

Pharmacological Interventions to Treat Antipsychotic-Induced Dyslipidemia in Schizophrenia Patients: A Systematic Review and Meta Analysis

Pruntha Kanagasundaram^{1,2†}, Jiwon Lee^{1,3†}, Femin Prasad^{1,3†}, Kenya A. Costa-Dookhan^{1,3†}, Laurie Hamel¹, Madeleine Gordon^{3,4}, Gary Remington^{1,3,5}, Margaret K. Hahn^{1,3,5,6‡} and Sri Mahavir Agarwal^{1,3,5,6*‡}

OPEN ACCESS

Edited by:

Błażej Misiak, Wroclaw Medical University, Poland

Reviewed by:

Takefumi Suzuki, University of Yamanashi, Japan Maria Giuseppina Petruzzelli, University of Bari Aldo Moro, Italy

*Correspondence:

Sri Mahavir Agarwal Mahavir.Agarwal@camh.ca

[†]These authors have contributed equally to this work and share first authorship

[‡]These authors share senior authorship

Specialty section:

This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry

Received: 16 December 2020 Accepted: 16 February 2021 Published: 17 March 2021

Citation:

Kanagasundaram P, Lee J, Prasad F, Costa-Dookhan KA, Hamel L, Gordon M, Remington G, Hahn MK and Agarwal SM (2021) Pharmacological Interventions to Treat Antipsychotic-Induced Dyslipidemia in Schizophrenia Patients: A Systematic Review and Meta Analysis. Front. Psychiatry 12:642403. doi: 10.3389/fpsyt.2021.642403 ¹ Centre for Addiction and Mental Health, Toronto, ON, Canada, ² School of Pharmacy, University of Waterloo, Waterloo, ON, Canada, ³ Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada,
 ⁴ Sunnybrook Health Sciences Centre, Toronto, ON, Canada, ⁵ Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada, ⁶ Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada

Introduction: Antipsychotic-induced dyslipidemia represents a common adverse effect faced by patients with schizophrenia that increases risk for developing further metabolic complications and cardiovascular disease. Despite its burden, antipsychotic-induced dyslipidemia is often left untreated, and the effectiveness of pharmacological interventions for mitigating dyslipidemia has not been well-addressed. This review aims to assess the effectiveness of pharmacological interventions in alleviating dyslipidemia in patients with schizophrenia.

Methods: Medline, Psychlnfo, and EMBASE were searched for all relevant English articles from 1950 to November 2020. Randomized placebo-controlled trials were included. Differences in changes in triglycerides, HDL cholesterol, LDL cholesterol, and VLDL cholesterol levels between treatment and placebo groups were meta-analyzed as primary outcomes.

Results: Our review identified 48 randomized controlled trials that comprised a total of 3,128 patients and investigated 29 pharmacological interventions. Overall, pharmacological interventions were effective in lowering LDL cholesterol, triglycerides, and total cholesterol levels while increasing the levels of HDL cholesterol. Within the intervention subgroups, approved lipid-lowering agents did not reduce lipid parameters other than total cholesterol level, while antipsychotic switching and antipsychotic add-on interventions improved multiple lipid parameters, including triglycerides, LDL cholesterol, HDL cholesterol, and total cholesterol. Off label lipid lowering agents improved triglycerides and total cholesterol levels, with statistically significant changes seen with metformin.

Conclusion: Currently available lipid lowering agents may not work as well in patients with schizophrenia who are being treated with antipsychotics. Additionally, antipsychotic switching, antipsychotic add-ons, and certain off label interventions might be more

1

effective in improving some but not all associated lipid parameters. Future studies should explore novel interventions for effectively managing antipsychotic-induced dyslipidemia.

Registration: PROSPERO 2020 CRD42020219982; https://www.crd.york.ac.uk/ prospero/display_record.php?ID=CRD42020219982.

Keywords: schizophrenia, antipsychotics, dyslipidemia, systematic review, meta-analysis

INTRODUCTION

Dyslipidemia refers to abnormalities in lipid levels such as increases in total and low-density lipoprotein (LDL) cholesterols, low concentrations of high-density lipoprotein (HDL) cholesterols, and high triglyceride levels. This metabolic abnormality causes almost a third of ischemic heart disease and a fifth of global cerebrovascular disease (1). Patients with schizophrenia are at an increased risk of developing cardiovascular disease in part due to the illness itself (2-7), as well as a higher prevalence of well-known lifestyle factors that promote cardiovascular disease risk, namely sedentary lifestyle, poor diet, and smoking (8, 9). Antipsychotics are the cornerstone of treatment in schizophrenia and are widely prescribed across other psychiatric conditions (10). However, their use is associated with severe metabolic adverse effects, including weight gain, dyslipidemia, insulin resistance, and risk of type 2 diabetes mellitus (T2D) in a population burdened with premature cardiovascular mortality.

While the prevalence of dyslipidemia and consequent effects on morbidity and mortality are high worldwide among the general population, particular subgroups may be at a greater risk. In particular, patients with schizophrenia are at an increased risk of dyslipidemia and its associated influence on cardiovascular disease and metabolic dysfunction (11, 12). Despite its high prevalence and associated cardiovascular risk, dyslipidemia often goes untreated among patients with schizophrenia. Reported rates for non-treatment are almost 90% (13-15), and patients with schizophrenia are often medically underserved and disadvantaged in their physical health care (16-18). As shown by results from a study by the National Institute of Mental Health, namely the Recovery After an Initial Schizophrenia Episode-Early Treatment Program (RAISE-ETP), at baseline more than half of patients (161/394 or 56.5%) had dyslipidemia and only 0.5% were receiving treatment (16).

Previous discussions addressing antipsychotic-induced metabolic abnormalities in patients with schizophrenia have largely focused on weight gain or metabolic syndrome, and not dyslipidemia *per se* (19–21). Only a few studies have investigated approved lipid lowering agents for treating dyslipidemia in schizophrenia (22–30). More commonly, as reported in a 2014 review by Tse et al. a wide variety of pharmacological agents have been investigated to treat dyslipidemia in patients with schizophrenia, including treatment with omega-3 fatty acids, fluvoxamine, topiramate, metformin, sibutramine, telmisartan, ramelteon, and valsartan (31). Antipsychotic switching and adding aripiprazole have also been evaluated as strategies to improve lipid outcomes in patients with schizophrenia (32–38).

Given the variety of approaches used to address dyslipidemia in this patient population, as well as the absence of clear clinical guidelines, it is important to summarize the available evidence and guide clinical decision making. Hence, we performed a systematic review and meta-analysis of randomized controlled trials to compare the effects of pharmacological interventions vs. placebo treatment in antipsychotic-induced dyslipidemia in patients with schizophrenia.

METHODS

The protocol for the review is registered on PROSPERO (PROSPERO 2020 CRD42020219982; https://www.crd.york. ac.uk/prospero/display_record.php?ID=CRD42020219982). PRISMA guidelines were used for study design and reporting.

Search

We searched for studies published between 1950 and November 2020 using Medline, PsychInfo and EMBASE databases, with the following search string: *psychotic disorder* OR *schizophrenia* OR *schizoaffective* OR *schizophreniform* OR *psychosis* OR *first episode* AND *hyperlipidemia* OR *triglycerides* OR *cholesterol* OR *lipid* OR *LDL cholesterol* OR *VLDL cholesterol* OR *HDL cholesterol*. The search was limited to studies conducted in human participants and published in English. References cited in previously published literature reviews and meta-analyses pertaining to interventions for metabolic disturbances in the schizophrenia population were reviewed for additional studies.

Inclusion Criteria

Articles were initially screened using title and abstract, based on the study's relevance to our meta-analysis. Thereafter, articles were further screened to ensure that studies met the following inclusion criteria: (a) randomized placebo-controlled trial; (b) diagnosis of schizophrenia spectrum disorders comprising the majority (>50%) of study populations; (c) patients with current metabolic abnormalities; (d) an active pharmacological intervention used to improve metabolic abnormalities or an antipsychotic switching/add-on method if the antipsychotic change is aimed to improve metabolic parameters; and (e) primary outcome listed as lipids or other metabolic measures if lipid outcomes were included in the list of metabolic measures.

