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Lymphocytes are an integral component of the immune system. Classically, all

lymphocytes were thought to perpetually recirculate between secondary lymphoid

organs and only traffic to non-lymphoid tissues upon activation. In recent years,

a diverse family of non-circulating lymphocytes have been identified. These include

innate lymphocytes, innate-like T cells and a subset of conventional T cells. Spanning

the innate-adaptive spectrum, these tissue-resident lymphocytes carry out specialized

functions and cross-talk with other immune cell types to maintain tissue integrity and

homeostasis both at the steady state and during pathological conditions. In this review,

we provide an overview of the heterogeneous tissue-resident lymphocyte populations,

discuss their development, and highlight their functions both in the context of microbial

infection and cancer.
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INTRODUCTION

A fundamental role of the immune system is to maintain host integrity. For metazoan species,
an effective immune response must address invading threats in a rapid and specific manner such
that the afflicted tissues remain uncompromised and continue to carry out their vital functions
for the host. The innate immune system provides the first line of defense through the recognition
of stereotypic motifs associated with a broad spectrum of pathogens (1–3). In contrast, the
adaptive immune system, equipped with antigen receptors of near-limitless diversity, exerts its
effector functions in an antigen specific manner (3). This expanded population of antigen-specific
adaptive lymphocytes in turn forms the basis of immunological memory, bestowing the hosts with
long-lasting immunity against previously encountered pathogens (3).

For mammalian species, the adaptive immune response is initiated in secondary lymphoid
structures by antigen presenting cells (APCs). Upon activation by danger-associated signals, APCs
migrate from the site of insult to draining lymph nodes, carrying with them components of the
menacing agents. There they present these captured antigens to naïve T lymphocytes, which in turn
triggers the successive rounds of cell division by T lymphocytes and initiates their differentiation
into effector andmemory subsets. Whereas, effector T cells home back to the primary sites of insult,
mediate clearance of pathogen and undergo population contraction, memory T cells persist after
the resolution of infection and are poised to mount recall responses. Under this classical view,
the secondary lymphoid tissues are the integral component of the adaptive immune system, for
the constant migration of adaptive lymphocytes within such a network maximizes their chance of
antigen encounter (4). Teleologically, this circulatory behavior of naïve adaptive lymphocytes is a
necessary consequence of their anticipatory antigen receptor repertoire (5). The antigen receptor
genes of adaptive lymphocytes are assembled through random somatic recombination without
prior knowledge of their cognate antigen. This anticipatory nature of the adaptive antigen receptor
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repertoire underlies its tremendous diversity, but greatly limits
the frequency of lymphocytes with a given specificity. As such, a
given naïve T cell clone cannot be present in all tissues at once.
By necessity, they patrol strategically placed lymph nodes, which
collect information on the statuses of their associated tissues, to
efficiently survey the antigen landscape of the whole organism.

Our understanding of lymphocyte responses has broadened
significantly in the past decade by the successive discovery
of many non-circulating lymphocyte populations. These
lymphocytes predominantly reside in non-lymphoid tissues in
stark contrast to naïve adaptive lymphocytes, which constantly
recirculate between secondary lymphoid organs. In fact, it is
now well-appreciated that many, if not all, non-lymphoid organs
harbor a sizable population of tissue-resident lymphocytes. These
include tissue-resident memory T (TRM) cells; unconventional T
cells such as invariant natural killer T (iNKT) cells, intraepithelial
lymphocytes (IEL), and γδ T cells; and a diverse family of innate
lymphocytes. This property of tissue residency spans across
the innate-adaptive spectrum and may be essential for the
tissue-specific functions of its respectively resident lymphocyte
populations. In this review, we introduce the defining features
of tissue-resident lymphocytes, provide an overview of their
characteristic features, summarize recent findings on their
ontogeny, and discuss their functions in the context of cancer.

DEFINING TISSUE-RESIDENT
LYMPHOCYTES

The defining feature of tissue-resident lymphocytes is their
distinct migration pattern. In contrast to naïve adaptive
lymphocytes which frequently travel between secondary
lymphoid organs, tissue-resident lymphocytes constitutively
reside in non-lymphoid tissues and generally do not re-circulate
through blood (6, 7). This blood-tissue disequilibrium can
be conveniently approximated by intravascular staining (8–
10). Intravenous administration of fluorescently-conjugated
antibody labels vasculature-associated cell populations in a
short period of time. Unlabeled cells are thus presumed to
reside in the tissue parenchyma and are unlikely to re-circulate.
The tissue resident property is most formally demonstrated
by parabiosis experiments in which the circulatory systems of
two animals are surgically joined, allowing for free exchange of
their cell populations (11). Over time, half of the re-circulating
lymphocyte compartment in one animal will be derived from its
parabiont (6, 11). In contrast, the non-circulating compartment
remains dominated by endogenous lymphocyte populations
with little to no input from the parabiont (6, 11). This restricted
migratory pattern of tissue-resident lymphocytes is often
associated with their lack of lymphoid tissue homing chemokine
receptors and elevated expressions of several adhesion molecules
(7, 12). The sphingosine-1-phosphate receptor (S1PR1) and the
chemokine receptor CCR7, whose ligands, S1P, and CCL19/21
are abundantly found in the blood and secondary lymphoid
organs, respectively, facilitate re-circulation of lymphocytes
and are downregulated as part of the tissue residency program
(13–15). On the contrary, CD69, which antagonizes S1PR1

