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INTRODUCTION 
 

In many patients with diabetes, serious chronic 

complications such as diabetic nephropathy (DN) can 

develop [1, 2]. DN is characterized by diffuse 

glomerular sclerosis and proteinuria [3, 4], with the 

latter being directly linked to diabetes-associated 
podocyte injury and apoptotic death [5]. Antigen-

presenting cells commonly express the immune 

protein B7-1 [6], and the upregulation of this protein 
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ABSTRACT 
 

Objective: This study explored the therapeutic impact of combined cytotoxic T lymphocyte-associated antigen 4 
immunoglobulin (CTLA-4-Ig) treatment and microbubble-mediated exposure in a rat model of diabetic 
nephropathy (DN). 
Method: We treated rats using CTLA-4-Ig and/or microbubble exposure. At 8 weeks post-intervention, key 
parameters were evaluated including blood biochemistry, damage to renal tissue, renal parenchymal elasticity, 
ultrastructural changes in podocytes, and renal parenchymal expression of CD31, CD34, IL-6, Fn, Collagen I, 
Talin, Paxillin, α3β1, podocin, nephrin, and B7-1. 
Result: We found that renal function in the rat model of DN can be significantly improved by CTLA-4-Ig and 
CTLA-4-Ig + ultrasound microbubble treatment. Treatment efficacy was associated with reductions in renal 
parenchymal hardness, decreases in podocyte reduction, decreased IL-6, Fn and Collagen I expression, 
increased Talin, Paxillin and α3β1 expression, elevated podocin and nephrin expression, and decreased B7-1 
expression. In contrast, these treatments did not impact CD31 or CD34 expression within the renal 
parenchyma. 
Conclusion: These findings clearly emphasize that CTLA-4-Ig can effectively prevent podocyte damage, 
inhibiting inflammation and fibrosis, and thereby treating and preventing DN. In addition, ultrasound 
microbubble exposure can improve the ability of CTLA-4-Ig to pass through the glomerular basement 
membrane in order to access podocytes such that combination CTLA-4-Ig + microbubble exposure treatment is 
superior to treatment with CTLA-4-Ig only. 
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in podocytes has been shown to be closely linked to 

proteinuria [7]. Cytotoxic T lymphocyte-associated 

antigen 4 immunoglobulin (CTLA-4-Ig) can suppress 

B7-1 activity, thereby preventing the development of 

autoimmune pathology [8, 9]. Treatment of DN 

model rats with CTLA-4-Ig has been shown to 

facilitate podocyte repair, to improve podocyte 

activity, and to alleviate proteinuria [10]. The 

glomerular filtration membrane, however, is made up 

of layers of endothelial cells and podocytes separated 

by the glomerular basement membrane [11, 12]. 

Circulating CTLA-4-Ig must therefore be capable of 

passing through both the endothelium and this 

basement membrane in order to access podocytes and 

to bind the B7-1 molecules expressed on these cells. 

To date, however, few studies have identified 

strategies for improving the ability of CTLA-4-Ig to 

pass through these barriers in order to bind to 

podocyte B7-1. 

 

Ultrasonic microbubbles are a form of drug delivery 

system that represents an attractive alternative to 

adenoviral vectors or plasmids [13], allowing for 

targeted drug administration via a sonoporation process 

[14–16]. Microbubbles enable researchers to monitor 

the efficacy of such sonoporation in real-time at the site 

of treatment [17]. Importantly, prior work suggests that 

such ultrasound-mediated microbubbles can enhance 

renal interstitial capillary permeability in DN model 

rats [18]. 

 

The present study was designed to assess whether 

microbubble-induced sonoporation is capable of 

enhancing the ability of CTLA-4-Ig to penetrate  

the glomerular filtration membrane and to access 

podocytes, thereby improving the competitive 

inhibition of B7-1 and preventing podocyte detachment 

from the basement membrane. Specifically, we 

compared the relative efficacy of targeted 

microbubble-mediated CTLA-4-Ig delivery to that of 

treatment with CTLA-4-Ig alone in a rat model of DN. 

If successful, this approach may represent a viable 

strategy for the clinical treatment of DN patients 

throughout the world. 

 

RESULTS 
 

Assessment of key physiological and biochemical 

indicators in treated rats 

 

When we compared fasting blood glucose (FBG) 

levels among treatment groups, we found that these 

levels were comparable among the untreated model, 

CTLA-4-Ig-treated, microbubble-treated, and CTLA-

4-Ig + microbubble-treated groups (groups B, C, D, 

and E, respectively; P>0.05), whereas levels in all 

four of these groups were higher than in the healthy 

control group (group A; P<0.05). Endogenous 

creatinine clearance (Ccr) values did not differ 

significantly between groups B and D (P>0.05), but 

the values in these two groups were significantly 

below those measured in the three other groups 

(P<0.05). Specifically, these Ccr values were the 

highest in group A, with progressively lower values 

in groups E and C. The 24h urinary albumin 

excretion rate (UAER) and glomerular hypertrophy 

index (kidney weight/ body weight, KW/BW) values 

similarly did not differ between groups B and D 

(P>0.05), whereas the values in these groups were 

markedly elevated relative to the three other 

treatment groups (P<0.05). These values were 

significantly higher in group C animals relative to 

animals in group E, with values in group A animals 

being significantly lower than those in group E. No 

differences in alanine aminotransferase (ALT) or 

aspartate aminotransferase (AST) levels were 

measured among these five groups (P>0.05) (Table 1 

and Figure 1). 