Studies were excluded from analysis during the final screening stage if (a) not aimed at improving metabolic measures; (b) comparing different modes of antipsychotic administration (i.e., deltoid, sublingual, gluteal etc.); (c) comparing effectiveness between different antipsychotics; (d) evaluating non-pharmacological intervention (e.g., behavioral interventions, dietary modulations etc.); or, (e) evaluating strategies to prevent dyslipidemia (i.e., patients did not have metabolic abnormalities or dyslipidemia at baseline).

Outcomes Extracted

The primary outcomes included the following lipid parameters: total cholesterol, triglycerides, LDL cholesterol, HDL cholesterol, and very low-density lipoprotein cholesterol (VLDL) cholesterol. Additional secondary outcome data were also extracted including body weight, body mass index (BMI), waist circumference, waist to hip ratio, fasting blood glucose, fasting insulin, hemoglobin A1c (HbA1c), diastolic blood pressure, systolic blood pressure, the homeostatic model assessment of insulin resistance (HOMA-IR), and total positive and negative symptom scale (total PANSS). Outcomes were extracted for both the intervention and placebo groups, where the placebo groups were used as comparators. Outcomes were extracted by two authors (PK and KC-D) and were checked by authors, FP and JL. For studies that examined multiple doses of the same intervention, the data pertaining to the higher dose were extracted.

Data Analysis

Review Manager 5.4 (Revman 5.4.0 (Mac Version) Cochrane Collaboration, Oxford) was used to analyze the data extracted from the final list of included articles. Continuous outcomes were reported using mean differences (MD) with 95% confidence intervals (CIs), following the inverse variance statistical method and random effects model to account for study heterogeneity. Missing standard deviations (SDs) were calculated using other available statistics that were reported. Endpoint data were primarily used unless not available, in which case mean change data were used. Endpoint and change data were combined during the analysis, as we used mean difference rather than standardized mean difference (39). For Emsley et al. which was a double-blind trial with an open-label extension (27), data were extracted at the endpoint of the double-blind phase. Study heterogeneity was calculated using the I^2 statistic, with significant heterogeneity being classified as $I^2 \ge 50\%$. Significant statistical differences were classified as p < 0.05. Changes in lipid profiles (i.e., HDL cholesterol, LDL cholesterol, VLDL cholesterol, triglycerides, and total cholesterol) were assessed for all interventions pooled and for the following 4 subgroups: lipid lowering agents; antipsychotic switching or antipsychotic add-on interventions; the off-label lipid lowering agent metformin; and other off-label lipid lowering agents.

All included studies were judged for risk of bias in random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias using the Cochrane Risk of Bias tool (40). Studies were judged to have either a low, high, or unclear risk of bias. Sensitivity analyses were conducted after removing studies found to be at high risk of bias to examine their impact on findings.

RESULTS

Of the 244 full-text articles screened, 48 articles (n = 3,128) met criteria for inclusion (Figure 1, Supplementary Table 1). Fortythree studies were double-blind, 2 were open-label, one had blinding but did not specify level, and the remaining 2 studies did not provide information on blinding. All studies included adult populations (18 years or older). The average age (\pm SD) of participants receiving interventions was 40.1 (±12.8) years, vs. 40.6 (\pm 9.6) for those receiving placebo. A total of 74% of participants in both the intervention and placebo groups were male, with 89.2% diagnosed with schizophrenia. Trials were 4-24 weeks long, with a mean duration (\pm SD) of 13.1 (\pm 5.7) weeks. Studies comprised a total of 29 interventions. Lipid lowering agents included omega-3 fatty acids [(26-28, 30), N = 4, n = 250]and pravastatin [(29), N = 1, n = 49]. Antipsychotic switching or add-on interventions included the following: switching to quetiapine [(41), N = 1, n = 133]; adding aripiprazole [(33, 34, 38), N = 3, n = 322]; and, switching to aripiprazole [(35–37), N = 3, n = 390]. Off label lipid modulating agents included the following: metformin [(42-47), N = 6, n = 565], reboxetine [(48), n = 565]N = 1, n = 54], nizatidine [(49), N = 1, n = 54], atomoxetine [(50), N = 1, n = 29], combination of metformin and sibutramine [(51), N = 1, n = 28], rosiglitazone [(52, 53), N = 2, n = 47], ramelteon [(54), N = 1, n = 20], telmisartan [(55), N = 1, n =43], vitamin D and probiotic combination [(56), N = 1, n = 60], sibutramine [(17, 57), N = 2, n = 55]; dehydroepiandrosterone [DHEA; (58), N = 1, n = 43], exenatide [(59), N = 1, n = 40], orlistat [(60), N = 1, n = 63], vitamin D [(61), N = 1, n = 47], liraglutide [(62), N = 1, n = 97], intranasal insulin [(63), N = 1, n= 39], minocycline [(64), *N* = 1, *n* = 55], fluvoxamine [(65, 66), N = 2, n = 153], naltrexone and bupropion combination [(67), N = 1, n = 21], melatonin [(68, 69), N = 2, n = 80], pioglitazone [(70), N = 1, n = 52], Liuyu decoction, traditional Chinese medicine [(71), N = 1, n = 154], a combination of celery, dill, and green tea [(72), N = 1, n = 60], naltrexone [(73, 74), N = 2, n = 47], Konjac powder [(75), N = 1, n = 59], and resveratrol [(76), N = 1, n = 19]. Baseline antipsychotic use by participants included olanzapine (N = 27), clozapine (N = 25), risperidone (N = 11), quetiapine (N = 8), aripiprazole (N = 5), ziprasidone (N = 2), paliperidone (N = 2), haloperidol (N = 1), fluphenazine (N = 1), flupenthixol (N = 1), clopenthixol (N =1), and sulpiride (N = 1), chlorpromazine (N = 1), perphenazine (N = 1), zuclopenthixol (N = 1), chlorprothixene (N = 1), amisulpride (N = 1), sertindole (N = 1), and sulpiride (N = 1).

Primary Outcomes: Lipid Profile

Compared to placebo, pharmacological interventions were associated with a pooled mean difference of -13.08 mg/dL (CI: -20.82, -5.33; p = 0.0009) for triglycerides (**Figure 2**), 0.43 mg/dL (CI: -0.85, 1.70; p = 0.51) for HDL (**Figure 3**), -4.19 mg/dL (CI: -7.71, -0.67; p = 0.02) for LDL cholesterol (**Figure 4**), -3.27 mg/dL (CI: -7.38, 0.84; p = 0.12) for VLDL cholesterol (**Figure 5**), and -7.96 mg/dL (CI: -11.14, -4.77; p < 0.00001) for total cholesterol (**Figure 6**). Heterogeneity was low to moderate for most outcomes: $I^2 = 71\%$ for HDL, $I^2 = 60\%$

for LDL cholesterol, $I^2 = 0\%$ for VLDL cholesterol, $I^2 = 52\%$ for triglycerides, $I^2 = 37\%$ for total cholesterol.

Lipid Lowering Agents

Lipid lowering agents were associated with significant reductions in total cholesterol compared to placebo (**Figure 6**; N = 4, n = 227; WMD = -11.52 mg/dL, CI: -15.51, -7.53; p < 0.00001; $I^2 = 0$). There were no significant differences in triglycerides

(**Figure 2**; N = 4, n = 243; $l^2 = 56$), HDL cholesterol (**Figure 3**; N = 5, n = 299; $l^2 = 81$), and LDL cholesterol (**Figure 4**; N = 4, n = 227; $l^2 = 56$) levels. None of the lipid lowering agent studies examined VLDL cholesterol.

