in nasal tissues of allergic mice after
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the vaccinated groups in comparison to the placebo which indicates a shift of the Th2 to the
Th1 response by the vaccines.

The L-cCE vaccinated mice had the highest number of the cells infiltrated into nasal tissues
which might be a result of the non-target allergenic components contained in the cCE [47].

Both vaccines mediated reduction of the grade 3 mucus gland intensities which conformed
to the previously finding that allergic mice had reduction of mucus production after SIT
[26,45]. The IL-4, IL-5 and IL-13 in the nasal tissues of the L-nFD1 treated mice were reduced
significantly while only the IL-5mRNA was reduced in the L-cCE group, implying the higher
efficacy of the former than the latter in reducing the Th2 response. These findings are con-
formed to the data reported previously [9]. The reduction of the Th2 cytokine gene expressions
might be a cause of mucus production inhibition in the vaccinated mice [48].

TNF-α is a pro-inflammatory cytokine released in allergic responses from mast cells and
macrophages via IgE-dependent mechanisms [49]. It is required for allergen-specific IgE pro-
duction, induction of Th2 cytokines, and expression of adhesion molecule on endothelial cells
including ELAM-1, VCAM-1 and ICAM-1 which are involved in eosinophil infiltration to the
site of allergic inflammation [50]. In this study, the TNF-αmRNA of allergic mice was reduced
after vaccination, which suggests again the reduction of the allergen specific Th2 response.

Recently, IL-23 has been identified as a novel member of IL-12 family. Each molecule of this
cytokine is composed of p19 subunit specific for IL-23 and IL-12p40. IL-23 is required for
Th17 maintenance. The IL-23/Th17 cell axis plays a key role in development of inflammation
including autoimmune diseases and allergy [51,52]. Allergic mice treated with both liposome
vaccines had marked reduction of the p19mRNA compared to the placebo mice, indicating a
propensity of allergic inflammation reduction by regulating the Th17 while promoting the reg-
ulatory T cells (see below).

IFN-γ inhibits Th2 cytokines [53–55]. By the time of vaccine efficacy analysis, the IFN-γ
mRNAs of the vaccinated mice were not different from the placebo although they were higher
than the normal mice. However, there was a marked reduction of the IL-35mRNAs among the
vaccinated mice compared to the placebo mice. The IL-35 is a heterodimer of EBI3 and IL-12a/
p35 which is produced by both regulatory T and B lymphocytes [56,57]. IL-35 is a Th1 specific
immunosuppressive cytokine [56]. The IL-12p35/ebi3mRNAs in nasal tissues of allergic mice
were reduced after treatment with the vaccines; thus making significant increases of the ratios
of IFN-γ to IL-35mRNA expressions (0.46 ± 0.16 for L-cCE group and 0.51 ± 0.24 for L-nFD1
group) which were significantly higher than those of placebo group (0.07 ± 0.02) (p< 0.05).
These data suggest that there was a trend of the Th1 up-regulation.

Apart from the production of IL-35, regulatory T cells also produce IL-10 and TGF-β which
involved in an immune-regulation for allergy by suppressing effector T cell response(s), inhib-
iting allergen-specific IgE production, and inducing IgG4 and/or IgA production in human
after SIT [58,59]. Both vaccinated mouse groups had significant increases of IL-10 and TGF-β
mRNAs compared to the placebo mice, indicating Treg generation after vaccination.

Conclusions
Amouse model of allergic rhinitis model to crude cat hair extract (cCE) was developed. The
cat allergen vaccines alleviated the allergic manifestations in the modeled mice by causing a
shift of the pathogenic Th2 response towards the non-pathogenic Th1 and Treg responses. The

receiving vaccines/placebo and provocation compared with normal mice as determined by the quantitative
real-time PCR. *, P < 0.05 compared with L-P; #, P < 0.05 compared with normal mice by independent t-test.

doi:10.1371/journal.pone.0150463.g004
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liposome-adjuvanted cat allergen vaccines, particularly the L-nFel d 1, is worth testing further
for clinical applications.
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