 

Assessment of renal elasticity scores 

 

We next assessed elasticity scores for rats in the 

different treatment groups (Figure 2). When comparing 

groups B and D, no differences in these scores were 

detected, suggesting that microbubbles alone had no 

therapeutic efficacy (P>0.05). In addition, scores in 

groups C and E did not differ significantly (CTLA-4-Ig 

vs. CTLA-4-Ig+ microbubble; P>0.05). In order from 

low to high, elasticity scores in these giver groups were 

as follows: group A < (E and C) < D and B (P<0.05) 

(Tables 2, 3 and Figure 2). 

 

Assessment of renal morphology  

 

When we imaged H&E stained kidney tissues from 

animals in the different treatment groups, 

morphological changes were most pronounced among 

samples from animals in groups B and D, consistent 

with our above results. In contrast, less severe 

morphological alterations were detected in animals in 

groups C and E, suggesting that treatment with CTLA-

4-Ig with or without microbubble exposure were 

associated with reduced pathological kidney damage in 

this DN model system (Figure 2). 

 

Analysis of podocyte ultrastructural changes 

 

In line with our H&E staining results we found that 

podocyte ultrastructural changes were most evident in 
samples from groups B and D, while these changes 

were slightly reduced in samples from groups C and E 

(Figure 2). 
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Table 1. Comparison of general indicators and biochemical indicators of rats in each group (x±S). 

Indicators Control CTLA-4-Ig+UM CTLA-4-Ig UM Nonintervention 

FBG (mmol/L) 5.88±0.81 19.05±3.52a 20.02±3.65a 21.22±3.84a 20.92±3.90a 

Ccr(ml/min) 28.33±4.89 24.02±5.12a 20.28±3.81ab 5.26±0.82abc 5.08±0.67abc 

UAER(mg/24h) 20.69±4.13 113.32±26.42a 215.74±30.28ab 317.31±40.74abc 332.42±44.81abc 

KW/BW(mg/g) 3.29±0.39 4.48±0.44a 5.56±0.55ab 7.13±0.69abc 7.21±0.71abc 

ALT(U/L) 47.17±6.63 46.88±7.02 50.15±5.99 47.89±6.14 51.07±5.77 

AST(U/L) 62.18±8.00 65.33±7.39 64.01±7.85 67.58±7.77 68.20±7.53 

aP<0.05 compared with the control group; bP <0.05 compared with the CTLA-4-Ig+ ultrasound microbubble exposure group; 
cP<0.05 compared with the CTLA-4-Ig group. FBG, fasting blood glucose; Ccr, creatinine clearance rate; UAER, urinary albumin 
excretion rate; KW/BW, kidney weight/body weight; ALT, alanine aminotransferase; AST, aspartate aminotransferase. 

Assessment of kidney CD31, CD34, IL-6, Fn, 

collagen I, talin, paxillin and α3β1 expression  

 

No significant differences in CD31 or CD34 

expression were detected among the four DN 

treatment groups (groups B-E) (P>0.05), whereas the 

expression of both of these proteins was higher in all 

four groups relative to the healthy control group A 

(P<0.05) (Figures 3, 4). 

 

We observed significant differences in IL-6 (Figures 3, 

4), Fn, and Collagen I (Figures 5, 6) expression among 

these five treatment groups, with relative expression 

levels being, from low to high: group A < E < C < D 

and B (P<0.05). The differences between groups B and 

D were not significant (P<0.05). 

 

We observed significant differences in Talin-

1(Figures 5, 6), Paxillin and α3β1 (Figures 7, 8) 

expression among these five treatment groups, with 

relative expression levels being, from low to high: 

group D and B < C < E < A (P<0.05). The differences 

between groups B and D were not significant 

(P<0.05). 

 

 
 

Figure 1. Comparison of FBG, Ccr, UAER, KW / BW, ALT, and AST in five groups of rats.  Control: control group; CTLA-4-

Ig+UM: CTLA-4-Ig+ ultrasound microbubble exposure group; CTLA-4-Ig: CTLA-4-Ig group; UM: ultrasound microbubble exposure group; 
Nonintervention: no intervention group. Data are means ± SD. (A) FBG: fasting blood glucose, * P <0.05 vs control; (B) Ccr: 
endogenous creatinine excretion rate, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA -4-Ig; (C) UAER: 24-hour 
urine albumin excretion rate, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig; (D) KW / BW: Glomerular 
hypertrophy index (kidney weight / body weight), * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig; (E) ALT: 
Alanine aminotransferase, no significant difference between groups; (F) AST: Aspartate aminotransferase, no significant difference 
between groups. 
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Assessment of renal podocin, nephrin, and B7-1 

protein levels 

 

We observed significant differences in podocin and 

nephrin expression among these five treatment groups, 

with relative expression levels being, from high to low: 

group A > E > C > D and B (P<0.05). The differences 

between groups B and D were not significant (P>0.05) 

(Figures 9, 10). 

 

We additionally found that B7-1 protein levels varied 

among these five treatment groups, with these relative 

levels being, from low to high: group A < E < C < D 

and B (P<0.05). Differences between groups B and D 

were not significant (P>0.05) (Figures 9, 10). 

