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Abstract

The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular

mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In

the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and

roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250

unigenes were significantly differentially expressed in leaves and roots in saline treatment,

respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohy-

drate, lipid and amino acid metabolisms were all downregulated in saline treatment, which

should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase,

choline monooxygenase, potassium and chloride channels were upregulated in saline treat-

ment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-

ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were

all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate

high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signal-

ing transduction pathways were all upregulated in response to saline treatment, which were

important to gene regulations of ion transportation and antioxidation. These changes might

comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study

provided new insights to understand the mechanisms underlying tolerance to salinity in

halophytes.

Introduction

The halophyte Suaeda salsa (L.) Pall is a leaf succulent annual plant. It is widely distributed in

Eurasia and has been cultivated as a seawater vegetable in desert and coastal areas in P. R.

China [1]. S. salsa shows strong tolerance to salinity. In comparison to the control, treatments

with moderate salinities (varied from 50 mM to 200 mM NaCl) promoted CO2 assimilation

rate, O2 production, photosynthesis rate and thus plant growth of S. salsa [2–6]. However,

high salinities (> 200 mM NaCl) inhibited its growth significantly [6], displaying much higher

tolerance to saline stress than other plants.
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S. salsa should have special mechanisms underlying tolerance to high salinity. Physiologi-

cally, differential regulation of abscisic acid (ABA), gibberellins (GA) homeostasis [7] and Na+

storage [6] might provide strategies for S. salsa plants to survive adverse environmental condi-

tions. Accumulation of proline and decreased content of soluble sugars in leaves promoted

osmotic adaptation to saline stress [6]. Molecularly, functions of several genes were character-

ized. For example, glycerol-3-phosphate acyltransferase (GPAT) [8] and vacuolar H+/Ca2+

transporter [9] enhanced saline tolerance. Activity of plasma membrane aquaporins (AQPs) is

involved in leaf succulence in S. salsa and also regulates its tolerance to salinity [10]. Besides,

gene expression levels of myo-inositol-1-phosphate synthase (INPS), choline monooxygenase

(CMO), betaine aldehyde dehydrogenase (BADH), catalase (CAT), and activities of superoxide

dismutase (SOD), peroxidase (POD), CAT, and glutathione peroxidase (GPx) were elevated

when S. salsa was treated with salinity, suggesting that these genes/enzymes might also contrib-

ute to saline tolerance in S. salsa [11]. Moreover, metabolic profiling revealed that saline treat-

ments depleted contents amino acids, malate, fumarate, choline, phosphocholine, and elevated

betaine and allantoin in S. salsa seedlings as well as reduced contents of glucose and fructose

but increased contents of proline, citrate, and sucrose in roots [11]. These results revealed

molecular mechanisms underlying saline tolerance in S. salsa. However, comprehensive pro-

files were still lacking.

In other halophytes or model plant species, studies have reported some molecular mecha-

nisms underlying saline tolerance. In response to saline treatment, expansins, phosphatase,

ethylene-related pathways were upregulated in Suaeda glauca and Suaeda maritima [12,13].

WRKY transcription factors involved in drought and saline tolerance were upregulated in

saline treatments in S. glauca [12], Nicotiana benthamiana [14], Populus tomentosa [15], Jatro-
pha curcas [16] and Arabidopsis thaliana [17]. Choline monooxygenase (CMO) and betaine

aldehyde dehydrogenase (BADH) contributed to saline resistance in S. maritima [13,18] and

rice [19]. Fatty acid desaturase was required for A. thaliana [20], S. glauca [12] and tomato

[21] to resist saline stress. Expression levels of cytochrome P450s increased in salt-treated S.

glauca [12], Gossypium hirsutum and Phaseolus vulgaris [22]. MYB genes were elevated in

sweet cherry [23], Salicornia brachiate [24] and S. maritima in response to saline treatments

[13]. There results indicated that different plants may adopt different molecular strategies to

resist saline stress.

Transcriptome sequencing is a powerful tool to explore molecular mechanisms underlying

biological process. To the best of our knowledge, no reports have been reported to investigate

changes of transcripts of S. salsa in response to saline stress. In the present study, S. salsa seed-

lings were treated with 30‰ salinity and then leaves and roots were subjected to transcriptome

sequencing. Real-time quantitative PCR (qPCR) was performed to validate the results. Bioin-

formatics analyses were adopted to compare changes at mRNA and pathway levels. These data

would be helpful to clarify the molecular mechanisms underlying tolerance of S. salsa to

salinity.

Materials and methods

Ethics statement

No specific permit is required for studies on S. salsa in P. R. China. During the experiments,

no local regulations or laws were overlooked.

Germination of S. salsa seeds in response to saline treatments

S. salsa seeds were kindly donated by Jiangsu Coastal Area Institute of Agricultural Sciences

(Yancheng, P. R. China). Six saline concentrations were prepared, including 0.94‰, 1.88‰,
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3.75‰, 7.5‰, 15‰ and 30‰ (geometric sequence by two times), by dissolving commercial

sea salts (Tangfeng Slats Company Limited, Tangshan, P. R. China) in deionized water. Deion-

ized water was used as the control. Germination assays were conducted in 9 cm Petri dishes.

In each dish, three layers of filter paper were placed at the bottom, 10 ml of saline solution was

added and then 100 seeds were placed on filter paper. Seeds were germinated in a light humidi-

fied incubator at humidity of 80% RH and dark. The temperature was 25˚C at day time (12 h)

and 15˚C at night (12 h). Germinated seeds were counted daily for 10 days to calculate germi-

nation rate. To avoid disturbance of evaporation on salinity, germinated seedlings were dis-

carded and ungerminated seeds were transferred to new dishes with fresh solution every two

days. Each assay was repeated four times.

Saline treatments of S. salsa seedlings

S. salsa seeds were germinated in deionized water as described above. When seedlings reached

10 cm approximately, seedlings were transplanted to plastic containers with sands as cultural

substrate and Hoagland’s solution as media, and then cultured in a greenhouse at 25˚C. The

light cycle was 16 hours: 8 hours (light: dark) and light intensity was approximately 14,400 lux.