signaling, is reciprocally upregulated (16, 17). In addition,
increased expression of integrin molecules, such as CD49a
(encoded by Itga1) and CD103 (encoded by Itgae), whose
ligands are collagen and E-cadherin, respectively, promotes
interaction with tissue constituents, further reinforcing retention
of lymphocytes (18, 19). Whereas, the downregulation of
CCR7 and S1PR1 seems to be universal for tissue-resident
lymphocytes, the usage of integrin molecules is more diverse.
CD103 is specifically found on lymphocytes associated with
epithelial tissues, such as the small intestine epithelium and
ductal epithelium in glandular organs (20–23). CD49a and CD69
also have their own tissue-restricted expression patterns (18, 24–
26). These observations highlight the substantial heterogeneity
within the tissue-resident lymphocyte compartment. Thus,
defining tissue-resident populations solely based on phenotypic
markers may not reliably identify all cells. Instead, parabiosis
experiments remain the gold standard to properly define tissue
residency.

OVERVIEW OF TISSUE-RESIDENT
LYMPHOCYTE POPULATIONS

So far, tissue-resident populations have been identified for all
known types of lymphocyte across the innate-adaptive spectrum
(6), strongly suggesting that the acquisition of the tissue
residency program represents a state of differentiation rather
than commitment to a distinct lineage. Resident lymphocyte
populations are hypothesized to sense in their home organs
tissue disturbances stemming from infection, stress and other
deviations from the norm. In turn, they initiate the necessary
immune responses to restore homeostasis. Below we briefly
describe the characteristic features of various tissue-resident
lymphocyte populations and their functions inmaintaining tissue
integrity.

Innate Lymphocytes
Innate lymphocytes are characterized by their lack of functionally
re-arranged antigen receptors. This population includes the
prototypic member, natural killer (NK) cells, and the emerging
family of innate lymphoid cells (ILCs) (27, 28). Under steady-
state conditions, NK cells are recirculating while ILCs are not
(6). Emerging evidence suggest that ILCs can be further parsed
based on their cytotoxic potential into two subsets: helper ILCs,
which are IL-7R-expressing cytokine producers, and killer ILCs,
which express cytotoxic molecules but have little to no IL-7R
expression (28). Helper ILCs are enriched at mucosal sites and
include ILC1, ILC2, and ILC3, each of which produces signature
cytokines not unlike their helper T cell subset counterparts (27).
The killer ILCs, on the other hand, are mostly found in the liver
and epithelium of glandular tissues, such as the salivary, prostate,
and mammary glands, and can mediate direct cytolysis of target
host cells through granzyme secretion or Fas ligand engagement
(23, 29–31).

The exact function of tissue-resident type 1 innate
lymphocytes remains contentious. Because of their striking
resemblance to NK cells at the phenotypic level, studies aiming
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to test NK cell functions by depleting NK marker-expressing
populations through antibodies or diphtheria toxin system may
have inadvertently eliminated type 1 ILCs as well. Hence it is
difficult to pinpoint which population mediates the observed
phenotypes. This caveat has only been recognized recently but
nevertheless precipitated the development of new genetic tools to
selectively target either populations. For instance, a recent study
utilized animals deficient for the transcription factor Zfp683, or
Hobit, to specifically reduce the number of liver ILCs, leaving the
NK compartment intact (32). In these animals, control of early
viral replication in the liver was impaired, supporting the idea
that resident type 1 ILCs function as first line defenders.

Type 2 ILCs are the most homogenous among the innate
lymphocytes and produce signature cytokines of the type
2 response, such as IL-5, IL-13, and amphiregulin, in a
transcription factor Gata3-, Bcl11b, and Rora-dependent manner
(33–35). ILC2s control normal immune responses through
cross-talk between stroma and other immune cell types. For
instance, during helminth infection, intestinal tuft cell-derived
IL-25 activates ILC2s to secrete IL-13, which feedbacks on
the epithelium to promote tuft cell differentiation (36). The
alarmin IL-33 produced upon tissue injury also stimulates IL-
5 production by ILC2s, which in turn recruits eosinophils and
enhance their innate effector functions (37). This pathway can be
antagonized by a secretory product of the helminth H. polygyrus,
HpARI, which prevents the release of IL-33 by tethering it
to necrotic cells (38), further demonstrating the evolutionary
benefit of ILC2-dependent responses.

Group 3 ILCs are highly complex and can be roughly
unified by their dependency on the transcription Rorc for
development and function (39). Upon activation by IL-23, a
subset of ILC3s produce IL-22, which in turn triggers the anti-
microbial peptide production by intestinal epithelium (40–42).
Mice with an impairment in the IL-23-ILC3-IL-22 axis succumb
to infection by Citrobacter rodentium, a gut effacing bacterium
(42–44). Furthermore, IL-22 in concert with IL-18 is essential
for control of murine norovirus infection (45). Together, these
data demonstrate a critical role for ILC3s in maintaining gut
homeostasis.

Innate-Like T Cells
Innate-like or unconventional T cells express functionally re-
arranged T cell receptors (TCRs) of limited diversity. In contrast
to conventional T cells whose TCRs strictly recognize peptides
in the context of classical polymorphic major histocompatibility
molecules (MHCs), the mode of antigen recognition by innate-
like T cells is diverse, with TCRs recognizing antigen in the
context of canonical MHCs, non-classical non-polymorphic
MHC-like molecules, or even independently of MHCs altogether
(46). The most well-characterized members of this family of
lymphocytes include IELs, iNKT cells, and γδ T cells.