Antipsychotic Switching/Add-on Interventions

Antipsychotic switch/add-on strategies were associated with significant decreases in triglycerides (Figure 2; N = 7, n = 800;

tudy or Subgroup Mean	n [mg/dL] S	D [mg/dL]	Total	Mean [mg/dL]	SD [mg/dL]	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	ABCDEFG
U.2.1 Lipid Lowering Agents		C1 A ²	20				3 50	0.001.00.00.00.00		
nsley 2008	115.14	61.99	39	115.14	53.14	33	3.5%	0.00 [-26.59, 26.59]		*** ****
obinson 2019	104.62	13.66	25	97.43	11.97	25	5.6%	7.19 [0.07, 14.31]	-	
incenzi 2014	134.33	92.47	24	135.39	81.44	25	1.8%	-1.06 [-49.92, 47.80]		??? 🛡 🖶 🕂
u 2019	145.25	69.97	37	196.63	114.26	35	2.0%	-51.38 [-95.44, -7.32]		
ubtotal (95% CI)			125			118	12.8%	-4.60 [-25.22, 16.02]	•	
eterogeneity: Tau ² = 230.87; C est for overall effect: Z = 0.44	$Chi^2 = 6.85,$ (P = 0.66)	df = 3 (P = 0	0.08); I ²	= 56%						
0.2.2 Antipsychotic Switch/A	dd-on Inter	ventions								
eberdt 2008	6.2	79.7	65	-9.74	86.8	68	3.3%	15.94 [-12.36, 44.24]		Q 77 0Q 7
n 2013	-5.9	75.1	16	-7.3	100.3	14	1.2%	1 40 [-62 74 65 54]		2020000
eischhacker 2010	-12	79.06	96	-1.2	64 53	85	4 1%	-10.80 [-31.74 10.14]		
aucomar 2008	25 72	52.2	54	11.06	70.8	61	2 7%	-26 70 [61 22 -12 25]		2220000
2011	-23.75	76.42	34	11.00	79.0	01	J.7/0	-30.79 [-01.35, -12.25]		
roup 2011	-25.7	76.42	89	/	/1.28	98	4.1%	-32.70 [-53.94, -11.46]		
ani 2015	196.35	44.46	21	223.61	72.89	26	2.8%	-27.26 [-61.12, 6.60]		
ao 2015	134.6	61.1	54	148.8	61.99	53	3.8%	-14.20 [-37.53, 9.13]		? ? ? 9 9 9 9
ibtotal (95% CI) eterogeneity: Tau ² = 146.25; C	$chi^2 = 10.81$, df = 6 (P =	395 0.09);	$l^2 = 44\%$		405	22.9%	-17.32 [-31.07, -3.56]	•	
est for overall effect: Z = 2.47	(P = 0.01)									
J.2.3 Off Label Lipid Lowerin	g Agent: Me	ttormin								
ptista 2007	111.1	41	36	138.5	79.4	36	3.2%	-27.40 [-56.59, 1.79]		
arrizo 2009	-4.1	80	24	2.9	82.4	30	2.1%	-7.00 [-50.52, 36.52]		~~~
1en 2013	126.8	47.4	28	126.9	79.4	27	2.7%	-0.10 [-34.82, 34.62]		666666 6
niu 2016	140.6	70.4	19	145.3	66.8	18	2.0%	-4.70 [-48.91, 39.51]		GGGGGG ?
rskog 2013	-7	58.24	75	13.2	57.03	71	4.4%	-20.20 [-38.90, -1.50]		9999994
u 2016	185.99	69.97	103	222.31	96.54	98	3.8%	-36.32 [-59.73 -12 91]	I	220000
btotal (95% CI)	105.55	05.57	285	222.31	50.54	280	18.1%	-21.01 [-32.39, -9.64]	•	
terogeneity: Tau ² - 0.00: Chi	2 = 4 15 45	= 5 (P - 0 F	3). 12 -	0%		200	10.1/0	LIGE [JEIJS, -3.04]	•	
est for overall effect: $Z = 3.62$	(P = 0.0003))	5), 1 =	0.20						
.2.4 Off Label Lipid Lowerin	g Agents: O	thers								
nrami-Weizman 2013	140.8	84.3	29	124.7	61.6	25	2.4%	16.10 [-22.94, 55.14]		
suncao 2006	179.4	112.7	27	152.7	75.1	27	1.7%	26.70 [-24.38, 77.78]		2 2 2 9 2 9 4
II 2011	134.3	64.9	14	236.8	178.3	15	0.6%	-102.50 [-198.92, -6.08]	·	???
ptista 2008	121.6	27.2	13	160.2	68.4	15	2.5%	-38.60 [-76.24, -0.96]		999979999
ptista 2009	163	52.7	14	161.5	76.7	15	1.8%	1.50 [-46.13, 49.13]		979999
rba 2011	186.43	100.22	14	157.83	79 35	6	0.8%	28 60 [-53 78 110 98]		2266666
n 2019	-26	76	22	-10	81	21	1 9%	-16 00 [-63 00 31 00]		A 222 AAA
adari 2019	124.0	40.7	20	165	62.2	20	2 2%	-20 10 [58 50 -1 61]		
aden 2019	134.9	49.7	30	274.7	101	10	0.3%	-50.10 [-58.59, -1.01]		
anderson 2003	200.0	12.2	19	2/4./	67.22	10	0.2%	27 20 [110 61 65 21]		
enderson 2007	-01.1	120.7	10	-33.9	07.52	10	0.0%	-27.20 [-119.01, 03.21]		
enderson 2009	152	109	0	200	100	10	0.4%	-134.00 [-233.23, -12.77]		
olka–Pokorska 2015	137.62	76.19	23	110.86	43.23	22	2.6%	26.76 [-9.24, 62.76]		
hoy 2017	212.57	88.57	20	185.98	97.43	20	1.4%	26.59 [-31.12, 84.30]		
ivoy 2017	11.5	44	23	-43.9	130.8	24	1.5%	55.40 [0.07, 110.73]		
rsen 2017	141.71	60.32	47	177.14	186.98	50	1.5%	-35.43 [-90.05, 19.19]		????
2013	-8	67	18	-0.5	43	21	2.6%	-7.50 [-43.50, 28.50]		
u 2018	43.4	111.6	27	48.7	85	28	1.6%	-5.30 [-57.87, 47.27]		9799999
2004	109.8	46.2	34	132.5	45.9	34	4 0%	-22 70 [-44 59 -0.81]		2220000
2018	155 3	55 7	43	185 2	62.2	42	3.6%	-29.90 [-55.02 -4.78]		
2019	- 99 57	70 71	45	25 42	52.2	42	1.40	-29.90 [-35.02, -4.78]		
u 2016	-00.57	/9./1	11	-35.43	53.14	10	1.4%	-55.14 [-110.62, 4.34]		
boabbernia 2014	168.2	82.86	18	217.5	114	18	1.1%	-49.30 [-114.41, 15.81]		444444
mo-Nava 2014	186.13	98.22	20	160.29	119.14	24	1.2%	25.84 [-38.39, 90.07]		
nith 2013	124.8	141.52	29	217.09	139.41	23	0.9%	-92.29 [-169.10, -15.48]	· · · · · · · · · · · · · · · · · · ·	7799999
n 2020	496.87	1,013.24	102	337.45	193.96	52	0.1%	159.42 [-44.16, 363.00]		→ @@??@@ @
vakoli 2014	158.9	59.4	30	168	61.3	30	3.1%	-9.10 [-39.64, 21.44]		?
veira 2014	157.5	169.15	11	171.4	113.57	13	0.4%	-13.90 [-131.39, 103.59]		0700000
k 2014	121.22	49.7	10	121.44	57.1	11	1.9%	-0.22 [-45.91. 45.47]		9999994
ang 2020	241.8	102.74	30	235.6	116.91	29	1.4%	6.20 [-50.03, 62 43]		6667666
btotal (95% CI)	2.110	101.74	696	200.0	110.01	641	46.2%	-11.06 [-23.08, 0.97]	•	
terogeneity: $Tau^2 = 346.53$; C st for overall effect: $Z = 1.80$	$Chi^2 = 44.09$ (P = 0.07)	, df = 27 (P	= 0.02)	; l ² = 39%						
otal (95% CI)			1501			1444	100.0%	-13.08 [-20.825.33]	•	
eterogeneity: $Tau^2 = 267.21 \cdot C$	$hi^2 = 91.07$	df = 44 (P)	< 0.000	(1): $I^2 = 52\%$						_
eterogeneity. rau = 267.21, c	n = 91.07	, ui = 44 (P	< 0.000	(1), 1 = 52%					–100 –50 0 50 100	
ist for overall effect: $z = 3.31$	r = 0.0009	16 2 12 -	10.0	00/					Favours [intervention] Favours [placebo]	
est for subgroup differences: C	$m^2 = 2.56, n^2$	$u_1 = 3 (P = 0)$,40), l ^e	= 0%						
sk of bias legend										
) Random sequence generatio	n (selection	bias)								
Allocation concealment (sele	ction bias)									
) Blinding of participants and	personnel (p	erformance	bias)							
) Blinding of outcome assess	nent (detecti	on bias)								
	trition bias)									
) Incomplete outcome data (at										
) Incomplete outcome data (at	(hiac)									
Incomplete outcome data (at Selective reporting (reporting	bias)									