After two weeks, healthy plants were treated with salinity of 30‰ by dissolving commercial

sea salts (Tangfeng Slats Company Limited, Tangshan, China) in Hoagland’s solution. Hoag-

land’s solution was used as the control. Each treatment included 20–30 individuals and

repeated three times independently. To supplement evaporated water, distilled water was

added every day to keep total volume of culture media consistent. After 10 days, plants were

harvested. Roots and top four leaves were collected and immediately frozen in liquid nitrogen

for RNA extraction. For each treatment, samples from 5 individuals were pooled.

Transcriptome sequencing

Total RNA was extracted using Biozol reagent (Bioer, Hangzhou, China) according to the

manufacture’s protocol. Quality of total RNA was check by 1% agarose gel electrophoresis,

NanoPhotometer spectrophotometer (IMPLEN, CA, USA) and Agilent Bioanalyzer 2100 sys-

tem (Agilent Technologies, CA, USA). RNA samples with RNA integrity number (RIN) higher

than 8.0 were considered qualified. RNA concentration was measured using Qubit RNA assay

kit on Qubit 2.0 Flurometer (Life Technologies, CA, USA).

To construct sequencing libraries, mRNA was enriched using NEBNext Poly(A) mRNA

Magnetic Isolation Module (NEB, USA). Sequencing libraries were prepared using NEBNext

mRNA Library Prep Master Mix Set for Illumina (NEB, USA) and NEBNext Multiplex Oligos

for Illumina (NEB, USA). Sequencing library was viewed on 1.8% agarose gel to check insert

size and quantified using Library Quantification Kit-Illumina GA Universal Kit (Kapa, USA).

Qualified libraries were clustered on a cBot cluster generation system using HiSeq 4000 PE

cluster kit (Illumina) and sequenced on an Illumina Hiseq 2500 platform. Three independent

samples were sequenced as three biological replicates.

Bioinformatics analyses

Clean reads were achieved by removing adaptors, reads with N ratio higher than 1% and low

quality reads (with > 50% bases having Phred quality score� 15). Clean reads were subjected

to assembly of unigene library using Trinity v2.0.6 [25]. HTSwq v0.6.0 was applied to calculate

FPKM values (expected number of fragments per kilobase of transcript sequence per millions

base pairs sequenced) of each unigene. Relative expression levels of each gene were compared

among different groups using DESeq2 R package. Fold change� 2 and q value (adjusted P

value) < 0.001 were considered significantly changed.
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DEGs were mapped to Gene Ontology (GO) database and Kyoto Encyclopedia of Genes

and Genomes database (KEGG) [26] for enrichment of GO categories and KEGG pathways

using BLAST software [27].

Real-time quantitative PCR

Results of Illumina sequencing were validated using real-time qPCR. cDNA was prepared

using BioRT cDNA first strand synthesis kit (Bioer, Hangzhou, China) with oligo(dT) primer.

qPCR was carried out using BioEasy master mix (Bioer, Hangzhou, China) on a Line

Gene9600 Plus qPCR machine (Bioer, Hangzhou, China). DEGs and primers used for qPCR

are listed in S1 Table. Transcriptional elongation factor-1 alpha was used as the internal con-

trol. Relative expression levels of each gene between saline treatment and the control were cal-

culated using the typical 2-ΔΔCt method [28]. Three biological replicates were included for each

treatment and three technical repeats were performed for each sample.

Results and discussion

Effects of salinity on seed germination

Previously, most experiments employed NaCl to represent saline stress, which might misesti-

mate the effects of other components in sea salts on seed germination and plant growth [29–

30]. In the present study, we used sea salts to prepare saline solutions, which should be more

similar to real environments.

Seeds started to germinate in all treatments after two days. Germination rate significantly

decreased in response to saline treatments but increased with germination time. After eight

days, in comparison to the control, germination rates were significantly lower in treatments

with 30‰ and 15‰, but did not significantly change in other saline treatments (Fig 1). These

results suggested that germination of S. salsa seeds could tolerate salinity as high as 7.5‰,

which was consistent with previous findings on S. salsa and the general consensus that germi-

nation of halophyte seeds is optimum under freshwater but decreases with elevating salinity

[31, 32].

Transcriptome sequencing

The sequencing data were deposited in NCBI with the reference number of PRJNA512222.

Illumina sequencing resulted in 65.21 M to 72.28 M of total clean reads and 6.52 G to 7.23 G of

total clean bases for each sample (Table 1). The sequencing depth was roughly calculated by

the ratio of sequencing data to the size of assembled transcriptome, approximately ranging

from 22.37 × to 24.81 ×. The total clean reads were higher than those in previous studies on S.

salsa [33]. Besides, all Q20 and Q30 values were higher than 98.09% and 91.78%, respectively

(Table 1). These indices suggested that the sequencing was deep and the as-obtained data

should be enough for further analyses.

De novo assembly

Total clean reads of each sample were assembled independently to get the unigene library of

each sample. The total number of unigenes ranged from 40,038 to 133,430, with the mean

length of unigenes from 798 bp to 1,180 bp (S2 Table). Benchmarking Universal Single-Copy

Orthologs (BUSCO) analyses revealed that at least 2.97% BUSCOs were fragmented or missing

(S1 Fig). Alternatively, clean reads of all samples were pooled, equal to 1,234.49 M of clean

reads, and then subjected to Trinity assembly. Finally, 196,199 unigenes were obtained, with

the mean length of 1,673 bp and the N50 length of 2,780 bp (Table 2). BUSCO analyses
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revealed that only 1.98% BUSCOs were missing and none BUSCOs were fragmented (S1 Fig).

Obviously, the as-obtained unigenes showed longer mean length and N50 length as well as less

fragmented and missing BUSCOs than those assembled from each sample (S1 Table), suggest-

ing that unigene library generated from all samples had higher quality. The as-obtained uni-

gene library was used for further analyses.