Many epithelial tissues contain resident IEL populations (47).
The most studied are the small intestinal IELs, which consist of
both TCRαβ- and TCRγδ-expressing subsets (48). The TCRαβ+

IELs can be further divided into two major populations based
on the surface expression of CD8αβ heterodimer. CD8αβ− IELs,
typically expressing the CD8αα homodimer, develop early in
life, but its population dwindles as the animal ages and is

progressively replaced by CD8αβ+ IELs (48). Thus, the CD8αα+

subsets are often termed “natural” or “unconventaionl” IELs, to
distinguish them from the more conventional CD8αβ+ subsets,
or the “induced” IELs. In addition to the TCR, CD8αα+ IELs also
express panoply of activating and inhibitory receptors typically
found on innate lymphocytes. These include the Ly49 and other
NK receptor family members (49–51). Recently, another subset
of IELs, characterized by the expression of both CD4 and CD8αβ

co-receptors was identified (52, 53). A series of experiments
demonstrate that these CD4+CD8αβ+ IELs are in fact converted
from conventional CD4+ T cells by intestinal tissue-specific
signals, such as TGFβ (54). So far, the exact functions of IELs
remain elusive, although in specific settings, IELs contribute to
anti-pathogen responses in the gut (52, 53, 55, 56).

iNKT cells express an invariant TCRα chain paired with a
TCRβ chain of limited diversity (46, 57). Distinct from other
TCRαβ+ T cells, iNKT cells recognize lipid antigens presented
in the context of the MHC class I-like molecule, CD1d (58–60).
The synthetic glycolipid, alpha-galactosylceramide, has been one
of the prototypic stimulators of iNKT cells (61). Since then, a
plethora of structurally homologous lipids capable of activating
iNKT cells have been identified (62). These range from foreign
substances, such as certain bacterial cell wall components (63–65)
to endogenous sources, such as intermediates in lipid metabolism
(66, 67), although the latter is often only transiently present, rare,
and less potent. Nevertheless, sensing of endogenous lipid ligands
may be themajormechanism by which iNKT cells detect a breach
of tissue integrity. Two studies demonstrate an essential role for
iNKT cells in controlling infection by pathogens that lack potent
agonist ligands (68, 69), supporting the idea that iNKT cells may
primarily survey host cells for altered metabolism as a result of
pathogen invasion. Similar to ILCs, iNKT cell subsets analogous
to the TH1, TH2, and TH17 conventional CD4T cells have been
described (70). Not unlike these T helper cells, each iNKT cell
subset produces its signature cytokines driven by distinct master
transcription factors (70).

T cells expressing the TCRγδ are present at barrier sites with
a particular enrichment at the skin and intestinal epithelium
(71, 72). In mice, rearrangement of the TCRγ locus follows a
strict temporal order, resulting in the sequential appearances of
distinct γδ T cells bearing monoclonal or oligoclonal TCRs that
seed various epithelial tissues during fetal development (71–73).
For instance, dendritic epithelial T cells (DETC), characterized
by their monoclonal TCR composed of Vγ3 and Vδ1, develop
between embryonic days 14 and 16 (73, 74). In contrast, intestinal
Vγ7+ γδ T cells arise between 2 and 3 weeks after birth (75). It is
conceivable that developmental stage-dependent tissue-derived
signals permit temporally ordered colonization by distinct γδ

T clones. In support of this, two studies demonstrate that
Skint1 and Btnl molecules, which are expressed by epithelium
during specific stages of development, induce the maturation and
potentiate the responses of Vγ5+ DETCs and Vγ7+ intestinal
γδ T cells, respectively (75, 76). The cognate antigens for γδ

TCRs are still elusive. Whether MHC molecules are involved
in γδ TCR recognition is also unresolved. Similar to innate
lymphocytes, γδ T cells rapidly produce cytokines, including
interferon gamma (IFNγ) and IL-17, when activated (77). A
recent study revealed an unconventional role of skin resident γδ
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T cells in antagonizing carcinogen-inducedmelanoma (78). In an
IL-4-dependent manner, these γδ T cells promote extrafollicular
production of autoreactive IgE, which in turn activate basophils.

Tissue-Resident Memory T (TRM) Cells
The term tissue-resident memory T cells specifically describe
populations of conventional T cells that acquire tissue-resident
properties. Both CD4 and CD8T cells can adopt tissue-resident
phenotypes (12). Because the CD8+ subset has been better
characterized, TRM hereafter refers to CD8+ TRM cells unless
noted otherwise. TRM cells have been commonly regarded as
first line of defense in peripheral tissues especially against
previously encountered threats (79–81). They are hypothesized
to provide timely control of tissue threats before the participation
of circulatorymemory populations. For instance, a report showed
that pre-existing herpes simplex virus (HSV) 2 antigen-specific
TRM cells at the vaginal mucosa protect hosts from lethal
HSV-2 challenge by restricting viral replication at the site of
infection as well as preventing the spread of virus to the
peripheral nervous system (81). TRM cells engage in diverse
effector functions to mediate host protection. As CD8+ T
cells can directly lyse infected target cells through the release
of granzymes and perforin, several studies reported granzyme
B expression in TRM cells as well (19, 23, 82, 83). Notably,
TRM cells in the brain can lyse antigen-loaded targets in situ
(84), suggesting their cytotoxic potential and direct killing as
their means of immunosurveillance. By contrast, lung TRM cells
protect hosts from influenza virus infection through a process
involving IFNγ rather than cytotoxicity (85). More strikingly,
recent studies highlighted the innate-like effector property of
TRM cells (83, 86, 87). Local activation of TRM cells resulted
in their chemokine production, which potently recruited non-
antigen specific T cells and initiated an innate immune cascade.
Such a bystander response resulted in near-sterilizing immunity
against antigentically unrelated pathogens. Thus, in this context,
TRM cells can serve as alarm-sounders rather than front line
defenders.