analyses and Risk of Bias assessments.

WMD = -17.32 mg/dL, CI: -31.07, -3.56; p = 0.01; $l^2 = 44$), LDL cholesterol (**Figure 4**; N = 5, n = 689; WMD = -6.45 mg/dL, CI: -12.83, -0.07; p = 0.05; $l^2 = 55$), and total cholesterol levels (**Figure 6**; N = 6, n = 798; WMD = -8.83 mg/dL; CI: -13.91, -3.74; p = 0.0007; $l^2 = 32$) in comparison to placebo. A significant increase was noted for HDL cholesterol level (**Figure 3**; N = 7, n = 844; WMD = 1.72 mg/dL; CI: 0.06,

3.39; p = 0.04; $I^2 = 58$). None of the antipsychotic switching/addon studies examined VLDL cholesterol.

Off Label Lipid Lowering Agent: Metformin

Metformin was associated with significant reductions in triglycerides (**Figure 2**; N = 6, n = 565; WMD = -21.01 mg/dL, CI: -32.39, -9.64; p = 0.0003; $I^2 = 0$) and total cholesterol

U.3.1. Lipid Lowering Agents ehdani 2018 -0.28 msley 2008 50.27 obinson 2019 50.7 incenzi 2014 47.91 u 2019 37.51 ubtotal (95% CD) est for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver Deberdt 2008 -0.77 an 2013 -0.4 leischhacker 2010 -1.85 lewcomer 2008 0.77 froup 2011 0.6 Ani 2015 54.52 ubtotal (95% CI) leterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = leetrogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor aptista 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hubtal (95% CI) stersogenetiv: Tau ² = 14.14; Chi ² = 23.95, df a leterogenetiv: Tau ² = 14.14; Chi ² = 23.95, df a est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe marka 2011 48.1 <th>10.94 11.6 3.31 12.04 15.08 = 4 (P = 0) ntions 6.96 5.6 6.46 7.24 7.17 7.73 16.6 (P = 0.0) rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0) ers</th> <th>28 39 25 24 37 153 .0003); ² 65 16 96 80 89 21 54 421 54 421 53 .12 54 421 54 421 54 421 54 421 54 421 54 421 54 55 54 421 54 55 55 56 56 56 56 56 56 56 56</th> <th>-0.78 50.27 58.69 47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %</th> <th>12.02 15.47 3.14 10.59 12.76 8.12 6.2 7.31 6.19 6.73 8.18 13.5</th> <th>28 33 25 35 146 68 14 88 76 98 26 53 423</th> <th>2.0% 1.9% 3.5% 1.9% 1.3% 3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%</th> <th>0.50 [-5.52, 6.52] 0.00 [-6.41, 6.41] -7.99 [-9.78, -6.20] 0.61 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]</th> <th>*</th> <th></th>	10.94 11.6 3.31 12.04 15.08 = 4 (P = 0) ntions 6.96 5.6 6.46 7.24 7.17 7.73 16.6 (P = 0.0) rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0) ers	28 39 25 24 37 153 .0003); ² 65 16 96 80 89 21 54 421 54 421 53 .12 54 421 54 421 54 421 54 421 54 421 54 421 54 55 54 421 54 55 55 56 56 56 56 56 56 56 56	-0.78 50.27 58.69 47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	12.02 15.47 3.14 10.59 12.76 8.12 6.2 7.31 6.19 6.73 8.18 13.5	28 33 25 35 146 68 14 88 76 98 26 53 423	2.0% 1.9% 3.5% 1.9% 1.3% 3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	0.50 [-5.52, 6.52] 0.00 [-6.41, 6.41] -7.99 [-9.78, -6.20] 0.61 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	*	
endami 2010 -0.28 msley 2008 50.27 obinson 2019 50.7 incenzi 2014 47.91 u 2019 37.51 ubtotal (95% CI) est for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver rebeherd 2008 -0.77 an 2013 -0.4 leischhacker 2010 -1.85 lewcomer 2008 0.77 troup 2011 0.6 Vani 2015 54.52 ubtotal (95% CI) est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor aptista 2007 44.6 farrizo 2009 3.8 ichen 2013 44.2 then 2013 44.2 then 2013 44.2 thu 2016 52.6 arskog 2013 -0.6 va 2016 38.28 ubtotal (95% CI) est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe umrami-Weizman 2013 38.8 ussuncao 2006 45.8 all 2011 48.1 aptista 2009 38.7 <	$\begin{array}{l} 10.94\\ 11.6\\ 3.31\\ 12.04\\ 15.08\\ = 4 \ (P=0\\ 15.08\\ 6.96\\ 5.6\\ 6.46\\ 7.24\\ 7.73\\ 16.63\\ 16.63\\ 6 \ (P=0.02\\ 7.73\\ 16.63\\ 19.2\\ 7.5\\ 14.6\\ 19.2\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 2.5\\ 14.6$	26 39 25 24 37 153 .00003); ² , 65 16 96 80 89 21 54 421 333); ² = 58 36 24 24 28 19 75	-0.78 50.27 58.69 47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 8.12 6.2 7.31 6.19 6.73 8.18 13.5	28 33 25 35 146 68 14 88 76 98 26 53 423	2.0% 1.9% 3.5% 1.9% 1.9% 1.3% 3.3% 2.6% 3.4% 3.4% 2.5% 2.1%	0.39 [-3.54, 6.52] 0.00 [-6.41, 6.41] -7.99 [-9.78, -6.20] 0.61 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
Inner 2000 50.27 Incerci 2014 47.91 u 2019 37.51 ubtotal (95% CI) 37.51 ubtotal (95% CI) arrange iest for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver behard 1208 -0.77 an 2013 -0.4 leischhacker 2010 -1.85 lewcomer 2008 0.77 troug 2011 0.6 vani 2015 43.9 hao 2015 54.52 ubtotal (95% CI) beterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor aprizo 2009 3.8 ihar 2013 -0.6 Vu 2016 38.28 ubtotal (95% CI) beterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe umrami-Weizman 2013 38.8 aptista 2006 45.8 all 2011 48.1 aptista 2009 38.7 orba 2011 40.71 aptista 2006 45.8<	$\begin{array}{c} 1.1.6\\ 3.31\\ 12.04\\ 15.08\\ = 4 \ (P=0\\ 15.08\\ 6.96\\ 5.6\\ 6.46\\ 7.24\\ 7.17\\ 7.73\\ 16.63\\ 6.63\\ 6.66\\ 0.66\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.23\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 7.24\\ 7.73\\ 16.63\\ 19.2\\ 7.73\\ 16.63\\ 19.2\\ 7.73\\ 10.2\\ 10$	$\begin{array}{c} 33\\ 25\\ 24\\ 37\\ 153\\ 153\\ .0003); \ ^2, \\ 65\\ 16\\ 96\\ 80\\ 89\\ 21\\ 54\\ 421\\ 303); \ ^2 = 58\\ 36\\ 24\\ 28\\ 19\\ 75\\ \end{array}$	-1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5	8.12 6.2 7.31 6.19 6.73 8.18 13.5	53 25 35 146 68 14 8 8 68 14 8 8 76 98 26 53 423	1.9% 3.5% 1.9% 1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.5% 2.1% 20.8%	0.39 [-2.18, 2.96] 0.39 [-2.18, 2.96] 2.30 [-1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