Functional annotation and analysis

Among the unigene library, more than 65.45% and 45.91%unigenes were longer than 500 bp

and 1,000 bp, respectively (S2 Fig). Coding sequence (CDS) prediction revealed 122,855 CDSs,

with the total length of 137.21 M bp, the average length of 1,117 bp and the N50 length of

1,431 bp (Table 2). Approximately 72.67% and 36.84% CDSs were longer than 500 bp and

1,000 bp, respectively (S2 Fig).

Fig 1. Effects of salinity on seed germination rate of Suaeda salsa (mean ± SE). � significantly different from the control

(P< 0.05).

https://doi.org/10.1371/journal.pone.0219979.g001

Table 1. Statistics of Illumina sequencing quality for each sample.

Salinity-Sample TCR (M) TCB (G) Q20 (%) Q30 (%) TM (%) UM (%)

Leaf

Control-1 67.88 6.79 98.49 92.78 89.02 10.51

Control-2 67.52 6.75 98.39 92.42 89.51 10.62

Control-3 67.57 6.76 98.37 92.32 89.64 9.83

30‰-1 67.76 6.78 98.46 92.82 90.75 10.31

30‰-2 69.85 6.99 98.45 92.80 89.89 10.99

30‰-3 67.44 6.74 98.45 92.63 90.73 10.20

Root

Control-1 70.26 7.03 98.52 92.91 87.74 12.26

Control-2 65.21 6.52 98.48 92.76 86.40 12.54

Control-3 66.91 6.69 98.42 92.58 86.83 12.83

30‰-1 70.19 7.02 98.09 91.78 87.04 12.11

30‰-2 72.28 7.23 98.15 91.88 87.00 12.53

30‰-3 67.59 6.76 98.15 91.91 88.23 12.36

TCR: total clean reads; TCB: total clean base; TM: total mapping; UM: uniquely mapping.

https://doi.org/10.1371/journal.pone.0219979.t001
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After blasted against the relevant databases, 61.97%, 51.39%, 43.88%, 47.03%, 48.15%,

44.30% and 14.91% unigenes could hit genes in the RefSeq non-redundant proteins (NR),

nucleotide (NT), Swissprot, KEGG, Eukaryotic Orthologous Groups (KOG), Pfam and GO

database respectively. Overall, 68.10% unigenes could be annotated to one or more databases.

Differentially expressed genes and qPCR validation

Compared with the control, 68,599 (45,321 upregulated and 23,278 downregulated) and

77,250 unigenes (48,682 upregulated and 28,568 downregulated) were significantly differen-

tially expressed in treatment with 30‰ in leaves and roots, respectively (Fig 2).

Table 2. Assembly statistics of unigenes and coding sequences (CDS).

Parameter Unigene CDS

Total clean reads used for assembly (M) 1,234.49 1,234.49

Total number 196,199 122,855

Total length (M bp) 328.25 137.21

Minimum unigene length (bp) 200 297

Maximum unigene length (bp) 35,045 15,345

Average unigene length (bp) 1,673 1,117

N50 length (bp) 2,780 1,431

N90 length (bp) 836 552

GC content (%) 39.23 42.78

https://doi.org/10.1371/journal.pone.0219979.t002

Fig 2. Number of differentially expressed genes in Suaeda salsa leaves and roots between treatment with 30‰ and

the control.

https://doi.org/10.1371/journal.pone.0219979.g002
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To validate the expression levels predicted by transcriptome sequencing, qPCR was per-

formed for 6 unigenes in leaves and 8 unigenes in roots. The results showed similar tendency

to the expression levels calculated by FPKM value (Fig 3), suggesting that DEGs prediction

was reliable.

Fig 3. Real-time qPCR validation results (mean ± SE). Data were normalized by considering the highest value of

each gene among three treatments as one. CPOD: Cationic peroxidase 1; WDR: WD repeat-containing protein 87; 40S:

40S ribosomal protein S3a; PLL: Probable linoleate 9S-lipoxygenase 5; CYT: Cytochrome P450 71A6; ACA: Acetyl-

CoA acetyltransferase, cytosolic; LAC: Lipoamide acyltransferase component of branched-chain alpha-keto acid

dehydrogenase complex, mitochondrial; ATF: Branched-chain-amino-acid aminotransferase 5, chloroplastic; SAPK:

Serine/threonine-protein kinase; BGAD2: Beta-galactosidase 2; GEG: Glucan endo-1,3-beta-glucosidase; LCA:

Lichenase; GEG2: Glucan endo-1,3-beta-glucosidase; BGD12: Beta-glucosidase 12.

https://doi.org/10.1371/journal.pone.0219979.g003
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Enrichment of GO categories for DEGs

Top 20 GO categories revealed that in leaves and roots, DEGs in comparison between 30‰

and control were mainly assigned to cellular process, metabolic process, cell, cell part, catalytic

activity and binding (Fig 4).

Enrichment of KEGG pathways for DEGs

KEGG enrichment of significantly downregulated genes showed 24 and 16 pathways in leaves

and roots, respectively, which shared nine KEGG pathways, including valine, leucine and iso-

leucine degradation (ko00280), linoleic acid metabolism (ko00591), glycerophospholipid

Fig 4. Top 20 GO categories of differentially expressed genes in treatment with 30‰ compared with the control.

https://doi.org/10.1371/journal.pone.0219979.g004
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metabolism (ko00564), circadian rhythm-plant (ko04712), plant hormone signal transduction

(ko04075), pentose phosphate pathway (ko00030), riboflavin metabolism (ko00740), nicoti-

nate and nicotinamide metabolism (ko00760) and ascorbate and aldarate metabolism

(ko00053). These enriched pathways represented harmful effects of salinity on S. salsa. KEGG

enrichment of significantly upregulated genes revealed 17 and 18 pathways in leaves and roots,

respectively. Between them, only one pathway (ko00261 monobactam biosynthesis) was

shared. These results might provide new insights for investigation of molecular mechanisms

underlying adaptation of S. salsa to salinity stress (Tables 3 and 4).