DISCUSSION 
 

We utilized a rat model of DN and treated these animals 

with CTLA-4-Ig and/or microbubble exposure in order 

to explore the therapeutic efficacy of these approaches 

(Figure 11). None of these treatments significantly 

impacted blood glucose levels in these DN model 

animals. However, treatment with CTLA-4-Ig or 

CTLA-4-Ig + microbubble exposure significantly 

improved renal function, with the combination 

treatment being the most efficacious. Microbubble 

exposure alone had no effect on renal function. ALT 

and AST levels did not differ significantly among 

groups (P>0.05), indicating that these treatments did not 

impact liver function in DN rats. We also found that 

 

 
 

Figure 2. Elastic imaging, H&E staining, and electron micrograph analyses of right kidney parenchymal podocytes in rats. 
Assessment of rat renal parenchymal elasticity. Control group: The majority of the region of interest (arrow) is green, with a small portion being 
red; score = 1. CTLA-4-Ig + UM group: The majority of the region of interest (arrow) is green, with some areas being red and blue; score = 2. CTLA-
4-Ig group: The majority of the region of interest (arrow) is green, with some areas being red and blue; score = 2. UM group: The region of 
interest (arrow) is primarily blue with some green; score = 3. Non-intervention group: The region of interest (arrow) is primarily blue with some 
green; score = 3. H&E staining of renal parenchymal tissue samples. -Control group: No glomerular capillary cavity changes, cellular proliferation, 
or basement membrane thickening are evident, with clear glomerular balloon; -CTLA-4-Ig + UM group: Glomerular volume is slightly enlarged 
and the glomerular basement membrane is partially thickened (black arrow), with slight cellular proliferation, with a small amount of hyaline 
substance deposition (yellow arrow) and vacuolated degeneration of the renal tubular epithelial cells (green arrow); CTLA-4-Ig group: Glomerular 
basement membrane thickening is evident (red arrow), with cellular proliferation, a small amount of hyaline substance deposition (yellow arrow), 
narrowing of the partial capillary lumen, marked vacuolated degeneration of the renal tubular epithelial cells (green arrow), and interstitial 
lymphocyte infiltration (blue arrow); UM group: Glomerular volume enlargement and basement membrane thickening are evident (red arrow), 
with marked cellular proliferation, flaky hyaline substance deposition (yellow arrow), vacuolated degeneration of renal tubular epithelial cells 
(green arrow), and narrowing of the capillary lumen (blue arrow); Non-intervention group:  Glomerular volume enlargement and basement 
membrane thickening are evident (red arrow), with cellular proliferation, flaky hyaline substance deposition (yellow arrow), vacuolated 
degeneration of the renal tubular epithelial cells (green arrow), narrowing of the capillary lumen (blue arrow), and hyalinosis of the glomerular 
wall (pink arrow). Assessment of podocyte ultrastructural features via TEM. (The splicing is used to join together two parts of the same TEM 
image due to the limitation of the field of view). Control group: Podocytes exhibit a uniform arrangement without any fusion or loss; CTLA-4-Ig + 
UM group: Podocyte synapses appear disorderly, without obvious fusion or loss; CTLA-4-Ig group: Podocyte synapse structures are still present, 
but with visible evidence of fusion (black arrow); UM group: Disorder of the podocyte synapse is evident, with some missing synapses, slight 
protrusion of the basement membrane, and visible synaptic fusion; Non-intervention group: the volume of the podocyte synapse is larger, with 
some missing and fused podocytes. 
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Table 2. Renal elasticity score of rats in each group. 

Score Control CTLA-4-Ig+UM CTLA-4-Ig UM Nonintervention 

1 14 6 7 - - 

2 1 8 7 8 9 

3 - 1 1 7 6 

Control: control group; CTLA-4-Ig+UM: CTLA-4-Ig+ultrasound microbubble exposure group; CTLA-4-Ig: 
CTLA-4-Ig group; UM: ultrasound microbubble exposure group; Nonintervention: no intervention group. 

Table 3. Comparison of renal elasticity score of rats in each group. 

 control vs CTLA-4-Ig+UM control vs CTLA-4-Ig control vs UM 

Z -3.049 -2.751 -4.854 

P 0.011* 0.026* 0.00* 

 CTLA-4-Ig+UM vs CTLA-4-Ig control vs nonintervention CTLA-4-Ig+UM vs UM 

Z -0.326 -4.847 -3.156 

P 0.775 0.000* 0.003* 

 CTLA-4-Ig+UM vs nonintervention CTLA-4-Ig vs UM UM vs nonintervention 

Z -2.994 -3.295 -0.362 

P 0.007* 0.002* 0.775 

 CTLA-4-Ig vs nonintervention   

Z -3.153   

P 0.003*   

Control: control group; CTLA-4-Ig+UM: CTLA-4-Ig+ultrasound microbubble exposure group; CTLA-4-Ig: CTLA-4-Ig 
group; UM: ultrasound microbubble exposure group; Nonintervention: no intervention group. *P < 0.05. 