obinson 2019 50.7 incenzi 2014 47.91 u 2019 37.51 ubtotal (95% CI) est for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver est for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver eberdt 2008 -0.77 na 2013 -0.4 leischhacker 2010 -1.85 lewcomer 2008 0.77 troup 2011 0.6 fani 2015 54.52 ubtotal (95% CI) leterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = leetrogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor aptista 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hiu 2016 52.6 ryskog 2013 -0.6 // 2016 38.28 ubtotal (95% CI) ubtotal (95% CI) ubtotal (95% CI) ubterogeneity: Tau ² = 14.14; Chi ² = 23.95, df at 1.8 1.8 all 2011 48.1 aptista 2006 45.8 all 2011 48.1 aptista 2009 38.7 <td>$\begin{array}{r} 3.31\\ 12.04\\ 15.08\\ = 4 \ (P=0\\ 15.08\\ = 4 \ (P=0\\ 0\\ 5.6\\ 5.6\\ 5.6\\ 6.46\\ 7.24\\ 7.17\\ 7.73\\ 16.63\\ 0 \ 6 \ (P=0.0\\ 0\\ 19.2\\ 7.5\\ 14.6\\ 19.2\\ 7.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 0\\ ers \end{array}$</td> <td>25 24 37 153 .0003); ², 65 16 96 80 97 21 54 421 33); ² = 58 36 24 28 19 75</td> <td>58.69 47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %</td> <td>8.12 6.2 7.31 6.19 6.73 8.18 13.5</td> <td>25 25 35 146 68 14 88 68 14 88 76 98 26 53 423</td> <td>3.5% 1.9% 1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.1% 20.8%</td> <td>-7.39 [-9.78, -6.20] 0.61 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]</td> <td></td> <td></td>	$\begin{array}{r} 3.31\\ 12.04\\ 15.08\\ = 4 \ (P=0\\ 15.08\\ = 4 \ (P=0\\ 0\\ 5.6\\ 5.6\\ 5.6\\ 6.46\\ 7.24\\ 7.17\\ 7.73\\ 16.63\\ 0 \ 6 \ (P=0.0\\ 0\\ 19.2\\ 7.5\\ 14.6\\ 19.2\\ 7.5\\ 14.6\\ 19.2\\ 7.82\\ 7.73\\ = 5 \ (P=0\\ 0\\ ers \end{array}$	25 24 37 153 .0003); ² , 65 16 96 80 97 21 54 421 33); ² = 58 36 24 28 19 75	58.69 47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	25 25 35 146 68 14 88 68 14 88 76 98 26 53 423	3.5% 1.9% 1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.1% 20.8%	-7.39 [-9.78, -6.20] 0.61 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
incenzi 2014 47,91 u 2019 37,51 ubtotal (95% C1) 37,51 eterogeneity: Tau ² = 26,65; Chl ² = 21.48, df 's st for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver eberdt 2008 -0.77 an 2013 -0.4 st for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver eberdt 2008 -0.77 an 2013 -0.4 st for overall 2015 54.52 wotomer 2008 0.77 troup 2011 0.6 ani 2015 54.52 ubtotal (95% C1) eterogeneity: Tau ² = 2.64; Chl ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor aptista 2007 44.6 38.28 ubtotal (95% C1) eterogeneity: Tau ² = 14.14; Chl ² = 23.95, df - est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mraml-Weizman 2013 38.8 ssuncao 2006 45.8 all 2011 48.1 aptista 2008 49.5 aptista 2008 49.5 aptista 2008 49.5 aptista 2008	12.04 15.08 = 4 (P = 0 ntions 6.96 5.6 6.46 7.24 7.73 16.63 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	24 37 153 .0003); ² , 65 16 96 80 89 21 54 421 36 24 28 19 75	47.3 36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	25 35 146 68 14 88 76 98 26 53 423	1.9% 1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.5% 2.1% 20.8%	0.51 [-5.75, 6.97] 1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	*	
u 2019 37.51 ubtotal (95% CI) eterogeneity: Tau ² = 26.65; Chi ² = 21.48, df + est for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Intervere bedraft 2008 -0.77 an 2013 -0.4 eischhacker 2010 -1.85 wexcomer 2008 0.77 roup 2011 0.6 ani 2015 54.52 ubtotal (95% CI) stas eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor parizo 2009 3.8 hen 2013 44.2 hiu 2016 52.6 riskog 2013 -0.6 u 2016 38.28 ubtotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df + est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 all 2011 48.1 aptista 2008 49.5 aptista 2008 49.5 aptista 2009 38.7 orba 2011 <td>15.08 = 4 (P = 0) ntions 6.96 5.6 6.46 7.24 7.17 7.73 16.63 6 (P = 0.0) rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0)</td> <td>37 153 .0003); ² 65 16 96 80 21 54 421 03); ² = 58 36 24 28 19 75</td> <td>36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %</td> <td>8.12 6.2 7.31 6.73 8.18 13.5</td> <td>35 146 68 14 88 76 98 26 53 423</td> <td>1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.5% 2.1% 20.8%</td> <td>1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]</td> <td></td> <td></td>	15.08 = 4 (P = 0) ntions 6.96 5.6 6.46 7.24 7.17 7.73 16.63 6 (P = 0.0) rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0)	37 153 .0003); ² 65 16 96 80 21 54 421 03); ² = 58 36 24 28 19 75	36.35 = 81% -1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.73 8.18 13.5	35 146 68 14 88 76 98 26 53 423	1.9% 11.3% 3.3% 2.6% 3.4% 3.4% 3.4% 2.5% 2.1% 20.8%	1.16 [-5.28, 7.60] -1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
Jabotal (95% Cl) cerrogeneity: Tau ² = 26.65; Chi ² = 21.48, df r est for overall effect: Z = 0.60 (P = 0.55) D.3.2 Antipsychotic Switch/Add-on Interver eberdt 2008 -0.77 nu 2013 -0.4 eischhacker 2010 -1.85 www.comer 2008 0.77 roup 2011 0.6 ani 2015 54.52 Jabotal (95% Cl) eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor phitsta 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hiu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 u 2016 38.28 u 2016 38.28 sto for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuccao 2006 45.8 all 2011 48.1 uptista 2008 49.5 u 2015 45.59	= 4 (P = 0 ntions 6.96 5.6 6.46 7.24 7.73 16.63 • 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	153 .0003); ² · 65 16 96 80 89 21 54 421 54 421 36 24 28 19 75	-1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	68 14 88 76 98 26 53 423	3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	-1.59 [-6.74, 3.57] 0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