Changes of energy metabolism in S. salsa upon saline treatment

Photosynthesis process is quite sensitive to saline stress. In response to saline treatments, pho-

tosynthesis process was inhibited in maize [34]and mulberry [35], which should negatively

affect accumulation of organic matters and plant growth. Similarly, salinity also displayed neg-

ative effects on shoot length of S. salsa [36]. In the present study, carbon fixation in photosyn-

thetic organisms (ko00710) was suppressed in saline-stressed leaves, suggesting that

photosynthesis process might be inhibited by salinity, which then should reduce metabolism

of organic carbons, displaying downregulation of carbohydrate metabolism (ko00500 starch

and sucrose metabolism, ko00051 fructose and mannose metabolism, ko00010, glycolysis/glu-

coneogenesis, ko00052 galactose metabolism, ko00531 glycosaminoglycan degradation,

ko00520 amino sugar and nucleotide sugar metabolism, ko00030 pentose phosphate pathway,

ko00640 propanoate metabolism and ko00511 other glycan degradation). Furthermore, down-

regulation of carbohydrate metabolism would depress lipid metabolism (ko00564, glyceropho-

spholipid metabolism, ko00591 linoleic acid metabolism, ko00071 fatty acid degradation, and

ko00592 alpha-linolenic acid metabolism), amino acid metabolism (ko00250 alanine, aspartate

and glutamate metabolism and ko00350 tyrosine metabolism) and biosynthesis of complicated

polymer compounds (Tables 3 and 4). For example, phenylpropanoid biosynthesis (ko00940),

which contributes monolignols, the starting compounds for biosynthesis of lignin [37], was

downregulated in the present study. Overall, these changes would comprehensively depress S.

salsa growth. These results were partially similar to transcriptomic analyses of S. maritima in

treatment with 2% NaCl, which decreased the expression levels of genes related to photosyn-

thesis (particularly the light reaction) and Calvin cycle, but increased most of the genes in the

anabolic pathways (such as sucrose and starch synthesis) and catabolic pathways (such as the

tricarboxylic acid cycle, glycolysis and the oxidative pentose phosphate pathway). The different

changes of sucrose and starch synthesis and glycolysis between these two studies might be

attributed to the tested salinities. In the present study, 30‰ salinity was used, which was much

higher than that prepared by 2% NaCl.

The KEGG pathway riboflavin metabolism (ko00740) and nicotinate and nicotinamide

metabolism (ko00760) is important for biosynthesis of vitamin B2 and B3, respectively. Vita-

min B2 is an essential coenzyme to oxidordeuctases (such as succinodehydrogenase, xanthine

oxidase and NADH dehydrogenase), participating in degradation of sugars. Vitamin B3 is a

major component of coenzyme I (NAD) and coenzyme II (NADPH), which participate in the

photosynthesis process, degradation of sugars and lipids. Thus, downregulation of these two

pathways could be considered as normal regulation in response to saline-inhibited photosyn-

thesis and accumulation of organic matters.

Changes of ion transportation

To resist saline stress, the first strategy is to relieve harmful accumulation of Na+ and Cl-. In

NaCl-treated S. maritima, plasma membrane H+ ATPase (PM-H+ ATPase), Na+/H+

Molecular mechanisms of S. salsa to saline stress
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exchanger, Na+/H+ antiporter, vacuolar-type H+ ATPase (V-H+ ATPase), betaine aldehyde

dehydrogenase (BADH) and choline monooxygenase (CMO) were upregulated, which were

involved in ionic adjustment [13]. Similarly, Na+ influx transporter and the tonoplast Na+/H+

antiporter were upregulated in Suaeda fruticose under saline condition [38]. In the present

Table 3. Enrichment of KEGG pathway between treatment with 30‰ and the control in Suaeda salsa leaves. Enriched/total gene: number of DEGs/total genes in the

corresponding pathway.

ID and name of KEGG pathway Enriched/

total gene

P value Q value

Upregulated genes in treatment with 30‰

ko00480, Glutathione metabolism 361/1308 0.000 0.000

ko00901, Indole alkaloid biosynthesis 83/242 0.000 0.000

ko00940, Phenylpropanoid biosynthesis 550/2219 0.000 0.000

ko00130, Ubiquinone and other terpenoid-quinone biosynthesis 161/577 0.000 0.001

ko00941, Flavonoid biosynthesis 152/554 0.000 0.003

ko03018, RNA degradation 444/1866 0.001 0.017

ko04144, Endocytosis 621/2666 0.001 0.017

ko00300, Lysine biosynthesis 62/207 0.001 0.019

ko00460, Cyanoamino acid metabolism 228/914 0.002 0.021

ko00073, Cutin, suberine and wax biosynthesis 71/247 0.002 0.022

ko00261, Monobactam biosynthesis 58/195 0.002 0.022

ko00945, Stilbenoid, diarylheptanoid and gingerol biosynthesis 80/284 0.002 0.022

ko04075, Plant hormone signal transduction 529/2271 0.002 0.022

ko04120, Ubiquitin mediated proteolysis 423/1797 0.003 0.026

ko00966, Glucosinolate biosynthesis 29/85 0.003 0.027

ko00400, Phenylalanine, tyrosine and tryptophan biosynthesis 155/613 0.005 0.037

Downregulated genes in treatment with 30‰

ko00500, Starch and sucrose metabolism 480/2481 0.000 0.000

ko00051, Fructose and mannose metabolism 153/687 0.000 0.000

ko00940, Phenylpropanoid biosynthesis 424/2219 0.000 0.000

ko04075, Plant hormone signal transduction 434/2271 0.000 0.000

ko00604, Glycosphingolipid biosynthesis-ganglio series 51/185 0.000 0.001

ko00941, Flavonoid biosynthesis 123/554 0.000 0.001

ko00740, Riboflavin metabolism 75/307 0.000 0.001

ko04016, MAPK signaling pathway—plant 424/2271 0.000 0.001

ko00945, Stilbenoid, diarylheptanoid and gingerol biosynthesis 69/284 0.000 0.002