 
 

Figure 3. Analysis of renal CD31, CD34, and IL-6 staining. Analysis of renal CD31 staining. Control group: Weakly positive CD31 

expression, with no evidence of blood vessel proliferation in the glomerulus (black arrow); CTLA-4-Ig + UM group: Strongly positive CD31 
expression, with a small number of blood vessels in the glomerulus (black arrow); CTLA-4-Ig group: Strongly positive CD31 expression, with a 
small number of blood vessels in the glomerulus (black arrow); UM group: Strongly positive CD31 expression, with significant vascular 
proliferation in the glomerulus (black arrow); Non-intervention group: Strongly positive CD31 expression, with significant vascular proliferation 
in the glomerulus (black arrow). Analysis of renal CD34 staining. Control group: Weakly positive CD34 expression, with no evidence of blood 
vessel proliferation in the glomerulus (black arrow); CTLA-4-Ig + UM group: Strongly positive CD34 expression, with a small number of blood 
vessels in the glomerulus (black arrow); CTLA-4-Ig group: Strongly positive CD34 expression, with a small number of blood vessels in the 
glomerulus (black arrow); UM group: Strongly positive CD34 expression, with significant vascular proliferation in the glomerulus (black arrow); 
Non-intervention group: Strongly positive CD34 expression, with vascular hyperplasia in the glomerulus (black arrow). Analysis of renal IL-6 
staining. Control group: Negative IL-6 expression in the glomerulus (black arrow); CTLA-4-Ig + UM group: Weakly positive IL-6 expression in the 
glomerulus (black arrow); CTLA-4-Ig group: Weakly positive IL-6 expression in the glomerulus (black arrow); UM group: Positive IL-6 expression 
in the glomerulus (black arrow); Non-intervention group: Strongly positive IL-6 expression in the glomerulus (black arrow). 
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Figure 4. Comparison of the expression of CD31, CD34, and IL-6 in rat kidneys. Data are expressed as means ± standard 

deviation, IOD / area of CD31, CD34, and IL-6: integrated optical density value per unit area of CD31, CD34, and IL-6. (A) CD31,  
* P <0.05 vs control; (B) CD34, * P <0.05 vs control; (C) IL-6, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs  
CTLA-4-Ig. 
 

 
 

Figure 5. Analysis of renal Fn, collagen I, and talin staining. Analysis of renal Fn staining. Control group: Weakly positive Fn expression 
in the glomerulus (black arrow); CTLA-4-Ig + UM group: Positive Fn expression in the glomerulus (black arrow); CTLA-4-Ig group: Positive Fn 
expression in the glomerulus (black arrow); UM group: Strongly positive Fn expression in the glomerulus (black arrow); Non-intervention 
group: Strongly positive Fn expression in the glomerulus (black arrow). Analysis of renal Collagen I staining. Control group: Weakly positive 
Collagen I expression in the glomerulus (black arrow); CTLA-4-Ig + UM group: Weakly positive Collagen I expression in the glomerulus (black 
arrow); CTLA-4-Ig group: Weakly positive Collagen I expression in the glomerulus (black arrow); UM group: Positive Collagen I expression in 
the glomerulus (black arrow); Non-intervention group: Strongly positive Collagen I expression in the glomerulus (black arrow). Analysis of 
renal Talin staining. Control group: Strongly positive Talin expression in the glomerulus (black arrow); CTLA-4-Ig + UM group: Strongly positive 
Talin expression in the glomerulus (black arrow); CTLA-4-Ig group: Strongly positive Talin expression in the glomerulus (black arrow); UM 
group: Positive Talin expression in the glomerulus (black arrow); Non-intervention group: Positive Talin expression in the glomerulus (black 
arrow). 
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Figure 6. Comparison of the expression of Fn, collagen I, and talin in rat kidneys. Data are expressed as means ± standard 

deviation, IOD / area of Fn, Collagen I, and Talin: integrated optical density value per unit area of Fn, Collagen I, and Talin. (A) Fn, * P <0.05 vs 
control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig; (B) Collagen I, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs 
CTLA-4-Ig; (C) Talin, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig. 

 

 
 

Figure 7. Analysis of renal Paxillin, α3, and β1 staining. Analysis of renal Paxillin staining. Control group: Strongly positive 
Paxillin expression in the glomerulus (black arrow); CTLA-4-Ig + UM group: Strongly positive Paxillin expression in the glomerulus 
(black arrow); CTLA-4-Ig group: Strongly positive Paxillin expression in the glomerulus (black arrow); UM group: Positive Paxillin 
expression in the glomerulus (black arrow); Non-intervention group: Positive Paxillin expression in the glomerulus (black arrow). 
Analysis of renal α3 staining. Control group: Strongly positive α3 expression in the glomerulus (black arrow); CTLA-4-Ig + UM group: 
Strongly positive α3 expression in the glomerulus (black arrow); CTLA-4-Ig group: Strongly positive α3 expression in the glomerulus 
(black arrow); UM group: Positive α3 expression in the glomerulus (black arrow); Non-intervention group: Positive α3 expression in 
the glomerulus (black arrow). Analysis of β1 staining. Control group: Strongly positive β1 expression in the glomerulus (black arrow); 
CTLA-4-Ig + UM group: Strongly positive β1 expression in the glomerulus (black arrow); CTLA-4-Ig group: Strongly positive β1 
expression in the glomerulus (black arrow); UM group: Positive β1 expression in the glomerulus (black arrow); Non-intervention 
group: Positive β1 expression in the glomerulus (black arrow). 
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both CTLA-4-Ig and CTLA-4-Ig + microbubble 

exposure improved renal elasticity to a comparable 

degree, whereas microbubble exposure alone had no 

effect.  

 

CD31 is known as platelet-endothelial cell adhesion 

molecule, and is a member of the immunoglobulin 

superfamily [19]. New blood vessels can form in 

glomeruli and interstitial cells in those with DN, and the 

growth of these vessels correlates with increased CD31 

expression [20–22]. CD34 is distributed in the renal 

glomeruli and interstitium in rats [23]. Electron 

microscopy analyses of renal capillary vessels have 

established that CD34 molecules are concentrated on 

membrane processes, and the role of these structures in 

glomerular permeability warrants further study [24, 25].

