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Abstract

Micromotion between the brain and implanted electrodes is a major contributor to the failure

of invasive microelectrodes. Movements of the electrode tip cause recording instabilities

while spike amplitudes decline over the weeks/months post-implantation due to glial cell

activation caused by sustained mechanical trauma. We compared the glial response over a

26–96 week period following implantation in the rabbit cortex of microwires and a novel flex-

ible electrode. Horizontal sections were used to obtain a depth profile of the radial distribu-

tion of microglia, astrocytes and neurofilament. We found that the flexible electrode was

associated with decreased gliosis compared to the microwires over these long indwelling

periods. This was in part due to a decrease in overall microgliosis and enhanced neuronal

density around the flexible probe, especially at longer periods of implantation.

Introduction

Penetrating electrode arrays offer the ability to monitor neural activity in a wide variety of
experimental paradigms and in clinical settings, at single-cell resolution. However, when such
arrays are implanted chronically, the brain immune response is activated, leading to the degra-
dation of viable signal from neurons and recording instabilities [1,2]. Regardless of the elec-
trode design (whether silicon or microwire electrodes), there is a clear activation of resident
microglia and infilitratingmacrophages due to blood-brain-barrierdamage around the
implants ranging up to 100 microns, accompanied by reduced neural density after periods as
short as 4 weeks [3–6]. Furthermore, hypertrophic astrocytes surrounding the implant from
100–300 microns can result in a high impedance barrier between the electrode and the sur-
rounding brain tissue [3]. The lack of neurons, high impedance glial scar and degradation of
the electrode due to hostile immune factor release contribute to generalize electrode failure.
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Over the past 60 years, many factors have been identified that can cause an enhanced for-
eign body response to implanted electrodes:Damage of vasculature upon initial insertion lead-
ing to decreased or no blood perfusion [7] for the brain tissue where the electrode resides [8–
10], damage to the blood brain barrier causing infiltration of peripheral immune factors [7,11]
and activation of microglia and astrocytes releasing hostile factors which compromise neuronal
function [3,12] and electrodematerials [13,14]. This persisting immune response is likely
caused by micromotion induced trauma [15]. Typical electrodematerials include silicon and
microwires, which have a higher Young’s modulus (150 GPa) than brain tissue (5–30 KPa),
meaning that microelectrodes anchored to the skull cannot accommodate movement of the
brain within the cranial cavity. Even if electrodes are floating with the brain, the deformation
of the tissue will change the position of the deep neurons relative to the anchoring point at the
brain. This inability to deform with the brain persistently irritates the surrounding brain tissue
and can cause a heightened detrimental immune response.
One way to mitigate the modulus mismatch between the brain and electrodematerials, is to

use materials with a lower Young’s modulus, for example Parylene-C or Polyimide insulated
thin film electrodes that have been shown to record for periods up to 4–12 weeks [16–18].
However, to find a clinically viable solution for the instabilities in Brain machine interfaces it is
important to consider the foreign body response over longer indwelling periods.
Here we present a comparison of the foreign body response (FBR) to novel flexible elec-

trodes (‘Sinusoidal probe’) and to conventional microwire electrodes over very long indwelling
periods from 24–96 weeks in the rabbit cortex.We used horizontal sections to obtain a depth
profile over each electrode, evaluating microglia, astrocytes and neurofilament to give a three-
dimensional assessment of the FBR. Post-mortem histology suggests that overall the flexible
electrodes had a reduced response compared to the microwires, with enhanced neural survival.
These results are applicable to many flexible designs and validate the need to reduce micromo-
tion-induced trauma to enhance electrode longevity and minimize the immune response.