ko00010, Glycolysis / Gluconeogenesis 261/1352 0.000 0.003

ko00760, Nicotinate and nicotinamide metabolism 73/311 0.000 0.003

ko04712, Circadian rhythm—plant 138/672 0.001 0.006

ko00564, Glycerophospholipid metabolism 204/1046 0.001 0.006

ko00591, Linoleic acid metabolism 67/299 0.002 0.012

ko04626, Plant-pathogen interaction 458/2562 0.002 0.012

ko00280, Valine, leucine and isoleucine degradation 190/990 0.002 0.014

ko00565, Ether lipid metabolism 73/340 0.003 0.022

ko00052, Galactose metabolism 218/1166 0.003 0.023

ko00531, Glycosaminoglycan degradation 61/277 0.004 0.023

ko00520, Amino sugar and nucleotide sugar metabolism 318/1760 0.004 0.025

ko00030, Pentose phosphate pathway 137/707 0.005 0.031

ko00053, Ascorbate and aldarate metabolism 193/1033 0.006 0.032

ko00710, Carbon fixation in photosynthetic organisms 152/800 0.007 0.039

https://doi.org/10.1371/journal.pone.0219979.t003
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study, partially similar results were revealed (Table 5). Na+/H+ exchanger, V-H+ ATPase and

CMO were significantly upregulated in leaves and roots. These results suggested that S. salsa
might share similar mechanisms with other Suaeda species underlying ionic balance (Na+ and

H+) in response to saline stress. The H+-ATPase generates an electrochemical membrane

potential in the plasma membrane and Na+/H+ exchanger may transport Na+ out of cells via

this H+ gradient [39,40]. However, PM-H+ ATPase and Na+/H+ antiporter did not change in

response to saline treatment in the present study and also in S. glauca [12], indicating that dif-

ferent Suaeda species might differ in regulation of proteins responsible for ionic balance.

Table 4. Enrichment of KEGG pathway between treatment with 30‰ and the control in Suaeda salsa roots. Enriched/total gene: number of DEGs/total genes in the

corresponding pathway.

ID and name of KEGG pathway Enriched/

total gene

P value Q value

Upregulated genes in treatment with 30‰

ko03010, Ribosome 1423/3320 0.000 0.000

ko00196, Photosynthesis—antenna proteins 28/43 0.000 0.000

ko00630, Glyoxylate and dicarboxylate metabolism 290/856 0.000 0.000

ko00260, Glycine, serine and threonine metabolism 261/789 0.000 0.000

ko01230, Biosynthesis of amino acids 913/3127 0.000 0.001

ko01200, Carbon metabolism 901/3111 0.000 0.002

ko00072, Synthesis and degradation of ketone bodies 42/101 0.000 0.009

ko00220, Arginine biosynthesis 174/539 0.001 0.011

ko00195, Photosynthesis 82/230 0.001 0.012

ko03008, Ribosome biogenesis in eukaryotes 385/1294 0.001 0.016

ko00710, Carbon fixation in photosynthetic organisms 246/800 0.001 0.017

ko00190, Oxidative phosphorylation 373/1263 0.002 0.023

ko03013, RNA transport 871/3088 0.002 0.023

ko04145, Phagosome 304/1015 0.002 0.023

ko00920, Sulfur metabolism 111/342 0.004 0.041

ko03020, RNA polymerase 331/1126 0.005 0.045

ko00261, Monobactam biosynthesis 67/195 0.006 0.047

ko00750, Vitamin B6 metabolism 55/156 0.007 0.050

Downregulated genes in treatment with 30‰

ko00280, Valine, leucine and isoleucine degradation 308/990 0.000 0.000

ko00591, Linoleic acid metabolism 91/299 0.000 0.000

ko00071, Fatty acid degradation 169/643 0.000 0.000

ko00640, Propanoate metabolism 141/525 0.000 0.000

ko00592, alpha-Linolenic acid metabolism 145/547 0.000 0.000

ko00250, Alanine, aspartate and glutamate metabolism 192/775 0.000 0.001

ko00350, Tyrosine metabolism 152/597 0.000 0.001

ko00564, Glycerophospholipid metabolism 247/1046 0.000 0.002

ko04712, Circadian rhythm—plant 164/672 0.000 0.005

ko04075, Plant hormone signal transduction 493/2271 0.001 0.009

ko02010, ABC transporters 185/789 0.001 0.014

ko00030, Pentose phosphate pathway 167/707 0.001 0.015

ko00740, Riboflavin metabolism 79/307 0.002 0.023

ko00760, Nicotinate and nicotinamide metabolism 80/311 0.002 0.023

ko00053, Ascorbate and aldarate metabolism 231/1033 0.004 0.036

ko00511, Other glycan degradation 124/525 0.005 0.044

https://doi.org/10.1371/journal.pone.0219979.t004
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Besides, potassium channel, two-pore potassium channel, chloride channel protein, S-type

anion channel were significantly upregulated in saline-treated leaves in the present study

(Table 5). Similar results have been reported in Zostera marina in which various K+ channels

and transporters showed higher uptake capacity of K+ in response to saline treatment than

those in the control [41]. Maintenance of K+ supply is a crucial feature of salt tolerance, since

transportation of K+ could effectively adjust osmotic pressure among subcellular compart-

ments and cytosol caused by increased vacuolar Na+ concentration [42]. Activity of anion

Table 5. FPKM values of selected genes in saline treatment and control in Suaeda salsa.