 

 
 

Figure 8. Comparison of the expression of Paxillin, α3, and β1 in rat kidneys. Data are expressed as means ± SD, IOD / area of 
Paxillin, α3 and β1: integrated optical density value per unit area of Paxillin, α3 and β1. (A) Paxillin, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig 
+ UM, Δ P <0.05 vs CTLA-4-Ig; (B) α3, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig; (C) β1, * P <0.05 vs control, #P 
<0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig. 
 

 
 

Figure 9. Expression of podocin, nephrin, and B7-1 proteins in rat kidneys with west-blot. 
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Figure 10. Comparison of expression of podocin, nephrin, and B7-1 proteins in rat kidneys. Data are expressed as means ± SD.  

IOD / area of podocin, nephrin, and B7-1: integrated optical density value per unit area of podocin, nephrin, and B7-1. (A) podocin, * P <0.05 
vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig; (B) nephrin, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs 
CTLA-4-Ig; (C) B7-1, * P <0.05 vs control, #P <0.05 vs CTLA-4-Ig + UM, Δ P <0.05 vs CTLA-4-Ig. 

 

 
 

Figure 11. Schematic overview of the present study. 
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Previous research has revealed that the expression of 

CD34 increases in the glomerular plasma membrane of 

diabetic animals [26]. Increased glomerular CD34 

expression is related to age and diabetes [27]. In our 

study, CD31 and CD34 expression was significantly 

higher in all DN model mice relative to healthy control 

animals (P<0.05), but no differences in these expression 

levels were detected among treatment groups. This 

suggests that these treatments did not significantly 

improve glomerular endothelial cells in DN rats. 

 

IL-6 is an important proinflammatory cytokine that can 

be secreted by B cells, keratinocytes, mononuclear 

macrophages and other cells. IL-6 plays a key role in 

the progression of DN through inflammatory response 

induction [28], and is a sensitive marker of DN 

development [29]. Sustained production of 

proinflammatory cytokines leads to increasingly severe 

local tissue inflammatory infiltration, which further 

degrades renal function. Fn is one of the most important 

components of the extracellular matrix (ECM), as 

increases in Fn levels will cause ECM agglomeration 

and accelerated DN development [30]. DN can be 

effectively treated by inhibiting Fn [31]. Collagen I is 

another key renal ECM component, levels of which rise 

in the context of DN such that the effective inhibition of 

collagen I can alleviate kidney damage [32, 33]. Herein, 

we found that IL-6, Fn, and Collagen I levels were 

decreased in the CTLA-4-Ig and CTLA-4-Ig + 

microbubble exposure treatment groups. This suggests 

that these CTLA-4-Ig-based treatments can inhibit 

inflammation and fibrosis, with combination therapy 

being superior to treatment with CTLA-4 alone, and 

with microbubble exposure not being protective. 

 

Up to now, the mechanism of CTLA-4-Ig in the 

treatment of DN is unclear. There is a hypothesis: 

podocytes can be anchored to glomerular basement 

membrane(GBM)  due to interactions between integrin 

α3β1 and talin which is a cytoskeleton-associated 

protein within podocytes under normal condition. But 

the interaction between talin and integrin α3β1 can be 

destroyed by B7-1 which was overexpressed in 

podocytes in DN [34, 35]. Because B7-1 can 

competitively bind to talin. As a result, the connection 

between podocytes and GBM become unstable, which 

lead to impaired glomerular filtration barrier and 

proteinuria. On the other hand, CTLA-4-Ig can inhibit 

the combination between B7-1 and to talin through 

competitively binding to B7-1, which facilitates the 

interaction between talin and integrin α3β1. Then 

podocytes became stable followed by repairing 

glomerular filtration barrier and relieving proteinuria 
[36]. In addition, studies have shown that paxillin may 

also participate in the above process and play an 

important role in the structure and function of podocytes 

[37, 38]. In our study, the expression of talin, paxillin 

and α3β1 was increased in these CTLA-4-Ig and 

CTLA-4-Ig + microbubble exposure treatment groups. 

This suggests that these CTLA-4-Ig-based treatments 

can incease expression of these three proteins, and 

furtherly enhance the stability of podocyte and decrease 

albuminuria, with combination therapy being superior 

to treatment with CTLA-4 alone, and with microbubble 

exposure not being protective. 

 

Nephrin and podocin are podocyte-specific markers, the 

expression of which is significantly reduced in diabetic 

podocytes [39–41]. Proteinuria and DN are correlated 

with the reduced expression of nephrin and podocin 

[42]. Changes in expression of nephrin and podocin 

may alter the permeability of the glomerular filtration 

membrane. Nephrin expression is a potent predictor of 

DN, and the presence of nephrin in the urine strongly 

suggests that DN is developing in a given patient [43]. 

DN is a common driver of kidney failure in diabetes 

patients [44, 45], and is associated with B7-1 

upregulation in podocytes [46]. Inhibition of B7-1 has 

been previously proposed to be an effective means of 

treating or preventing DN [47, 48]. Upregulation of B7-

1 on podocytes coincides with the impairment of renal 

function, and CTLA-4-Ig can reverse such impairment 

as well as B7-1 expression [47, 48]. CTLA-4-Ig 

administration reduces rates of podocyte death, 

preventing further renal damage. These podocytes, 

however, are found on the outermost layer of the 

glomerular filtration membrane. Circulating CTLA-4-Ig 

therefore needs to pass through both glomerular 

capillary endothelial cells and the basement membrane 

in order to access B7-1 on podocytes. We therefore 

sought to optimize CTLA-4-Ig delivery to podocytes by 

increasing its ability to penetrate through endothelial 

cells and the basement membrane. In our study, the 

expression of podocin and nephrin was increased 

CTLA-4-Ig and CTLA-4-Ig + microbubble exposure 

treatments on podocytes, whereas B7-1 expression was 

decreased in these treatment groups. This suggests that 

these CTLA-4-Ig-based treatments can provide 

effective protection to podocytes, with combination 

therapy being superior to treatment with CTLA-4 alone, 

and with microbubble exposure not being protective. 