Material and Methods

Microelectrodes

Details of the flexible sinusoidal probe have been published previously [19]. Briefly, the overall
electrode bodywas 20 μm deep and 35 μmwide, and 3 or 5.5mm long. The electrode shaft con-
sisted of 10 sinusoidal cycles of 100 μm amplitude and 500 μm period, and was linked via a 3 cm
long and 3 mmwide ribbon cable to a standard connector (micro ps1/ps2 series, Omnetics
ConnectorCorporation,USA). The probe was made out of flexible Parylene-C and had tungsten-
titanium conductivemetal for the recording sites (96 μm2) and conductive tracts. Post-processing,
a spheroid polyimide anchor was added to the recording end (100 μm diameter), to anchor the
three protruding recording sites. The ‘sinusoidal’ shaft would counteract the motion of the brain,
with the recording sites restricted in movement, relative to the recording tissue of interest.
The flexible probe was temporarily attached to a sharp and rigid carrier for insertion (0.229

mm diameter steel electrodes, 2–3 μm tips; Microprobe INC, USA) using poly-ethylene-glycol
(PEG, MW. 6000, Sigma Aldrich, USA).
Microwire electrodes (50μm diameter Teflon-insulated tungsten, Advent, UK) were con-

structed by appropriately deinsulating one end of the wire and crimping a connector to form
reliable electrical contact (Amphenol, USA). The other end was cut-flush, which would be
implanted into the rabbit brain. A side-by-side comparison of the microwire and sinusoidal
electrode is shown in Fig 1.
The flexibility of both neural probe types can be estimated by using the equation to measure

the deflection of a cantilever beam [20,21]. The equation accounts for the Young’s modulus
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and electrode dimensions:

k ¼
Ewt3

4l3

where E is the Young’s modulus of the bulk material (Pa), w is the beamwidth (m), t is thick-
ness (m) and L the length (m). The value k in Nm-1, can be calculated and compared for each
intracortical electrode,which is the stiffness constant.
By using this equation values of k = 7.10 x 10−3 and 2.25 Nm-1 are calculated for the sinusoi-

dal probe and microwire, respectively. The sinusoidal probe is more flexible as shown by the
lower stiffness constant value at the dimensions compared in this study.

Animals and Surgery

All experiments were approved by the local ethics committee at Newcastle University and were
performed under appropriate Home Office licences in accordance with the UK Animals (Sci-
entific Procedures) Act 1986.
Electrodes (4–5 Sinusoidal probes and 4 Microwire probes) were implanted into the sensori-

motor representation of four New Zealandwhite rabbits (Oryctolagus cuniculus; Charles River,
UK. Two Subjects were used for the 26 week characterization and single subjects were used for
52 and 96 week characterization.

Fig 1. Side-by-Side comparison of the sinusoidal and microwire probe used in this study. The sinusoidal probe is a flexible

Parylene-C based electrode. Scale bar = 500 μm.

doi:10.1371/journal.pone.0165606.g001
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After a midline skin incision, electrodeswere inserted stereotaxically relative to bregma,
between 4mm anterior to 4 mm posterior and 0.5 to 7 mm lateral[22,23], after burr- hole crani-
otomies were made in the specific locations. Electrodeswere inserted quickly [24] using a ste-
reotaxic manipulator (Kopf, USA). The PEG was dissolved with warm saline to release the
electrode from the carrier, which was subsequently removed. Microwire electrodeswere
insertedmanually with hooked surgical forceps. Connectors were attached with skull screws
and dental cement. A wire wrapped around one skull screw served as ground and reference for
the recordings.

Tissue preparation and Staining

All tissue preparation and staining methods have been described elsewhere [19]. In brief, ani-
mals were transcardial perfusionwith phosphate buffered saline (PBS) and then formal saline.
50 μm thick sections were obtained over the entire electrode profile for both electrotypes with
the use of a microtome.
Horizontal slices corresponding to the top, middle and bottom of the electrode profile were

stained (Table 1) for microglia isolectin-b4 (Vector Labs, UK: Biotinylated Griffonia (Bandeir-
aea) Simplicifolia Lectin 1, B-1105), astrocytes (GFAP,Sigma-Aldrich, UK) and neurofilament
SMI-32 (Cambridge Biosciences, UK: R-500).
After the incubation stages, the Diaminobenzidine (DAB) reaction was performed, followed

by a series of alcohol (5 minutes of 70%, 95%, 100%, 100%) and two, 10 minute histoclear
washes (Sigma-Aldrich,UK), before cover slips were mounted with histomount (Sigma-
Aldrich, UK).