ORIGIN OF INNATE AND INNATE-LIKE
TISSUE-RESIDENT LYMPHOCYTES

Adaptive lymphocytes are naturally circulatory and only acquire
tissue residency program upon activation. In contrast, innate and
innate-like lymphocytes migrate directly to their home tissues
after exiting sites of development, bypassing this recirculatory
step. We postulate that this difference in trafficking between
adaptive and innate/innate-like lymphocytes is imprinted during
their development. The developmental pathway of thymocytes
to mature T cells is punctuated by several checkpoints, one
of which occurs at the double-positive (DP) stage (Figure 1).
Here, DP thymocytes test their functionally assembled TCRs for
reactivity against self-derived antigens in the context of MHC
molecules (88). Strong self-reactivity instructs DP thymocytes
to adopt innate-like T cells fates whereas weakly reactive
clones are diverted into conventional T cell lineages (88). For
instance, thymocytes expressing a transgenic TCR predominantly

develop into unconventional IELs when its cognate ligand
is expressed in the thymus, but into conventional T cells
when otherwise. This process of agonist selection instructs a
phenotypic change on DP thymocytes characterized by the
downregulation of both CD4 and CD8 co-receptors and the
concomitant upregulation of PD-1 (89–92). This population,
when adoptively transferred into lymphopenic recipients,
exclusively become CD8αα+ unconventional IELs, and is thus
named IEL progenitor (IELp; Figure 1) (89). Consistently,
thymocytes expressing TCRs isolated from natural IELs also
adopt the IELp phenotypes (90, 91). In a similar fashion, the
endogenous agonist selection ligand, isoglobotrihexosylceramide
(iGb3), which strongly stimulates the invariant NKT TCR,
drives the lineage commitment of DP thymocytes into iNKT
cells (Figure 1) (93). The homotypic interaction between SLAM
family receptors is also essential for iNKT development,
presumably by complementing TCR-driven selection signals (94,
95). Thus, strong self-reactivity underlies the innate-like T cell
fate choice.

Because innate lymphocytes do not express antigen receptors,
their self-reactivity is difficult to gage. However, there exist
several striking parallels between innate lymphocyte and T cell
development. All innate lymphocytes appear to arise from an
early innate lymphoid progenitor (EILp; Figure 1). One defining
feature of EILp is downregulation of IL-7 receptor (IL-7R),
which also occurs in DP thymocytes, presenting a peculiar
similarity between the two progenitors among the otherwise
IL-7R-dependent intermediates during lymphopoeisis (96, 97).
Just as agonist selection signals drive PD1 expression, a PD1-
expressing innate lymphoid cell progenitor (ILCp) downstream
of EILp has been identified (Figure 1) (35). Like NKT cells, ILCp
expresses the transcription factor PLZF and can differentiate
into all subsets of helper ILCs (98). The transient upregulation
of PD1 on ILCp suggests that all ILCp-derived ILCs engage
in a brief but strong stimulation during their development,
which parallels the autoreactive TCR-mediated signals that
drive IEL commitment. Notably, NK potential is lost in ILCp,
although a dedicated NK progenitor remains unidentified
(Figure 1) (98). The default circulatory behavior of NK cells
aligns them more with the conventional T cells than ILCs.
Conceivably, NK cells, like conventional CD8T cells, may not
have experienced a PD1high state during development. In fact,
the lack of PD1 expression may help distinguish such NK-
dedicated progenitors from their ILC-committed counterparts.
The developmental path of cytotoxic ILCs is less understood.
In contrast to IL-7R-expressing helper ILCs, which require
the transcription factor Gata3 and Nfil3 for development,
cytotoxic ILCs in the salivary gland are marginally affected
upon loss of either transcription factors (29, 31, 99–101).
Furthermore, while the vast majority of IL-7R-expressing ILCs
develop from the PLZF-expressing ILCP, a substantial fraction of
cytotoxic ILCs in the salivary gland do not (102). Additionally,
whereas conventional NK cells are critically dependent on
Eomes and Nfil3, cytotoxic ILCs again are not (103–105).
These genetic data suggest the existence of yet another innate
lymphocyte lineage, which is distinct from both the ILCh and
conventional NK cells, and is tentatively named ILCk (Figure 1).
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FIGURE 1 | Ontogeny of tissue-resident lymphocytes. All lymphocytes

develop from the common lymphoid progenitor (CLP). In the bone marrow, an

early innate lymphoid progenitor (EILp) can give rise to natural killer (NK) cells

and innate lymphoid cells (ILCs). Whereas, the identity of an NK-restricted

progenitor (NKp) remains unknown, a committed innate lymphoid cell

progenitor (ILCp), which can give rise to all helper ILCs (ILChs), but not NK

cells has been described. Less understood, ILCs with cytotoxic potential, or

killer ILCs (ILCk) may arise from a hypothetical killer ILC progenitor (ILCkp) that