 

Microbubbles are made up of external shells with gases 

interior [49, 50], enhancing microbubbles contrast in 

response to sound and allowing them to carry genes or 

drugs for targeted delivery [50, 51]. Ultrasonic energy 

can direct microbubble movement, and this combined 

microbubble and ultrasound treatment strategy can 

significantly improve local drug concentrations or gene 
expression [52–56]. Microbubbles are also valuable for 

imaging uses, and have been found to improve renal 

interstitial capillary permeability in DN model rats [18]. 
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Indeed, the use of microbubbles with appropriate 

acoustic parameters has been shown to improve local 

vascular permeability without disrupting local 

vasculature [57, 58]. Such approaches to increasing cell 

membrane permeability are known as sonoporation, and 

rely upon acoustic cavitation for targeted drug or gene 

delivery and improved treatment efficacy [16, 59–62].  

 

We treated DN model rats with CTLA-4-Ig and/or 

microbubble exposure. Following an 8-week treatment 

period, we found that combination CTLA-4-Ig + 

microbubble treatment significantly improved renal 

function, inhibited podocyte reduction, and improved 

the elasticity of the renal parenchyma. This combination 

therapy did not significantly alter renal CD31 or CD34 

expression, though it did significantly decrease IL-6, 

Fn, and Collagen I expression, meanwhile increase 

Talin-1, Paxillin, α3β1, podocin and nephrin expression 

and it reduced B7-1 expression. 

 

There are some limitations in this study. Firstly, we did 

not use different doses of CTLA-4-Ig to treat DN in our 

animal model experiments. Secondly, we did not assess 

the impact of different ultrasonic parameters on CTLA-

4-Ig delivery. Thirdly, we did not conduct molecular 

mechanistic studies. We are potentially considering to 

pursue future experiments to study the molecular 

mechanism and provide useful information regarding 

how ultrasound can guide CTLA-4-Ig utilization for DN 

clinical treatment. 

 

In conclusion, our results suggest that microbubble 

exposure and sonoporation may be able to enhance the 

therapeutic efficacy of CTLA-4-Ig via enhancing the 

passage of this antibody through the glomerular 

endothelium and basement membrane, allowing it to 

more readily access podocytes. Importantly, this 

combination CTLA-4-Ig + microbubble exposure 

treatment was superior to CTLA-4-Ig alone as a means 

of reducing DN-related renal pathology. These findings 

thus highlight a novel, safe, and efficacious approach to 

treating DN.  

 

MATERIALS AND METHODS 
 

The Institutional Review Board of Wenzhou Medical 

University approved this study, and the Committee on 

Ethical Use of Animals at Wenzhou Medical University 

approved all animal work described herein. 

 

Reagents  

 

A MyLab 60 device (Esaote, Genova, Italy) with a 4-13 

MHz transducer (LA523) was used for color Doppler 

ultrasonography. We additionally utilized a light 

microscope (Nikon, Japan), a transmission electron 

microscope (TEM; H-600; Hitachi, Japan), CTLA-4-Ig 

(Abcam, UK), Streptozotocin (Sigma, USA), a urine 

protein quantitative detection kit (CBB method), a 

creatinine detection kit (picric acid method), a 

colorimetric alanine aminotransferase detection kit 

(Shanghai Jining Industrial Co., Ltd), a colorimetric 

aspartate transaminase detection kit (Shanghai Jianglai 

Biotech Co., Ltd), anti-CD31 (A0378, Abclonal), anti-

CD34 (ab8158, Abcam), anti-IL6 (ab208113, Abcam), 

anti-Fibronectin (ab268021, Abcam), anti-Collagen I 

(A16891, Abclonal), anti-Talin 1 (ab71333, Abcam), 

anti-Paxillin (ab32084, Abcam), anti-Integrin alpha 3 

(AF5182, Affinity Biosciences), anti-Integrin beta1 

(ab179471, Abcam), anti-nephrin, anti-podocin, and 

anti-B7-1 (Shanghai Boyun Biotech Co., Ltd). 

 

Ultrasonic microbubble suspension preparation 

 

SonoVue sulfur hexafluoride microbubbles were used 

for this study. Per bottle (59 mg of sulfur hexafluoride 

gas and 25 mg of a lyophilized powder), 5 mL sterile 

physiological saline (0.9% NaCl) was added. Bottles 

were then shaken thoroughly to yield a microbubble 

suspension in which the diameter of 90% of the 

microbubbles therein was < 6 μm (average = 2.5 μm). 

Prepared solutions were used within 6 hours, and were 

shaken immediately prior to use. 

 

CTLA-4-Ig preparation 

 

Sterile physiological saline was used to resuspend 

lyophilized CTLA-4-Ig (1 mg per 2 mL), yielding a 0.5 

mg/mL solution. 