Analysis

All statistical comparisons were betweenmultiple electrodeswithin the same animal to avoid
inter-individual variability. As describedpreviously [19], Images were taken at x 10 magnifica-
tion for the responses for each stain type. In the Matlab environment (2009a Mathworks,
USA), we normalized the images by subtracting the background staining level for each slice, so
that only the response was observed.We performed radial distribution intensity measure-
ments, centered on the implant site, and intensity levels were measured concentrically, every 2
um with measurements obtained up to 500 μm away from the electrode implantation center.
To compare the electrode types, paired t-tests were performed comparing both electrode types
on specific intensity values corresponding to 50–500 μm away from the electrode implantation
centre across all electrode tracts and profile depths, at 50 μm spacing. Distance comparisons
were also corrected to account for potential differing implantation site sizes, on a per-electrode
tract basis.
To account for multiple comparison error, the Bonferroni correctionwas performed. The

smallest p-value obtained for each depth profile comparison had to be smaller than 0.05

Table 1. Antibodies and relative concentrations used for analysing the immune response around electrode implants. All antibodies were diluted in

PBS-0.3% triton.

Stain Target Antibody type Concentration

GFAP Astrocytes Primary 1:500

SMI 32 Neurofilament Primary 1:1000

Isolectin-b4 Microglia Primary 1:200

HRP strep - - - - - - - - - - 1:200

Biotinylated antimouse - - - - - - - - - - 1:200

doi:10.1371/journal.pone.0165606.t001
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divided by the total number of t-tests performed (10) to account for multiple comparison
error. If this was the case, all t-tests performedwere accepted for the specific depth profile
comparison.
The probability of a false positive (type I error) being reported without the Bonferroni cor-

rection is given by 1-(1-α)n, where α is the confidence interval and n is the number of t-tests
performed. For our study this gives a value of 0.40.
This analysis process is summarized in Fig 2.

Results

Top profile comparison

There was a significant reduction in the astrocytic response (Fig 3) observedup to 300 μm and
250 μm, away from the electrode implant for the sinusoidal probe at 52 (Fig 3A and 3B) and 96
(Fig 3E and 3F) weeks, respectively.
The microglial reaction (Fig 4) was reduced between 200–500 μm and 0–250 μm for 52 (Fig

4A and 4B) and 96 (Fig 4C and 4D) week time points.
An increase in neurofilament (Fig 5) was observedup to 150 and 50 μm away for 52 (Fig 5A

and 5B) and 96 (Fig 5C and 5D) week time points. The reduction in the microglial response
was often accompanied by an increase in neurofilament staining around the flexible probe.

Middle profile comparison

There was a significant reduction in the astrocytic response (Fig 6) observedup to 200 and
100 μm away from the electrode implant for the sinusoidal probe for 52 (Fig 6A and 6B) and
96 (Fig 6E and 6F) weeks, respectively. The microglial reaction was similar for both electrode
types (Fig 7).

Fig 2. The sequential steps for glial response normilisation and subsequent statistical analysis using a radial distribution to

compare staining intensity for microgliosis, astrcytosis and neuralfilament staining.

doi:10.1371/journal.pone.0165606.g002
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An increase in neurofilament (Fig 8) was observedup to 150 and 100 μm away for 52 (Fig
8A and 8B)and 96 (Fig 8C and 8D)week time points.

Bottom profile comparison

A reduction in the astrocytic response was observedup to 250 and 450 μm away from the elec-
trode implant for the sinusoidal probe for 24 (Fig 9A and 9B) and 96 (Fig 9E and 9F) week,
respectively.
The microglial reaction was reduced up to 500 μm away for both 52 (Fig 10A and 10B) and

96 week time points.
An increase in neurofilament was observedup to 500 and 100 μm away for 52 (Fig 11A and

11B) and 96 (Fig 11C and 11D) week time points. The increase in neurofilament was related to
a decrease in the microglial response around the probe’s recording sites, showing the viability
of the tissue around the flexible probe more than 52 week post-implant.

Summary of results

A summary of the histological comparisons is provided in Table 2.