Gene name Leaves Roots

Control 30‰ Control 30‰

Antioxidant enzymes

Choline monooxygenase 56.1 ± 22.2 272.3 ± 87.6� 85.0 ± 12.4 119.4 ± 10.4�

Copper chaperone for superoxide dismutase 20.6 ± 1.3 47.2 ± 3.9� 22.0 ± 5.3 35.6 ± 9.0

Superoxide dismutase [Cu-Zn] 87.5 ± 17.6 81.2 ± 4.3 113.9 ± 19.5 172.1 ± 22.0

Superoxide dismutase [Fe] 27.1 ± 9.5 91.8 ± 9.3� 12.1 ± 2.9 57.8 ± 3.8�

Ion transportation

Cation/H(+) antiporter 11.7 ± 3.3 17.2 ± 2.6 32.1 ± 6.3 18.5 ± 4.8�

K(+) efflux antiporter 24.6 ± 0.8 23.2 ± 1.4 25.8 ± 6.6 24.6 ± 5.1

Sodium/hydrogen exchanger 28.9 ± 10.4 42.8 ± 4.9� 15.5 ± 5.9 36.8 ± 13.7�

Cadmium/zinc-transporting ATPase 2463.2 ± 173.7 3376.2 ± 438.5 3263.6 ± 294.8 4306.5 ± 1458.9

Calcium-transporting ATPase 59.2 ± 3.0 36.4 ± 2.1� 186.4 ± 25.2 107.9 ± 8.2�

Copper-transporting ATPase 47.3 ± 5.6 41.8 ± 4.1 54.9 ± 6.9 38.5 ± 17.1

Phospholipid-transporting ATPase 15.4 ± 5.2 13.4 ± 3.1 16.7 ± 9.3 11.8 ± 5.4

Plasma membrane ATPase 94.1 ± 13.9 65.5 ± 5.0 48.1 ± 13.8 17.1 ± 13.7

Calcium permeable stress-gated cation channel 156.8 ± 16.7 178.8 ± 85.7 120.8 ± 10.7 119.7 ± 15.3

Chloride channel protein 171.5 ± 11.1 223.7 ± 10.7� 70.4 ± 3.4 75.0 ± 10.5

Cyclic nucleotide-gated ion channel 34.1 ± 5.8 44.0 ± 7.0 23.3 ± 5.2 18.9 ± 8.0

S-type anion channel 15.6 ± 4.4 45.9 ± 7.5� 15.9 ± 2.2 21.8 ± 8.8

Mechanosensitive ion channel protein 51.5 ± 7.5 62.9 ± 8.0 32.1 ± 10.6 35.5 ± 6.5

Potassium channel 9709.0 ± 438.9 13596.4 ± 1125.4� 10829.4 ± 711.0 13792.0 ± 3692.7

Probable cyclic nucleotide-gated ion channel 41.2 ± 3.1 28.5 ± 1.8� 32.1 ± 4.7 24.3 ± 2.1

Two pore calcium channel protein 15.6 ± 5.1 26.3 ± 4.9 23.2 ± 1.1 27.0 ± 7.1

Two-pore potassium channel 38.8 ± 6.9 57.6 ± 5.1� 63.3 ± 20.9 61.1 ± 6.4

Choline monooxygenase 56.1 ± 22.2 272.3 ± 87.6� 85.0 ± 12.4 119.4 ± 10.4�

V-type proton ATPase 348.9 ± 38.8 704.5 ± 33.4� 201.4 ± 14.1 398.2 ± 28.0�

Indole alkaloid biosynthesis

methylesterase 288.1±77.8 778.7±127.6� 395.8±172.1 599.5±236.8

GDSL esterase/lipase 179.9 ±49.2 223.0±22.7 371.3±162.2 417.0±187.4

Cell wall-associated genes

O-acyltransferase WSD1 21.8 ± 9.6 20.3 ± 6.1 10.5 ± 0.6 10.6 ± 1.9

Laccase 13.4 ± 3.5 52.7 ± 10.6� 61.2 ± 19.2 121.5 ± 42.7

leucine-rich repeat extensin 126.8 ± 28.2 133.2 ± 8.8 132.8 ± 24.5 190.1 ± 18.3�

Expansin 427.7 ± 228.4 369.5 ± 39.1 349.6 ± 91.1 531.6 ± 207.4

Cellulose synthase 157.4 ± 4.3 348.3 ± 36.9� 119.5 ± 5.1 358.5 ± 179.1

Cellulose synthase interactive 54.8 ± 21.1 117.8 ± 9.2� 35.6 ± 9.1 91.7 ± 21.6�

Data represent mean ± standard deviation of FPKM values (n = 3).

� significantly different from the control for the same organ.

https://doi.org/10.1371/journal.pone.0219979.t005
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channel is corresponded to chloride channel protein [43]. Upregulation of chloride channel

proteins could effectively reduce Cl- accumulation and increase tolerance to salinity in plants

[44].

Activation of antioxidant mechanisms in response to saline treatment

Generally, saline treatments induce oxidative stress to plants [45,46]. The halophyte S. salsa
should have some mechanisms to avoid detrimental effects of oxidative stress. In the present

study, we examined the expression level of superoxide dismutase (SOD), which is the first anti-

oxidant enzyme in response to environmental stress. The results revealed different patterns

between two types of SOD. In comparison to the control, expression level of Fe-SOD increased

significantly for 3.4 and 4.8 times in saline-treated leaves and roots, respectively, but expres-

sion level of Cu/Zn-SOD did not change significantly (Table 5). Consistently, saline treatment

drove greater increase of expression level of Fe-SOD than that of Cu-Zn SOD in rice varieties

[47]. Although Fe-SOD and Cu/Zn-SOD have similar catalyzing functions, but their amino

acid sequences appear to be unrelated [48]. Thus, they may respond to oxidative stress trig-

gered by different stress factors. More investigations are required to distinguish their biological

functions.

Comparison between saline treatment and the control suggested that the KEGG pathway

glutathione (GSH) metabolism (ko00480) was upregulated in S. salsa leaves. Although GSH

functions in nutrient metabolism and regulation of cellular events (including gene expression,

DNA and protein synthesis, cell proliferation and apoptosis, signal transduction, cytokine pro-

duction and immune response, and protein glutathionylation), the major role of GSH occurs

in the antioxidant defense [49]. In response to saline treatments, GSH metabolism was acti-

vated in reed [50] and Arthrospira platensis [51]. Thus, activation of GSH metabolism might

also contribute antioxidant capacity to protect S. salsa from saline-induced oxidation.

GSH is biosynthesized from glutamate, cysteine, and glycine [49]. In roots, saline treatment

upregulated the KEGG pathway glycine, serine and threonine metabolism (ko00260) but

downregulated alanine, aspartate and glutamate metabolism (ko00250). How the changes of

these two pathways affected GSH metabolism still required more investigations.