 

CTLA-4-Ig + microbubble suspension preparation 

 

Rather than being resuspended using physiological 

saline, lyophilized CTLA-4-Ig was resuspended in an 

ultrasonic microbubble suspension prepared as above at 

a 0.5 mg/mL concentration. Which ensured that CTLA-

4-Ig-treated, microbubble-treated, and CTLA-4-Ig + 

microbubble-treated groups received the same amount 

of physiological saline but different amounts of CTLA-

4-Ig and microbubbles. This solution was allowed to 

rest for 10-20 minutes at room temperature with 

repeated shaking prior to use. 

 

Animal treatment 

 

For this study, male Sprague Dawley (SD) rats (6-8 

weeks old; 200 ± 20 g) from Beijing Vital River 

Laboratory Animal Technology Co., Ltd. were used. 

In order to model DN, animals were fed a high-fat 
high-sugar diet (65% convention chow supplemented 

with 10 % cooked lard, 20% sucrose, 3% cholesterol, 

and 2% cholate), with 2% Streptozotocin (STZ) being 
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administered to rats after four weeks. STZ was 

prepared using a citric acid buffer (pH = 4.2-4.5; 2.1 

g citric acid in 100 mL ddH2O combined at a 1.32:1 

ratio with a solution of 2.94 g sodium citrate in 100 

mL ddH2O). STZ powder was dissolved using filtered 

0.1 mol/L citric acid to prepare a 2% solution that 

was intraperitoneally injected into rats (30 mg/kg). At 

three days post-injection, a tail vein blood sample 

was collected from each animal after a 12 h fast to 

assess blood glucose levels. Blood glucose values 

≥16.7 mmol/L were considered to be indicative of 

diabetes. 

 

In total we utilized 75 rats that were randomized into 

5 groups (n=15/group): Control rats that were fed 

regular food and water without treatment (Group A); 

an untreated model group in which DN was 

established based on prior approaches [63], with rats 

being maintained on a high-far high-sugar diet for 8 

additional weeks without any treatment (Group B); a 

CTLA-4-Ig group in which DN was established as 

above, and rats were fed a high-fat high-sugar diet for 

8 weeks during which time they were intravenously 

administered 0.5 mg/kg CTLA-4-Ig per week via tail 

vein injection (Group C); A microbubble exposure 

group in which DN was established as above, rats 

were maintained on a high-fat high-sugar diet for 8 

weeks during which they SonoVue tail vein injections 

(1 ml/kg/week) with simultaneous ultrasound 

exposure to the kidneys (Group D); A combination 

CTLA-4-Ig + ultrasound microbubble exposition 

group wherein rats were treated as in Group D, but 

were injected with both CTLA-4-Ig (0.5 mg/kg/w) 

and SonoVue (1 ml/kg/w) while undergoing 

ultrasound exposure (Group E). The rats’ kidneys 

were exposed to 1 MHz ultrasound waves for 4 

minutes per exposure twice per week with the 

following settings: 100 Hz pulse repetition frequency, 

1.5 W/cm2 output intensity, 0.2 MPa peak negative 

acoustic pressure and 60% duty cycle [64]. Animals 

had free access to food and water at all times and 

were not treated with insulin or other hypoglycemic 

agents. 

 

Assessment of renal parenchymal elasticity  

 

One day prior to euthanasia, all animals underwent an 

ultrasound-based assessment conducted by a single 

sonographer. Briefly, hair was removed from the lower 

back of each rat, the surface was cleaned, and an 

ultrasonic coupling agent was applied. An ultrasound 

probe was then positioned at an appropriate angle in 

contact with this region such that a maximal longitudinal 
section of the right kidney was visible in 2D grayscale 

mode. The elastic imaging mode was then activated, and a 

parenchymal elasticity score for the right kidney was 

measured based on the scoring system previously detailed 

by Itoh et al [65]. 

 

Assessment of blood and urine biochemistry 

 

At 24 hours prior to experimental termination, urine 

was collected from all animals. Total urine volumes 

were measured and used to calculate the urine volume 

per minute (UVPM). These samples were then spun for 

10 minutes at 3500 rpm prior to being stored at -80° C 

for measurements of 24h UAER and urine creatinine 

(Ucr) levels. The body weight (BW) of each rat was 

measured prior to sacrifice. Animals were then 

anesthetized using chloral hydrate (400 mg/kg, i.p.). 

Blood was then collected from the right common 

carotid artery of each animal, and was spun for 10 

minutes at 3500 rpm at 4° C before storage at -20° C for 

measurements of FBG, ALT, AST, and serum 

creatinine (Scr). In addition, Ccr was calculated as 

follows: Ccr = (Ucr × UVPM) / Scr, where UVPM = 24 

h urine volume/ (24 × 60). Immediately following blood 

collection, kidney tissues were collected from each rat.  

 

Assessment of kidney morphology 

 

Tissue collection 

Renal samples were collected by perfusing rats with  

4° C physiological saline through the left ventricle until 

the fluid ejected through the right atrium was clear. 

Animals were then perfused with 4% paraformaldehyde 

(PFA), and kidneys were collected. The right kidney 

was then weighed and stored for 48 h in 4% PFA. 

 

Preparation of tissue sections 

Following fixation, right kidney samples were transferred 

to a 70% alcohol solution for 48 h at 4° C, after which 

they were dehydrated for 1 h using an ethanol gradient 

(70%, 80%, 90%, 100% I, 100% II). Samples were then 

treated for 15 minutes with a toluene alcohol solution 

(xylene/alcohol [v/v] = 1:1), followed by a 15 minute 

treatment with xylene and a 5 h paraffin-embedding step 

at 65° C (soft wax 2 h; hard wax 3 h). Serial coronal 

sections (5 μm thick) were then prepared from these 

paraffin-embedded tissues and were dried at 65° C. 