have lost ILCh and NK potential. While ILCs are inherently tissue-resident, NK

cells recirculate. Whether NK cells can acquire tissue-resident features remains

unknown. Thus, the term tissue-resident NK (trNK) cells is better kept until

such a possibility can be unequivocally ruled out. Beside innate lymphocytes,

CLP also gives rise to T lineage-committed progenitors that complete their

differentiation in the thymus. The vast majority of TCRαβ-expressing T cells

undergo a double positive (DP) stage, during which MHC-based selection

takes place. DP thymocytes bearing strongly self-reactive TCRs develop into

unconventional intraepithelial lymphocyte (IEL) and natural killer T (NKT) cell

lineages through agonist selection, while those with weakly self-reactive TCRs

are diverted into single positive (SP) thymocytes, which subsequently give rise

to conventional T (conv. T) cells. Whereas, IELs and NKT cells are naturally

tissue-resident, conventional T cells recirculate but can become

tissue-resident (TRM) upon activation.

ILCks in fact resemble IEL in their constitutive expression of
cytotoxic molecules and inherent tissue-resident nature (23).
Provocatively, ILCk progenitor may develop from EILp and
assume IELp-like phenotypes such as high PD1 but little PLZF
expression.

ACQUISITION OF TISSUE RESIDENT
PROGRAM BY CIRCULATING
LYMPHOCYTES

Best exemplified by TRM cells, re-circulating lymphocytes can
acquire tissue resident properties upon activation. The exact time

point at which the tissue-resident program is launched during
the activation history of a T cell is still unknown. Several lines
of evidence suggest that tissue tropism of an activated T cells
can be imprinted by dendritic cells (DCs) during priming. For
instance, T cells activated by DCs isolated from peripheral lymph
nodes upregulate E- and P-selectin while those primed by DCs
from mesenteric lymph nodes express gut-homing molecules,
such as α4β7 integrin and CCR9 (106, 107). Furthermore, the
expression of skin- and gut-homing receptors can be enhanced
by metabolites specific to these two tissues, such as retinoic
acid (108, 109). These data collectively suggest that activated T
cells acquire tissue tropism and specific homing capacity during
priming. Contrary to this model, recent studies demonstrated
that T cell migration is rather promiscuous during the effector
phase of the immune response. In fact, T cells primed at any
site can access almost every tissue in the organism. For instance,
priming of T cells during systemic LCMV infection leads to the
migration of antigen-specific T cells to many peripheral tissues
(110). More strikingly, intranasal immunization with Sendai
virus also results in the migration of antigen-specific T cells
to other peripheral tissues (110). Further examination revealed
that T cells primed in any secondary lymphoid organs can
in fact upregulate homing receptors for non-lymphoid tissues
(111). Thus, the entry of a T cell into non-lymphoid tissues
can be instated regardless of priming locations. Once inside the
tissue, local signals then orchestrate the tissue resident program.
Indeed, adoptive transfer of in vitro activated CD8T cells into the
dermis is sufficient to induce their differentiation into long-lived
CD103+CD69+ TRM cells, phenotypically indistinguishable from
those generated in vivo (18). These data suggest that entry into
the tissue is a stochastic but pivotal event that marks the initiation
of tissue resident program. Recently, fate-mapping experiments
using KLRG1-Cre revealed further heterogeneity within the TRM

population with contribution from both KLRG1-fate mapped
and non-fate mapped precursors (112). This is in contrast to
previous studies where KLRG1+ CD8T cells fail to give rise to
CD103+ TRM when adoptively transferred (18). The discrepancy
may be caused by the use of different infection models.
Interestingly, although both KLRG1-fate mapped and non-fate
mapped precursors lost KLRG1 expression when entering the
tissue, the progeny of the two exhibits nuanced but discernable
differences in effector functions (112), suggesting that other
events before tissue entry can impact the functional capacity of
TRM.

Often deemed as the counterpart to conventional CD8T cells,
whether NK cells can acquire tissue resident features like TRM

differentiation is less understood. In one study, adoptive transfer
of hepatic DX5+ conventional NK cells into lymphopenic mice
did not result in their upregulation of tissue resident markers,
such as CD49a in the liver (105). In contrast, when transferred
into tumor-bearing lymphopenic recipients, DX5+ cells infiltrate
the tumor and assume tissue resident phenotypes in a TGFβ-
dependentmanner (113). These results suggest that re-circulating
conventional NK cells possess the tissue resident potential, but
its manifestation requires tissue-specific signals. Further studies,
such as fate-mapping experiments, are needed to formally test
this hypothesis.
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MAINTENANCE OF TISSUE RESIDENT
LYMPHOCYTES

Long-term parabiosis experiments revealed that under steady-
state conditions, tissue resident lymphocytes are long-lived and
replenish their population predominantly by local expansion (6).
Consistently, other studies in mice and rhesus macaques showed
that the tissue memory CD8T cell populations are stable for 300–
700 days, with little to no input from the circulatorymemory pool
(114–116). These observations suggest that while the concerted
actions of adhesion molecules and chemokine receptors enforce
tissue retention, additional cell-extrinsic signals promote the
maintenance of tissue resident lymphocytes.