Besides GSH, L-ascorbate (AsA, also known as vitamin C) is another most abundant anti-

oxidant in multicellular organisms [52] and is linked to glutathione metabolism [53]. Biologi-

cally, AsA is synthesized from D-galacturonate pathway through aldo-keto reductase (AKR)

and L-galactono-1,4-lactone dehydrogenase (GLDH), from galactose pathway through L-

galactose-1-phosphate phosphatase (GPP), L-galactose-1-dehydrogenase (GDH) and L-galac-

tono-1,4-lactone dehydrogenase (GLDH), and from GDP-L-gulose pathway and myo-inositol

pathway through L-gulono-1,4-lactone oxidase (GLO, Fig 5) [54]. In the present study, com-

pared with the control, saline treatment downregulated expression levels of GPP and GDH,

but upregulated expression levels of AKR, GLDH and GLO (S3 Table and Fig 5), suggesting

that AsA might be accumulated in saline-stressed S. salsa through D-galacturonate, GDP-L-

gulose and/or Myo-Inositol pathways, which might protect plants from harms of oxidation.

Potential roles of flavonoids in adaptation to salinity

Flavonoids may serve antioxidant functions in response to heavy metals, drought, and salt

stresses [55–57] and modifications of flavonoid structure (i.e., glycosylation, prenylation and

methylation) could inhibit lipid peroxidation in stressed plants [58,59]. In the present study,

the KEGG pathway flavonoid biosynthesis (ko00941) was significantly enriched in leaves no

matter upregulated or downregulated genes were subjected to KEGG enrichment analysis.

Since enzymes in this pathway had lots of unigenes in the present transcriptome data, to obtain
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consistent results, unigenes mapped to the same enzyme were pooled and their FPKM values

were summed. Finally, the results discovered six differentially expressed enzymes (Fig 6 and S4

Table), including flavonol synthase (EC 1.14.20.6), bifunctional dihydroflavonol 4-reductase/

flavanone 4-reductase (EC 1.1.1.219), anthocyanidin synthase (EC 1.14.11.19), anthocyanidin

reductase (EC 1.3.1.77), flavanone 4-reductase (EC 1.1.1.234) and trans-cinnamate 4-monoox-

ygenase (EC 1.14.14.91). These results were all upregulated in response to saline treatment,

indicating that flavonoid biosynthesis pathway was activated by saline treatment in S. salsa
leaves.

The phenylpropanoid pathway was also upregulated in saline treatment (Table 3), which is

the upstream pathway to flavonoid biosynthesis [60]. Thus, phenylpropanoids and flavonoids

might function together to protect S. salsa from abiotic stresses [37, 61]. Similar results were

observed in various plants, such as rice [62], wheat [63] and S. glauca [12].

Regulation of plant hormones

The KEGG pathway plant hormone signal transduction (ko04075) is responsible to transduce

signals of hormones (including auxin, cytokinine, gibberellin, abscisic acid, ethylene, brassi-

nosteroid, jasmonic acid and salicylic acid) to downstream performance (including cell

enlargement, elongation and division, germination, shoot imitation, plant growth and stress

response). KEGG enrichment analyses of upregulated or downregulated genes independently

both revealed significantly involvement of plant hormone signal transduction pathway in

saline-treated leaves, suggesting that this pathway might play important and complicated roles

in saline resistance. The FPKM values of different unigenes mapped to the same protein were

summed and statistically re-analyzed by Students’ T-tests (Fig 7 and S5 Table). Only one gene

in the signaling transduction of cytokinine, gibberellin and salicylic acid was upregulated.

Based on the changing tendency of only one gene, it was unprecise to conclude that these three

hormone signals contributed to saline resistance in S. salsa. In the brassinosteroid signaling

transduction, three genes significantly differentially expressed, but their changing tendency

Fig 5. Changes of key genes in relation to L-ascorbate biosynthesis. AKR: aldo-keto reductase; GLDH: L-galactono-

1,4-lactone dehydrogenase; GPP: L-galactose-1-phosphate phosphatase; GDH: L-galactose-1-dehydrogenase; GLDH:

L-galactono-1,4-lactone dehydrogenase; GLO: L-gulono-1,4-lactone oxidase. Red box: upregulated in treatment with

30‰. Green box: downregulated in treatment with 30‰.

https://doi.org/10.1371/journal.pone.0219979.g005
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were contradictory. Compared with the control, BAK1 was upregulated for 1.7 times, BZR1/2

was upregulated for 1.5 times, but BRI was downregulated for 1.4 times in saline treatment.

These changes were quite weak and could be ignored.

Importantly, the signaling transduction of auxin, abscisic acid, ethylene and jasmonic acid

involved several genes which mostly showed similar tendency in the present study, suggesting

that these signaling pathways might respond to saline treatment in S. salsa and will be dis-

cussed in details.

Potential roles of auxin signaling pathway in saline tolerance

The chemical nature of auxin is indole-3-acetic acid. In the present study, the KEGG pathway

indole alkaloid biosynthesis (ko00901) was activated in saline-treated leaves. Within this path-

way, the unigenes encoding methylesterase (EC 3.1.1.78) and GDSL esterase/lipase (EC

3.1.1.80) were both upregulated in saline treatment in comparison to the control (Table 5),

suggesting that concentrations of indole alkaloids might be elevated. Similar results were

reported previously, that indole alkaloids were induced by abiotic stresses, including UV-B

irradiation [64], PEG-induced drought [65] and salinity [66]. In the auxin pathway which

transduces signals of indole-3-acetic acid, auxin response factor (ARF), auxin responsive GH3

(GH3) and small auxin upregulated RNA family protein (SAUR) were also upregulated for1.7,

Fig 6. Changes of key genes in KEGG pathway of flavonoid biosynthesis. The basic flow chart was obtained from the website (https://www.kegg.jp/kegg-bin/show_

pathway?map00941). Red box: significantly upregulated in treatment with 30‰ compared with the control. Purple box: no significantly change between treatment with

30‰ and the control.

https://doi.org/10.1371/journal.pone.0219979.g006
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2.8 and 2.2 times, respectively, in saline-treated leaves (Fig 7 and S5 Table). Taken together,

these results suggested that auxin might promote tolerance of S. salsa to saline stress through

auxin signaling pathway.