 

Hematoxylin and eosin (H&E) staining 

Prepared tissue sections were de-paraffinized using 

xylene, rehydrated using an ethanol gradient (100%, 

95%, 90%, 80%, 70%, 50%; 3 minutes each), and 

stained with hematoxylin for 5 minutes. Samples were 

then washed twice in water, treated with phosphate-

buffered saline (PBS) (Sigma-Aldrich Co., St. Louis, 

USA) for 30 seconds, washed twice with water (30 
seconds per wash), and dehydrated with an ethanol 

gradient (50%, 70%, 80%, 90%, 95%; 1 minute each). 

Samples were then stained with eosin for 30 seconds 
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prior to further treatment with an ethanol gradient (95%, 

100% I, 100% II; 1 minute each). Samples were then 

treated twice with xylene for 2 minutes, and were sealed 

with a neutral resin, dried, and visualized via light 

microscopy. 

 

Assessment of renal tissue ultrastructure 

 

For ultrastructural analyses, animals were euthanized 

and perfused with 4% PFA as above. Kidneys were then 

collected and were fixed for 4 h using 4% 

glutaraldehyde. These tissues were then washed thrice 

using PBS (30 minutes per wash), followed by a 3-hour 

treatment with 1% citric acid. Next, samples were 

washed with PBS, dehydrates using an ethanol gradient 

(50%, 70%, 80%, 90%, 95%; 10 minutes). Next, 

propylene oxide was added for 20 minutes. Propylene 

oxide: Epon812 epoxy resin embedding agent (1: 1) 

soaked for 1h. Epon812 epoxy resin embedding agent 

soaked for 3h, 35° C, 45° C, 55° C polymerization for 

12h. Next, semi-thin (1 μm) tissue sections were 

prepared, followed by the preparation of ultrathin (70 

nm) sections that were stained using 0.4% uranyl 

acetate and 2 % citrate (10 minutes each). Samples were 

then visualized via TEM.  

 

Immunohistochemistry  

 

Immunohistochemistry staining for CD31, CD34, IL-6, 

Fn, Collagen I, Talin-1, Paxillin, and α3β1 was 

performed using kidney sections, which were observed 

under a light microscope. Image-Pro plus was used to 

quantitatively evaluate CD31, CD34, IL-6, Fn, Collagen 

I, Talin-1, Paxillin, and α3β1 expression. 

 

Immunohistochemical staining was all performed on 5-

µm tissue sections. Briefly, the tissues were dewaxed 

and rehydrated. The tissue sections were incubated with 

0.5% trypsin at 37° C for 20 minutes for antigen 

retrieval, and treated with a 3% methanol solution of 

hydrogen peroxide for 30 minutes to block endogenous 

peroxidase activity. Next, the sections were incubated 

with 3% bovine serum albumin in PBS for 30 minutes 

at room temperature to block non-specific protein 

binding, and then incubated with primary antibodies 

overnight, including (anti-CD31 at 1:200, anti-CD34 at 

1:3000, anti-Collagen I at 1:6000, anti-Fibronectin at 

1:1000, anti-Talin 1 at 1:6000, anti-Paxillin at 1:1000, 

anti-IL6 at 1:6000, anti-Integrin alpha 3 at 1:4000, and 

anti-Integrin beta1 at 1:8000). After incubating with 

biotinylated secondary antibody for 35 minutes, the 

tissue sections were incubated with Vectastain® Elite® 

ABC reagent (Vector Laboratories) for 35 minutes. 
Then 0.06% 3,3′-diaminobenzidine (Sigma, USA) plus 

hydrogen peroxide was used to detect peroxidase 

activity, and Carazzi's hematoxylin was used to stain the 

nucleus. For negative controls, primary antibody 

incubations were replaced with an incubation in non-

immune serum. Image-Pro plus was used for 

quantitative analyses. 

 

Western blotting  

 

The protein expression of podocin, nephrin and B7-1 in 

the kidney was detected by Western blotting. And the 

protein expression was quantified using Image Lab 3.0 

(Beta3). 

 

The kidney tissue was homogenized in a mixed buffer 

solution containing 100 mM NaCl, 20 mM Tris-HCl 

(pH 8.0), 1 mM EDTA, 10% NP-40 (v/v) and a protease 

inhibitor mixture (1: 100, Sigma). The BCA protein 

assay kit was used to measure the total concentration of 

the protein obtained above. The protein was then heated 

at 97° C for 5 minutes, separated by 10% SDS-PAGE 

and transferred onto a PVDF membrane (Millipore, 

USA). The membrane was incubated with specific 

primary antibodies (Anti-nephrin at 1:500, anti-podocin 

at 1:2000, and anti-B7-1 at 1:1000) and corresponding 

secondary antibodies. Protein bands were observed 

using an enhanced chemiluminescence reagent kit 

(Millipore, USA). 

 

Statistical analysis 

 

SPSS v22.0 (SPSS Inc., IL, USA) was used for 

statistical testing. Data are means ± SD and were 

compared via one-way ANOVAs with post hoc LSD 

tests. P<0.05 was the significance threshold. 
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DN: diabetic nephropathy; CTLA-4-Ig: Cytotoxic T 
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