IL-7 and IL-15, both of which signal through the common
gamma chain (γc), have pleiotropic roles during lymphocyte
development and maintenance. While mice deficient for γc
(encoded by Il2rg) lack B, T, NK, and ILCs, innate lymphocyte
progenitors, such as EILp and ILCp were minimally affected
(97), suggesting that the depletion of NK and ILCs in
Il2rg−/− mice most likely stem from defective maintenance
of the mature populations. In the absence of IL-7, bone
marrow ILC2p, intestinal ILC2 and ILC3, but not ILC1 are
drastically reduced (97, 117–119). In contrast, IL-15 deficiency
predominantly impairs ILC1 in the liver, salivary glands, and
the small intestine lamina propria (29, 119, 120), although
intestinal NKp46+ ILC3 are dually dependent on IL-7 and
IL-15 (119, 120). While the NK-restricted progenitor remains
elusive, a Lin−CD127+CD122+ population has been identified
to contain NK cell precursors and develop normally in the
absence of Il2rg (121). The profound ablation of mature CD127−

NK cells in these animals are attributed to the lack of IL-
15 signaling as IL-15, but not other γc cytokines, deficiency
can solely recapitulate this defect (121–123). In the thymus,
a minute population of CD127+NK1.1+ innate lymphocytes,
currently called thymic NK cells, require IL-7 for development
(124).

The critical roles of homeostatic cytokines IL-7 and IL-15
for the maintenance of re-circulating naïve and memory T
cells, respectively have been long appreciated. The dependency
on IL-15 for TRM varies by their locations. TRM in the non-
lymphoid tissues, such as the skin, are critically dependent on
IL-15 (18) whereas those in the secondary lymphoid organs are
not (125). Like TRM, CD8αα+ intestinal IELs are also maintained
by IL-15 and enterocyte-expressed IL-15 in an otherwise IL-
15-deficient animal is sufficient to restore unconventional IELs
(126), suggesting that IL-15 critically sustains mature IELs
rather than their precursors. In support of this, PD1+ IEL
progenitors develop independent of IL-15 in the thymus (127).
While TRM are induced in an antigen-dependent manner,
they can be maintained in the absence of cognate antigen
in the skin, reproductive tract, and salivary glands (18, 19,
21). In other tissues, persisting antigens contribute to TRM

differentiation (19, 26, 82, 84, 128). Thus, the requirement
for antigen during TRM maintenance may be tissue-specific.
Lastly, given the similar requirement for IL-7 and IL-15 during
their homeostasis, resident lymphocytes may occupy overlapping
tissue niche. Pinpointing the source of these cytokines in the

tissuemay help elucidate the redundant and non-redundant roles
of each resident lymphocyte population in maintaining tissue
integrity.

TISSUE-RESIDENT CYTOTOXIC
LYMPHOCYTE RESPONSES IN CANCER

The vertebrate immune system has evolved to exquisitely
distinguish self from non-self, thereby achieving effective
anti-pathogen responses while curbing autoreactivity. Cancer
presents a unique challenge to this fine-tuned system as
transformed cells are pathogenic agents derived from the
host itself. Yet prevailing evidence has demonstrated that
the immune system exerts constant pressure on tumors
(129). These observations underlie the preponderant concept
of cancer immunosurveillance (130–132). Mechanistically,
increased somatic mutation as a result of genomic instability
in transformed cells may generate neo-epitopes that can be
recognized by conventional adaptive lymphocytes (133, 134).
Although these T cells often exhibit “exhausted” phenotypes,
their effector functions may be restored by checkpoint blockade
therapies (134–136) (Figure 2). Targeting this mode of
immunosurveillance certainly has been fruitful. However, not all
cancer types sustain high mutation burden (137, 138). In such
cases, CD8T cell responses elicited by unmutated self-antigen
often fail to restrict tumor growth (139, 140). These findings
thus highlight the need to explore other immunosurveillance
mechanisms for effective cancer immunotherapies.

Just as pre-existing TRM populations are essential for
restraining previously encountered pathogens, prophylactically
induced TRM cells by cancer vaccines provide superior control
of tumor growth over re-circulating memory T cells (141,
142). In fact, the presence of circulating tumor antigen-specific
CD8T cells alone is not sufficient to control tumor growth
(141, 143), highlighting the potential therapeutic benefit of
targeting tissue-resident lymphocytes. Strategies to enhance
the differentiation and maintenance of these vaccine-induced
TRM cells may decrease the relapse rate as well as restrict
metastasis. However, prophylactic vaccination with tumor-
associated antigen may not always be feasible in clinical settings,
as it requires knowing the antigen ahead of time when patients
who seek medical attention often have developed tumors already.
Notwithstanding, tumorigenesis does naturally elicit tissue-
resident lymphocyte responses (23, 144–148). Importantly, a
substantial fraction of participating lymphocyte populations
appear to have cytotoxic potential (23, 145, 148). These include
conventional T cells of the CD8 lineage as well as more recently
identified unconventional T cells and group 1 innate lymphocytes
(Figure 2). Below, we summarize the latest findings on
their characterization and potential cancer immunosurveillance
functions.