Fig 3. The astrocytic response for the top profile for the sinusoidal probe and microwire probe for 26 (A,B), 52 (C,D) and

96 (E,F) week time points. Reduction in astrcytosis was found at 52 and 96 weeks for the flexible probe.

doi:10.1371/journal.pone.0165606.g003
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General implantation footprint

Implant footprints (size of the hole resulting from the electrodes)were also measured for all
the profile depths. For the top profile the mean implant size (n = 15, ±S.E.M.) was 96.6± 1.4
and 108. 4±10.4 μm for the microwire and sinusoidal probe, respectively. For the middle profile
the mean implant size (n = 15) was 120.2± 15.0 and 146.1± 19.7μm for the microwire and

Fig 4. The microglial response for the top profile for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,

D) week time points. Reduction in microgliosis was found at 52 and 96 weeks for the flexible probe.

doi:10.1371/journal.pone.0165606.g004

Fig 5. Neuronal density for the top profile for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,D) week

time points. Increased neurafilament was found at 52 and 96 weeks for the flexible probe close to the probe.

doi:10.1371/journal.pone.0165606.g005
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sinusoidal probe, respectively. For the bottom profile the mean implant size (n = 15) was 101.5
± 3.1and 147.3± 14.1μm for the microwire and sinusoidal probe, respectively (t(15) = 3.14,
P<0.05). The implant profile for the sinusoidal probe was larger than the microwire for the
bottom profile, perhaps owing to the incorporation of the polyimide anchor.

Discussion

We compared the FBR to a flexible electrode and conventional microwire over very long
indwelling times. Overall, there was a decreased FBR for the flexible probe at the differing
depths evaluated. Interestingly, decreasedmicroglial reaction was associated with an increase
in neural density around the flexible probe at all of the depths measured. For longer time-
points, there was an apparent increase in microglia, accompanied by decreased neuronal den-
sity around the microwire electrode. This supports existing literature that a decreasedmicro-
glial reaction should promote neural viability. Interestingly we found a similar microglia
response for the middle profile of both electrodes, perhaps owing to the moving shaft that was
designed to counteract the brain motion at the electrode tip. However, the response is not
worse than the microwire probe.

Fig 6. Astrocytic response for the middle profile for the sinusoidal probe and microwire probe for 26 (A,B), 52 (C,D) and

96 (E,F) week time points. Decreased astrocytosis was found at 52 and 96 weeks for the flexible probe close to the probe.

doi:10.1371/journal.pone.0165606.g006
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In this study we used horizontal sections to evaluate the FBR at different depths relating to
different parts of the probe. For some tracts, it was noticeable that the sinusoidal probe had a
larger implant profile perhaps due to the formation of the polyimide-anchoring ball, which
could vary in diameter (100–200 μm). However, even with this discrepancy it is noted that

Fig 7. microglial response for the middle profile for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,D) week

time points. Similar responses were found for both probe types.

doi:10.1371/journal.pone.0165606.g007

Fig 8. Neuronal density for the middle profile for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,D)

week time points. Increased neurafilament was found at 52 and 96 weeks for the flexible probe close to the probe.

doi:10.1371/journal.pone.0165606.g008
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reduced FBR was achieved overall compared to the microwire probe. Further, the implantation
used a stiff, sharp carrier for the sinusoidal probe, in contrast to the direct insertion of micro-
wires. Both the implant size and insertionmethod could in theory have causedmore damage
to the neural tissue. Despite this, over the time points observedwe found decreased FBR for the
flexible electrodes compared to the microwires. This effect is most likely due to less irritation of
the tissue by a mechanically compliant implant.
Interestingly, a directional response for the microwire was observed in certain cases rather

than a circular response around the probe, as is the case for the sinusoidal probe. However, the
radial distribution analysis used here takes into account both response types. If a simple line
fluorescent intensity response were taken in the direction of the microwire general response,
the sinusoidal probe would have performedmuch better as it would have lower intensity values
in a given linear direction from the center of the implant. However, the whole response around
the probe would not be accounted for, as the response is circular in nature. Therefore it is
appropriate to use a radial distribution response to compare the response between the two elec-
trode types.