teterogeneity: Tau ² = 26.65; Ch ² = 21.48, df sets for overall effect: Z = 0.60 (P = 0.55) 0.3.2 Antipsychotic Switch/Add-on Interver beherdt 2008 -0.77 nn 2013 -0.4 eischhacker 2010 -1.85 ewcomer 2008 0.77 roup 2011 0.6 ani 2015 43.9 hao 2015 54.52 bitotal (95% CI) teterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor up 2013 44.2 hiu 2016 52.6 hiu 2016 52.6 hiu 2016 38.28 bitotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df - st for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 suncao 2006 45.8 ul 2011 48.1 up tista 2009 38.7 rota 2011 40.71 un 2019 0 haderi 2019 38.21 enderson 2005 38.1 enderson 2007 -1.22 enderson 2007 42.54 hfe 2008 -0.39 htps 2017 42.54 hfe 2008 -0.39 htps 2017 42.54 hfe 2008 -0.39 htps 2017 42.54 htp 2017 42.54 htp 2018 0 odabbernia 2014 40.9 un 2019 0 odabbernia 2014 43.15 nith 2013 36.63 1 u 2018 0 odabbernia 2014 43.15 htps 2014 43.15 htps 2014 43.15 htps 2017 42.54 htp 2018 0 odabbernia 2014 43.15 htp 2014 43.4 htp 202 36.74 htp 202 36.74 htp 202 36.74 htp 203 36.74 htp 204 39.7 k 2014 49.22 htp 206 36.74 htp 205 CI) eterogeneity: Tau ² = 0.05; (P = 0.58) bit al (95% CI)	= 4 (P = 0 ntions 6.96 5.6 6.46 7.24 7.73 16.63 • 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	.0003); ² ; 65 16 96 80 89 21 54 421 03); ² = 58 36 24 28 19 75	-1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	68 14 88 76 98 26 53 423	3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	+	
0.3.2 Antipsychotic Switch/Add-on Interver 0.3.2 Antipsychotic Switch/Add-on Interver behard 2008 -0.77 nn 2013 -0.4 eischhacker 2010 -1.85 wexcomer 2008 0.77 roup 2011 0.6 ani 2015 43.9 hao 2015 54.52 bitotal (95% CI) eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor optista 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hui 2016 52.6 riskog 2013 -0.6 u 2016 38.28 bitotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 suncoa 2006 45.8 all 2011 48.1 aptista 2008 49.5 spista 2008 49.5 eterogeneity: Tau ² = 14.24; Chi ² = 23.95, df = othotal (95% CI) 0 ode	ntions 6.96 5.6 6.46 7.24 7.73 16.63 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	$\begin{array}{c} 65\\ 16\\ 96\\ 80\\ 21\\ 54\\ 421\\ 03); l^2 = 58\\ 36\\ 24\\ 28\\ 19\\ 75\\ \end{array}$	-1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	68 14 88 76 98 26 53 423	3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
3.2.2 Anappsycholic Surtelly Add-on Interverse beerdt 2008 -0.77 an 2013 -0.4 eischhacker 2010 -1.85 wexcomer 2008 0.77 roup 2011 0.6 ani 2015 43.9 tao 2015 54.52 ibtotal (95% CI) tetrogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor outside 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hu 2016 52.6 riskog 2013 -0.6 u 2016 38.28 ibtotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Other mrami-Weizman 2013 38.8 suncoa 2006 45.8 ull 2011 48.1 uptista 2009 38.7 ryba 2011 40.71 na 2019 0 naderis 2019 38.2 uptista 2009 38.1 uptista 2008 49.5 uptista 2008	6.96 5.6 6.46 7.24 7.73 16.63 6 6 (P = 0.0 7.73 16.63 6 6 (P = 0.0 7.73 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	$\begin{array}{c} 65\\ 16\\ 96\\ 80\\ 21\\ 54\\ 421\\ 03); \ ^2 = 58\\ 36\\ 24\\ 28\\ 19\\ 75\\ \end{array}$	-1.16 -2.7 -0.99 -2.46 -0.1 38.03 49.5 %	8.12 6.2 7.31 6.19 6.73 8.18 13.5	68 14 88 76 98 26 53 423	3.3% 2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	0.39 [-2.18, 2.96] 2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	+ + + + + + + + + + + + + + + + + + + +	
an 2013 -0.4 eischhacker 2010 -1.85 wexcomer 2008 0.77 roup 2011 0.6 ani 2015 43.9 nao 2015 54.52 ibtotal (95% CI) 54.52 ibtotal (95% CI) 54.52 ibtotal (95% CI) 20.64; Chi ² = 14.20, df = cst for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor D.3.3 Off Label Lipid lowering Agent: Metfor 44.6 arrizo 2009 3.8 en 2013 44.2 hui 2016 52.6 riskog 2013 -0.6 u 2016 38.28 ibtotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df + est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 ull 2011 48.1 uptista 2008 49.5 pitsita 2008 49.5 othederis 2019 38.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2	5.6 6.46 7.24 7.17 7.73 16.63 • 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	$\begin{array}{c} 16\\ 96\\ 80\\ 89\\ 21\\ 54\\ 421\\ 03); \ l^2 = 58\\ 36\\ 24\\ 28\\ 19\\ 75\\ \end{array}$	-2.7 -0.99 -2.46 -0.1 38.03 49.5 %	6.2 7.31 6.19 6.73 8.18 13.5	14 88 76 98 26 53 423	2.6% 3.4% 3.4% 2.5% 2.1% 20.8%	2.30 [-1.95, 6.55] -0.86 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	+	
an 2013 -0.4 ewcomer 2008 0.77 roup 2011 0.6 ani 2015 54.52 bibotal (95% CI) eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor pubits 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hiu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 u 2014 48.1 u 2015 38.8 ssunca 2006 45.8 u 2011 48.1 u 2012 44.2 nu 2013 38.8 ssunca 2006 45.8 u 2011 48.1 u 2012 45.5 prista 2008 49.5 splista 2009 38.7 orbta 2011 40.71 un 2019 0 olka-Pokorska 2015 45.59	9.0 6.46 7.24 7.73 16.63 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	$\begin{array}{r} 96\\ 80\\ 89\\ 21\\ 54\\ 421\\ 03); I^2 = 58\\ 36\\ 24\\ 28\\ 19\\ 75\\ \end{array}$	-0.99 -2.46 -0.1 38.03 49.5 %	7.31 6.19 6.73 8.18 13.5	88 76 98 26 53 423	3.4% 3.4% 3.4% 2.5% 2.1% 20.8%	36 [-2.86, 1.14] 3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]	+	
enscrimentation -1.83 enveromer 2008 0.77 roup 2011 0.6 ani 2015 54.52 abtotal (95% CI) 54.52 abtotal (95% CI) 54.52 abtotal (95% CI) eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor optista 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hui 2016 52.6 riskog 2013 -0.6 u 2016 38.28 ubtotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 ull 2011 48.1 aptista 2008 49.5 spista 2008 49.5 spista 2008 49.5 optista 2008 49.5 aptista 2009 38.1 enderson 2007 -1.2 enderson 2007	0.40 7.24 7.17 7.73 16.63 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	80 89 21 54 421 03); I ² = 58 36 24 28 19 75	-0.39 -2.46 -0.1 38.03 49.5 %	6.19 6.73 8.18 13.5	76 98 26 53 423	3.4% 3.4% 2.5% 2.1% 20.8%	3.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