Conventional and Unconventional αβT
Cells
In many murine tumor models, αβ T cells can make up a
substantial fraction of infiltrating lymphocytes. Among them,
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FIGURE 2 | Cancer immunosurveillance by tissue-resident lymphocytes. Spontaneous oncogene-driven breast tumors are infiltrated by group 1 innate lymphocytes,

conventional, and unconventional T cells. Parabiosis experiments revealed the tissue-resident nature of CD49a- and CD103-co-expressing lymphocytes, including the

innate-like T cells (ILTCs), killer innate lymphoid cells (ILCks), and some conventional (Conv.) CD8+ T cells. In contrast, natural killer (NK) cells, PD1-expressing

conventional CD8+ T cells recirculate through blood. Functionally, CD49a+CD103+ tissue-resident lymphocytes abundantly express lytic granules and can potently

lyse transformed target cells. Despite their cytotoxicity, therapies targeting these tissue-resident populations are lacking while rapid advancement has been made to

target conventional NK and T cells.

populations expressing tissue-resident markers are abundantly
found (23, 144, 145, 148–152). These include T cells of both the
conventional and unconventional lineages.

Our understanding of tissue-resident T cell responses in the
context of cancer has only begun to advance in recent years.
Much of the foundation is in fact built upon extrapolating
observations from TRM cells in infectious settings. While these
studies provide an invaluable conceptual framework to start with,
cancer and acute infection differ fundamentally. Tumorigenesis
is a continuous process without a defined time course. In
contrast to acute infections where the pathogen load peaks
and wanes within a week’s time, tumor-associated antigen is
continuously present and, in most oncogene-driven cancer
models, persist until the endpoint of disease. Thus, there
is no well-defined memory phase in the context of cancer
and the term “tissue-resident memory T cells” seems to be
a misnomer. In a sense, tumorigenesis is more analogous
to chronic than acute infections. Indeed, the induction and
accumulation of dysfunctional cytotoxic T lymphocytes (CTLs)
by persistent antigen stimulation is a shared feature in both
settings (153). To what extent the PD1hi CTLs are tissue-
resident remains to be determined. Beside the PD1hi population,
which appears to dominate in multiple cancer types, tumor-
infiltrating CD8+ T cells that express tissue-resident markers
have also been reported in several mouse cancer models
(Figure 2). In a B16-F10 mouse melanoma transplantable
tumor model, a fraction of antigen-specific tumor-infiltrating
CD8T cells acquired CD69 and CD103 expression 3 weeks
after tumor engraftment (149). Furthermore, administration
of blocking antibodies against CD103 resulted in a slight but

significant acceleration in tumor growth (149), implying a
CD103-dependent cancer immunosurveillance mechanism by
these putative tissue-resident tumor-infiltrating lymphocytes
(TILs). Using a similar transplantable melanoma model, another
study demonstrated a CD8T cell-intrinsic requirement for
the transcription factor Runx3 in the development of tumor-
resident CTL responses (144). CD8T cells with reduced
levels of Runx3 expression failed to constrain tumor growth
(144), further implicating a tumor surveillance role for tissue-
resident CTLs. In a spontaneous oncogene-driven breast tumor
model, a proportion of intratumoral CD8+ T cells co-express
CD49a and CD103 (23). Unlike in the transplantable tumor
models, some CD49a+CD103+ T cells co-express natural killer
(NK) receptors, such as NK1.1 and have innate-like features
(Figure 2). These NK1.1+CD49a+CD103+CD8+ T cells are
distinct from iNKT cells as they developed in the absence
of CD1d, and thus represent a novel tissue-resident T cell
population with no currently known counterpart in the TRM

field (23). For this, NK1.1+CD49a+CD103+CD8+ T cells are
termed innate-like T cells (ILTCs) to distinguish them from
their NK1.1− counterparts. Parabiosis experiments confirmed
the tissue-resident property of both ILTCs and NK1.1− tumor-
infiltrating T cells, with the former being significantly less
circulatory (23). Further studies demonstrated that these ILTCs
produce little to no IFNγ, but abundantly express the cytotoxic
molecule granzyme B (23). Indeed, ILTCs exhibit potent
cytotoxicity toward transformed target cells in vitro, suggesting
their potential role in anti-tumor responses (23). Thus, using
infection-induced TRM cells as a template, these seminal works
demonstrated the presence of tissue-resident cytotoxic T cells in
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mouse tumor models and implicated their immunosurveillance
functions.

In human patients, CD103-expressing tumor infiltrating
CD8+ T cells are abundantly present in multiple types of
epithelium-derived cancers (145–147). In many cases, the
accumulation of intratumoral CD103+CD8+ T cells is associated
with favorable prognosis (145–147, 154, 155). Although the
exact mechanisms by which these TILs contribute to restraining
cancer progression remains elusive, emerging evidence unveil
their similarity to TRM cells and suggest cytotoxicity as their
mechanism of immunosurveillance. Whether CD103+ TILs
are indeed tissue-resident cannot be easily established in
humans. Nonetheless, whole genome transcriptome analysis
reveals that these TILs share a gene expression program
typically associated with pathogen-induced TRM cells and
tumor-elicited CD49a+CD103+ TILs in mouse models (23,
142, 148, 156). For instance, CD103+ TILs from non-small
cell lung carcinoma co-express CD49a and CD69, but little
to no S1PR1 and the lymphoid tissue homing receptor
CCR7 (145, 148). In addition to potentially increased tissue
retention, CD103+ TILs appear to be in a distinct activation
state compared to their CD103− counterparts. Not only do
more CD103+ TILs exit quiescence, as measured by Ki67
expression (148), they also express higher levels of granzymes
(148) and possess increased degranulation potential relative
to CD103− TILs in response to stimulation (145). When
incubated with autologous tumor cells, CD103+ TILs potently
induced cytolysis of target cells (145). Whether this CD103+

population also contains innate-like T cells, such as the ILTCs
found in mice, remains an outstanding question although NK
receptor-expressing CD8+ T cells in human cancer patients
have been documented (157–159). Nevertheless, these data
demonstrate that the tissue-resident cytotoxic T cell response
is a conserved cancer immunosurveillance mechanism between
mouse and human and represents a promising target for tumor
immunotherapy.