Fig 9. Astrocytic response for the tip region for the sinusoidal probe and microwire probe for 26 (A,B), 52 (C,D) and 96

(E,F) week time points. Decreased astrocytosis was found at 24 and 96 weeks for the flexible probe.

doi:10.1371/journal.pone.0165606.g009
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Fig 10. Microglial response for the tip region for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,D) week time

points. Decreased microgliosis was found at 52 and 96 weeks for the flexible probe at all the distance comparisons.

doi:10.1371/journal.pone.0165606.g010

Fig 11. Neuronal density for the tip region for the sinusoidal probe and microwire probe for 52 (A,B) and 96 (C,D) week time

points. Increased neuronal density was found at 52 and 96 weeks for the flexible probe.

doi:10.1371/journal.pone.0165606.g011
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A reason for this linear response seen with the microwire may have been due to the inability
for the microwire electrode to move in certain directions over the long indwelling periods, per-
haps due to the build-up of the glial scar. However, the exact cause of this should be further
investigated in future studies.
Although we do not report time points earlier than 26 weeks, electrophysiology obtained

from the sinusoidal probe shows that the probe was reliable in obtaining high fidelity signals
before this histology end point compared to the microwire [19]. However, these timepoints for
the FBR should also be evaluated in the future.
Single penetrations were made in this study and indeed during surgery we were able to

angle electrodes slightly to miss prominent surface blood vessels, which would be detrimental
to the signal quality obtained from the electrodes. This supports existing literature that fixed
geometry arrays can unavoidably damage vasculature, causing varied and detrimental chronic
recording performance between arrays [6,7,10], which in some cases have been compared to
stroke-like lesions [7].
Inserting a microelectrodealso can cause damage to the blood-brain-barrier (BBB). Damage

to the BBB would lead to an unfavorable environment for neurons as homeostasis would be
lost through ionic imbalances and through the promotion of neurodegenerative pathways,
which would lead to neuronal death. As the sinusoidal probe was able to record stable neural
activity and have an overall reduced FBR responses overtime, it might be indicative that dam-
age to the BBB was reduced, although this needs to be confirmed in future studies through spe-
cific staining using IBA1 primary antibody [7,11]. The effects of the interaction of the
peripheral and central immune response merits further investigation as recent findings have
shown a direct link between the two, rendering the brain a non-immuno privileged organ [25].
Although we performed conventional histologicalmethods for evaluating the FBR sur-

rounding the probes, recently published novel methods should be used to evaluate the FBR sur-
rounding the electrode. Such methods include tissue-clearingmethods, where a larger part of
the brain can be sectioned and observed as an intact structure [26–28]. Further, these methods
may allow for more than one primary antibody to be used, allowing for more thorough investi-
gation of the implant sites. Often, the glial scar consists of densely packed cells around the elec-
trode implant. A method of great interest to ‘zoom’ in on these cells and observe the
interactions of the glial mediators and neurons is that of expansion microscopy. Using conven-
tional histologymethods and microscopy, it may be possible to closely examine the FBR by
simply expanding the tissue and observing super high-resolution histology using conventional
microscopes [29]. The findings could lead to new insights informing overall device design and
a better understanding of the FBR.
We report data from a small number of animals, however our statistical comparisons were

made by inserting a large number of electrodes to reduce animal to animal variations.

Table 2. Summary of histological comparisons at 24,52 and 96 week chronic indwelling points for both microwire and sinusoidal probe.

Timepoint Top profile Middle profile Bottom profile

26 week-Astrocytes ____ ____ ⬇
52 week-Astrocytes ⬇ ⬇ ____

52 week-Microglia ⬇ ____ ⬇
52 week-Neurofilament ⬆ ⬆ ⬆

96 week-Astrocytes ____ ____ ⬇
96 week-Microglia ⬇ ____ ⬇

96 week-Neurofilament ⬆ ⬆ ⬆

doi:10.1371/journal.pone.0165606.t002
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However, more small animals and non-human primates should be implanted to corroborate
these initial findings for the suitability of a flexible probe to enhance recording longevity
through potential reducedmicromotion related trauma.

Conclusions

Here we performed a comparison between a novel flexiblemicroelectrodeand conventional
microwires over 26–96 week indwelling periods in the rabbit cortex. The flexible electrodewas
associated with decreased FBR and increased neural density across majority of the probe
depth. These results suggest that flexiblemicroelectrodedesigns help to reduce micromotion-
induced trauma and enhance electrode longevity.
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