www.comer 2008 0.77 www.comer 2008 0.77 ani 2015 43.9 ano 2015 54.52 bibtotal (95% Cl) 14.20, df = set for overall effect: $z = 2.03$ (P = 0.04) 3.3 Off Label Lipid lowering Agent: Metfor ptista 2007 44.6 trrizo 2009 3.8 nen 2013 44.2 niu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 bibtotal (95% Cl) 38.8 set of orverall effect: $z = 1.34$ (P = 0.18) 3.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 11 2011 48.1 uptista 2009 38.7 vrba 2011 40.71 n 2019 0 adderi 2019 38.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 <td>7.17 7.73 16.63 • 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0</td> <td>$30 \\ 89 \\ 21 \\ 54 \\ 421 \\ 03); I^2 = 58 \\ 36 \\ 24 \\ 28 \\ 19 \\ 75 \\ 75 \\ 100$</td> <td>-2.46 -0.1 38.03 49.5 %</td> <td>6.73 8.18 13.5</td> <td>98 26 53 423</td> <td>3.4% 3.4% 2.5% 2.1% 20.8%</td> <td>5.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]</td> <td></td> <td></td>	7.17 7.73 16.63 • 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	$30 \\ 89 \\ 21 \\ 54 \\ 421 \\ 03); I^2 = 58 \\ 36 \\ 24 \\ 28 \\ 19 \\ 75 \\ 75 \\ 100 $	-2.46 -0.1 38.03 49.5 %	6.73 8.18 13.5	98 26 53 423	3.4% 3.4% 2.5% 2.1% 20.8%	5.23 [1.12, 5.34] 0.70 [-1.30, 2.70] 5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
Top 2011 0.6 Top 2011 0.8 Top 2011 0.8 Top 2015 54.52 Stotal (95% CI) Eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) 0.3.3 Off Label Lipid lowering Agent: Metfor D.3.3 Off Label Lipid lowering Agent: Metfor 44.6 trizico 2009 3.8 hen 2013 44.2 hui 2016 52.6 skog 2013 -0.6 u 2016 38.28 bitotal (95% CI) Eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 ull 2011 48.1 uptista 2009 38.7 prista 2009 38.1 enderson 2005 38.1 enderson 2007 -1.2 uota	7.73 16.63 6 (P = 0.0 9.2 7.5 14.6 19.2 7.73 = 5 (P = 0	$36 = 21$ 54 421 $36); I^2 = 58$ 36 24 28 19 75	-0.1 38.03 49.5 %	8.18 13.5	26 53 423	2.5% 2.1% 20.8%	5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		220000
ani 2015 43.9 ani 2015 54.52 bibotal (95% Cl) eterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = set for overall effect: Z = 2.03 (P = 0.04) b.3.3 Off Label Lipid lowering Agent: Metfor uptista 2007 44.6 arrizo 2009 3.8 arrizo 2009 3.8 upticate 2013 44.2 hiu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 bibotal (95% Cl) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df + eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df + set for overall effect: Z = 1.34 (P = 0.18) b.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 sucnca 2006 45.8 hil 2011 48.1 uptista 2008 49.5 prista 2009 38.7 rba 2011 40.71 un 2019 0 haderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 38.2 enderson 2007 -1.2 enderson 2007 38.1 ffe 2008 -0.39 i/way 2017 7 uzol13 1 u 2018 5.03 u 2018 5.03 u 2018 40.6 ur 2018 0 o odabbernia 2014 40.9 mon-Nava 2014 43.15 nin 2020 76.17 vakoli 2014 43.4 veria 2014 43.9 r vakoli 2014 43.4 veria 2014 43.7 sk 2014 43.7 sk 2014 43.7 sk 2014 43.7 sk 2014 43.7 sk 2014 43.7 sk 2014 39.7 sk 2014 39.7 sk 2014 39.7 sk 2014 39.7 sk 2014 39.7 sk 2014 39.7 sk 2014 49.22 anag 2020 36.74 ortea 2016 36.8 bibotal (95% Cl)	7.73 16.63 6 6 (P = 0.0 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	21 54 421 03); $I^2 = 58$ 36 24 28 19 75	49.5 % 47.4 -1.8	8.18	53 423	2.5% 2.1% 20.8%	5.87 [1.31, 10.43] 5.02 [-0.71, 10.75] 1.72 [0.06, 3.39]		
lab 2015 54.52 lab 2015 54.52 terogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) D.3.3 Off Label Lipid lowering Agent: Metfor publista 2007 44.6 atrizo 2009 3.8 terogeneity: Tau ² = 2.64; Chi ² = 14.20, df = strizo 2009 3.8 terogeneity: Tau ² = 2.64; Chi ² = 23.95, df = viz 2016 52.6 rskog 2013 -0.6 u 2016 38.28 bibtotal (95% CI) 1 tetrogeneity: Tau ² = 14.14; Chi ² = 23.95, df = tetrogeneity: Tau ² = 14.14; Chi ² = 23.95, df = tetrogeneity: Tau ² = 14.14; Chi ² = 23.95, df = ssuncao 2006 45.8 ll 2011 48.1 usincao 2006 45.8 ull 2011 40.71 n 2019 0 anderson 2005 38.1 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 senderson 2007 -1.2	16.63 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	34 421 $33); I^2 = 58$ 36 24 28 19 75	49.5 % 47.4 -1.8	13.5	423	2.1% 20.8%	1.72 [0.06, 3.39]		
Introduct (95% Cl) sterogeneity: Tau ² = 2.64; Chi ² = 14.20, df = est for overall effect: Z = 2.03 (P = 0.04) D.3.3 Off Label Lipid lowering Agent: Metfor up to the sterogeneity: Tau ² = 2.03; (P = 0.04) D.3.3 Off Label Lipid lowering Agent: Metfor up to the sterogeneity: Tau ² = 2.03; (P = 0.04) D.3.3 Off Label Lipid lowering Agent: Metfor vitz 2009 3.8 ten 2013 44.2 vitz 2016 52.6 stodo 1 38.8 biotal (95% Cl) tetrogeneity: Tau ² = 14.14; Chi ² = 23.95, df - tetrogeneity: Tau ² = 14.14; Chi ² = 23.95, df - stof or overall effect: Z = 1.34 (P = 0.18) D.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 II 2011 48.1 up tista 2008 49.5 ptista 2008 49.5 ptista 2009 38.1 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 42.54 ffe 2008 -0	e 6 (P = 0.0 rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0 ers	421 D3); I ² = 58 36 24 28 19 75	47.4 -1.8		423	20.8%	1.72 [0.06, 3.39]		<u></u>
est for overall effect: Z = 2.03 (P = 0.04) D.3.3 Off Label Lipid lowering Agent: Metfor Aptista 2007 44.6 arrizo 2009 3.8 hen 2013 44.2 hiu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 ibtotal (95% CI) eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) D.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 suncao 2006 45.8 all 2011 48.1 aptista 2008 49.5 aptista 2009 38.7 rba 2011 40.71 nt 2019 0 haderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 38.0 hoy 2017 7 tive 2017 42.54 hoy 2017 42.54 hoy 2017 -7 rsten 2017 38.67 2013 1 u 2018 5.03 i 2018 40.6 u 2018 5.03 i 2018 40.6 u 2018 3.1 mith 2013 36.63 i 2018 40.6 i 2018 5.03 i 2018 40.6 i 2018 5.03 i 2018 5.03 i 2018 40.6 i 2018 5.03 i 2018 5.03	rmin 9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	36 24 28 19 75	47.4 -1.8					•	
3.3.3 Off Label Lipid lowering Agent: Metfor upitsta 2007 44.6 upitsta 2009 3.8 sen 2013 44.2 ui 2016 52.6 rskog 2013 -0.6 u 2016 38.28 bitotal (95% CI) 38.28 terogeneity: Tau ² = 14.14; Chi ² = 23.95, df - est for overall effect: Z = 1.34 (P = 0.18) D.3.4 Off Label Lipid Lowering Agents: Othe mami—Weizman 2013 38.8 issuncao 2006 45.8 ill 2011 48.1 upitsta 2009 38.7 ribitsta 2009 38.7 orbitsta 2009 38.1 enderson 2005 38.1 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 -3.9 ivoy 2017 -7 rsce 0 obdabernia 2014 40.6 u 2018 0 obdabernia 2014 40.6 u 2018 0 obdabernia 2014 43.4 weira 2014 39.7	9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	36 24 28 19 75	47.4 -1.8						