Group 1 Innate Lymphocytes
The protective role of group 1 innate lymphocytes against
tumors has been repeatedly demonstrated in chemically-induced
sarcoma and transplantable tumor models (160–163). However,
most of these seminal works were done before the distinction
between NK cells and ILCs was recognized. Most studies in this
genre made use of depleting antibodies against NK1.1 or genetic
systems in which diphtheria toxin is specifically expressed in
NKp46+ cells. These approaches effectively eliminated NK
cells, but also depleted ILC1s and ILCks as they too express
NK1.1 and NKp46. Thus, one cannot conclude which of the
affected population contributes to the reported phenotype (164).
Having recognized this ambiguity, some studies further subset
the NK1.1+NKp46+ innate lymphocyte populations with a
set of markers conventionally used to distinguish between NK
cells and ILC1s/ILCks (113, 165). Adoptive transfer of each
subset into tumor-bearing lymphopenic hosts then allowed
them to identify the population responsible for the protective
phenotypes. In these studies, most anti-tumor activity appears to
reside within the conventional NK cell compartment (75, 113).

Non-NK tissue-resident innate lymphocytes, on the other hand,
were shown to dampen anti-tumor immune responses (113).
This is in contrast to their roles in oncogene-driven spontaneous
tumor models (23, 166). For example, in a breast tumor model,
early control of tumor progression is critically dependent on
innate lymphocytes, as IL-15 deficient animals, which lack
group 1 innate lymphocytes showed accelerated tumor growth
(23). However, conventional NK cells were dispensable for this
innate lymphocyte-dependent anti-tumor responses because
Nfil3-deficient mice, which have profoundly diminished NK
cell compartment, did not exhibit accelerated tumor growth
(23). These data collectively imply that non-NK group 1
innate lymphocytes, most likely ILCks, assume a dominant
role in early anti-tumor responses (Figure 2). Despite these
tumor model-specific discrepancies, the immunosurveillance
potential of tumor-infiltrating group 1 innate lymphocytes
has garnered much therapeutic interest in recent
years.

Many types of human solid tumors are also infiltrated by
group 1 innate lymphocytes. Although collectively called NK
cells, they in fact consist of two populations distinguished by
the makers CD56 and CD16 (167–170). The CD56brightCD16−

subset outnumbers their CD56dimCD16+ counterpart in tissues,
both at steady state and during inflammation. In contrast, the
CD56dimCD16+ population is far more abundant in the blood.
Not surprisingly, the CD56brightCD16− innate lymphocytes
express several tissue-resident markers as well as a defining
gene expression program for tissue residency (169, 170). Under
the current paradigm, both populations belong to the NK
lineages and are related in a linear developmental pathway,
namely, CD56brightCD16− cells give rise to CD56dimCD16+

in a process of differentiation (171, 172). However, it is also
possible that the two populations are in fact of disparate lineages,
a distinction not unlike the one seen between mouse NK
cells and ILC1s/ILCks. While this debate awaits, if possible,
a resolution, some clinical evidence suggest a potential anti-
tumor role for type 1 innate lymphocytes. For example, in clear
cell renal carcinoma, enrichment of type 1 innate lymphocyte-
associated transcripts in the tumor mass correlates with favorable
prognosis (173). Similarly, for gastrointestinal stroma tumors,
the number of CD56-expressing infiltrating lymphocytes is
associated with better overall survival (174). For patients
with non-small cell lung carcinoma however, the presence of
CD56-expressing lymphocytes does not correlate with clinical
outcomes, presumably because their cytokine production and
cytotoxicity are inhibited by the tumor microenvironment (175).
Overcoming immunosuppression strategies deployed by tumor
cells may re-invigorate these innate lymphocytes (176–178). A
recent study devised an antibody that stabilizes the expression
of a stress-induced ligand for the NK activating receptor,
NKG2D on the tumor cell surface (179). Administration of this
therapeutic agent enhances innate lymphocyte-dependent anti-
tumor responses (179). Collectively, tumor-resident cytotoxic
innate lymphocytes present a promising target for therapeutic
intervention in addition to conventional CD8T cells, for which
a plethora of checkpoint blockade modalities are already in
place.
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CONCLUDING REMARKS

Originally defined in the T cell field, the tissue residency
program has now been found to be used by nearly all known
lymphocyte lineages across the hematopoietic tree. Intriguingly,
the vast majority of innate and innate-like lymphocytes (with the
exception of NK cells) are inherently tissue-resident whereas the
more recently evolved adaptive lymphocytes are not, suggesting
an ancient origin of the tissue residency program. Since strong
self-reactivity during lymphocyte development appears to be
a key selection factor for gaining tissue-homing capacity, it
is reasonable to assume that the most primordial function
of tissue-resident lymphocytes is in fact to detect stress in
host cells rather than to sense pathogen or its derivatives.
Further extrapolation of this idea would provocatively suggest
that the MHC-based selection mechanisms originally served to
generate self-reactive T cells. Positive selection, templated on the
extant agonist selection mechanisms, evolved later in vertebrate
evolution.
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