Changes of abscisic acid signaling in response to salinity

In the abscisic acid (ABA) signaling pathways, abscisic acid receptor (PYR/PYL), serine/threo-

nine-protein kinase (SNRK2) and ABA responsive element binding factor (ABF) were down-

regulated in saline-treated leaves, compared with the control (Fig 7 and S5 Table), suggesting

that ABA signaling pathway was inhibited by saline treatment. These results were different

from those in non-halophytes but consistent with previous findings in a related halophyte spe-

cies S. maritima. As previously reported, saline treatment increased ABA concentrations in

non-halophytes tobacco [67], tomato [68], grapevine [69]. Exogenous ABA induced saline tol-

erant in wheat by elevating expression of peroxidase, which might reduce the active oxygen

triggered by salinity [70]. Besides, ABA induced stomatal closure to minimize water loss [71].

However, in the halophyte S. maritima, saline treatments significantly decreased ABA concen-

tration in comparison to the control [72]. Slight decrease of ABA concentration was also

observed in NaCl-treated Prosopis strombulifera roots and leaves [73]. These results suggested

that inhibition of ABA signaling might be a common strategy for halophytes to resist salinity.

Jin et al. [12] also reported changes of expression levels of ABA related genes in saline treat-

ment in S. glauca, but the authors did not explain the detailed mechanisms. The underlying

mechanisms required further investigations, but one thing was clear. Decreased level of ABA

signaling should ensure stomatal opening and water absorption, which are important for S.

salsa growth.

Changes of ethylene signaling in response to salinity

In S. salsa leaves, four genes responsible for ethylene signaling were significantly unregulated

in saline treatment compared with the control, including mitogen-activated protein kinase

(MPK6), ethylene-insensitive protein 2 (EIN2), ethylene-insensitive protein 3 (EIN3) and eth-

ylene responsive factor 1/2 (ERF1/2) (Fig 7 and S5 Table). These results were consistent with

the upregulation of ERFs in saline-treated S. glauca [12] and also in accordance with the gen-

eral understanding that ethylene signaling is indispensable for tolerance to saline stress in Ara-
bidopsis and many other terrestrial plants [74].

Downstream effectors of ethylene signaling could include reactive oxygen species (ROS)

scavengers (such as SOD) and ion transporters [74]. In the present study, expression levels of

Fe-SOD and ion transporters (including Na+/H+ exchanger, V-H+ ATPase, CMO, potassium

channel, two-pore potassium channel and chloride channel protein) were all upregulated in

response to saline treatment, which might be mediated by the activation of ethylene signaling

pathway.

Moreover, ubiquitin mediated proteolysis (ko04120) is a downstream effector pathway of

EIN3. It has been reported that this pathway is involved in flooding, heat, ultravioletradiation,

oxidative stresses and diseases in plants [75]. In the present study, ubiquitin mediated proteol-

ysis was upregulated in saline-stressed leaves by KEGG enrichment analysis (Table 3), suggest-

ing that ubiquitin mediated proteolysis process might be activated to degrade salinity-

denatured or oxidation-denatured proteins [76]and/or inactivate the repressors in plant

Fig 7. Changes of key genes in KEGG pathway of plant hormone signal transduction. The basic flow chart was obtained from the website (https://www.

kegg.jp/dbget-bin/www_bget?map04075). Red box: significantly upregulated in treatment with 30‰ compared with the control. Green box: significantly

downregulated in treatment with 30‰compared with the control.

https://doi.org/10.1371/journal.pone.0219979.g007
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hormone regulation pathway [77]. This process might be initiated by ethylene accumulation in

S. salsa.

Changes of jasmonic acid signaling in response to salinity

Jasmonic acid (JA) could enhance the tolerance of peanut [78], tomato [79]and barley [80]to saline

stress by increasing antioxidant enzyme activities [78], lowering Na+ concentration and improving

stomatal conductance [80]. In the present study, three key genes in this pathway, including jasmo-

nic acid-amido synthetase (JAR1), jasmonate ZIM domain-containing protein (JAZ) and tran-

scription factor MYC2 (MYC2), were significantly upregulated in saline treatment compared with

the control, suggesting that activation of JA signaling might improve saline tolerance in S. salsa.

Changes of cell wall-associated genes

In response to environmental stresses, modification of cell wall is a common defense mecha-

nism. In both S glauca and S. maritima, genes related to cell wall dynamics, including laccase,

expansins, leucine-rich repeat extensins (LRX), wall-associated receptor kinase proteins and/

or O-acyltransferase WSD1 were upregulated in saline treatment compared with the control.

In the present study, expression levels of expansins, LRX and O-acyltransferase WSD1 did not

change significantly between saline treatment and the control, but laccase, and another two

wall associated proteins cellulose synthase and cellulose synthase interactive [81] were signifi-

cantly upregulated in the saline treatment (Table 5), suggesting that cell wall remodeling also

took place in S. salsa, which might contribute to saline tolerance in S. salsa as reported in S.

glauca and S. maritima [12,13].

Conclusions

In response to treatment with 30‰ salinity, S. salsa displayed suppressed photosynthesis pro-

cess, carbohydrate, lipid and amino acid metabolisms, which might inhibit growth of S. salsa.

To resist saline stress, Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium

and chloride channels were upregulated to ensure ionic balance. Expression levels of Fe-SOD

and genes in glutathione metabolism, biosynthesis of L-ascorbate, flavonoids and phenylpro-

panoids were all upregulated to produce more antioxidants, thus relieving harmful effects of

saline-induced oxidation. Plant hormones played essential roles in saline resistance in S. salsa.

Importantly, auxin, ethylene and jasmonic acid signaling transduction pathways were upregu-

lated and abscisic acid signaling transduction was inhibited by saline treatment, which might

activate antioxidant mechanisms and ionic adjustment.
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