aprista 2007 44.6 arrizo 2009 3.8 arrizo 2009 3.8 arrizo 2009 3.8 arrizo 2009 3.8 arrizo 2013 -0.6 u 2016 38.28 abtotal (95% CI) 38.28 abtotal (95% CI) 38.28 sterogeneity: Tau ² = 14.14; Chi ² = 23.95, df - sst for overall effect: Z = 1.34 (P = 0.18) D.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 ull 2011 48.1 uptista 2008 49.5 putista 2009 38.7 rba 2011 40.71 un 2019 0 haderi 2019 38.2 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 42.54 ffe 2008 -0.39 ivoy 2017 -7 rsen 2017 38.67 2018 0 odabbernia 2014 40.9 u 2018 0 odabbernia 2014 40.5 <	9.2 7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	36 24 28 19 75	47.4 -1.8						
arrizo 2009 3.8 hen 2013 44.2 hen 2013 44.2 hui 2016 52.6 rskog 2013 -0.6 u 2016 38.28 hbtotal (95% CI) 138.28 betrogeneity: Tau ² = 14.14; Chi ² = 23.95, df - st for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssunca 2006 45.8 till 2011 48.1 uptista 2008 49.5 ustaerizon 2007 -1.2 enderson 2007 -1.2 enderson 2007 -1.2 ife 2008 -0.39 ivoy 2017 -7 uz 2018 0 odabbernia 2014 40.6 uz 2018 0	7.5 14.6 19.2 7.82 7.73 = 5 (P = 0	24 28 19 75	-1.8	10.1	36	2.6%	-2.80 [-7.26, 1.66]	+	99?999
hen 2013 44.2 hill 2016 52.6 skog 2013 -0.6 a 2016 38.28 bibotal (95% Cl) 38.28 setorgeneity: Tau ² = 14.14; Chi ² = 23.95, df - st for overall effect: Z = 1.34 (P = 0.18) Diate Coll Charles Clip Conversiones mrami-Weizman 2013 38.8 sisuncao 2006 45.8 ill 2011 48.1 uptista 2008 49.5 pitista 2009 38.7 vrba 2011 40.71 n 2019 0 naderi 2019 38.2 enderson 2007 -1.2 index - Pokorska 2015 45.59 hoxy 2017 -7 rsen 2017 38.67 2018 0 odabbernia 2014 40.9 u 2018 0 odabbernia 2014 40.5 u 2018 0 odabbernia 2014 43.15	14.6 19.2 7.82 7.73 = 5 (P = 0	28 19 75		3.7	30	3.0%	5.60 [2.32, 8.88]		9997999
hiu 2016 52.6 rskog 2013 -0.6 u 2016 38.28 bbtotal (95% Cl) 38.28 bbtotal (95% Cl) 23.95, df - eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df - 38.28 bstat (95% Cl) 38.28 b.3.4 Off Label Lipid Lowering Agents: Othermami-Weizman 2013 38.8 ssuncao 2006 45.8 uil 2011 48.1 uptista 2008 49.5 proba 2011 40.71 anderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 42.54 ffe 2008 -0.39 rivoy 2017 -7 rsen 2017 38.67 2013 1 u 2018 0 odabbernia 2014 40.9 ymmo-Nava 2014 43.15 inth 2013 36.63 uz 2018 0 odabberdia 2014 40.9 ymmo-Nava 2014 33.7 sk 2014 43.4 uz 2018 6.34 tetrogeneity: T	19.2 7.82 7.73 = 5 (P = 0	19 75	46.4	14.2	27	1.6%	-2.20 [-9.81, 5.41]		9999999
rskog 2013 -0.6 u 2016 38.28 bibtotal (95% CI) 38.28 terogeneity: Tau ² = 14.14; Chi ² = 23.95, df - st for overall effect: Z = 1.34 (P = 0.18) D.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 45.8 ill 2011 48.1 48.1 pitista 2008 49.5 5 pitista 2009 38.7 7 nrba 2011 40.71 0 naderi 2019 0 0 naderison 2007 -1.2 enderson 2007 enderson 2007 -1.2 enderson 2007 Jika-Pokorska 2015 45.59 10 hoty 2017 -7 7 rsen 2017 38.67 2013 1 u 2018 0 0 0 odabbernia 2014 40.9 1 0 u 2018 0 0 0 odabbernia 2014 43.15 1 1 u 2018 0 0 0 0 odabbernia 2014 43.4 40.6	7.82 7.73 = 5 (P = 0	75	43	10.7	18	1.1%	9.60 [-0.35, 19.55]	<u> </u>	99999997
u 2016 38.28 u 2016 38.28 ubtotal (95% CI) 38.28 ubtotal (95% CI) 38.28 eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 ssumcao 2006 45.8 all 2011 48.1 uptista 2009 38.7 yrba 2011 40.71 un 2019 0 adderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 42.54 ffe 2008 -0.39 vitoy 2017 -7 ursen 2017 38.67 2013 1 u 2018 0 odabbernia 2014 40.9 yomo-Nava 2014 43.15 uith 2013 36.63 uz 2018 0 vodabbernia 2014 40.9 yomo-Nava 2014 43.4 vaeira 2014 39.7 ek 2014 49.22 anang 2020 36.74	7.73 = 5 (P = 0		-0.4	8.03	71	3.3%	-0.20 [-2.77. 2.37]	-	
30.20 30.20 bibotal (95% Cl) 21.41; Chi ² = 23.95, df = eterogeneity: Tau ² = 14.14; Chi ² = 23.95, df = sst for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 ssuncao 2006 45.8 11 urrami-Weizman 2013 38.8 ssuncao 2006 45.8 ull 2011 48.1 14.1 14.1 uptista 2009 38.7 orba 2011 40.71 na 2019 0 naderi 2019 38.2 enderson 2005 38.1 anderson 2007 -1.2 enderson 2007 -1.2 sunderson 2007 -2.3 ioy 2017 42.54 ffe 2008 -0.39 ioy 2017 -7 rsrsen 2017 38.67 12 018 40.6 0 odabbernia 2014 40.9 ur 2018 0 odabbernia 2014 43.15 inth 2013 36.63 10 2020 76.7 vakoli 2014 43.4 40.92 39.7 38.2	= 5 (P = 0 ers	103	32 1	10.82	0.8	3.3%	6 18 [3 57 8 70]		220000
terrogeneity: Tau ² = 14.14; Chi ² = 23.95, df + est for overall effect: Z = 1.34 (P = 0.18) 0.3.4 Off Label Lipid Lowering Agents: Othe mrami-Weizman 2013 38.8 suncao 2006 45.8 ull 2011 48.1 aptista 2008 49.5 aptista 2009 38.7 rba 2011 40.71 un 2019 0 haderi 2019 38.2 enderson 2009 38.1 enderson 2007 -1.2 enderson 2007 38.1 enderson 2007 42.54 ffe 2008 -0.39 rivay 2017 42.54 ffe 2008 -0.39 trivoy 2017 -7 rusen 2017 38.67 2013 1 u 2018 5.03 a 2018 40.6 u 2018 40.6 u 2018 0 odabbernia 2014 43.15 mith 2013 36.63 a m 2020 76.17 avakoli 2014 43.4 aveira 2014 43.25 aveira 2014 39.7 ek 2014 49.22 anag 2020 36.74 ortea 2016 3	= 5 (P = 0	285	52.1	10.05	280	14.8%	2.46 [-1.15, 6.06]		
3.3.4 Off Label Lipid Lowering Agents: Other mani—Weizman 2013 38.8 ssuncao 2006 45.8 li 2011 48.1 pista 2006 45.8 li 2011 48.1 pista 2009 38.7 rba 2011 40.71 n 2019 0 naderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 inderson 2017 42.54 ffe 2018 -0.39 ivoy 2017 -7 rssen 2017 38.67 2018 40.6 u 2018 0 obdebernia 2014 43.15 inth 2013 36.63 in 2020 76.17 vakoli 2014 43.4 weira 2014 39.7 k	ers	.0002); l ² :	= 79%		200	1110/0	2.10 [1.25, 0.00]		
3.4 Off Label Lipid Lowering Agents: Other analysis of the constraint well and the constraint of the constr	ers								
nram-Weizman 2013 38.8 suncao 2006 45.8 II 2011 48.1 ptista 2008 49.5 ptista 2009 38.7 rba 2011 40.71 n 2019 0 aderi 2019 38.2 inderson 2005 38.1 inderson 2007 -1.2 inderson 2007 -1.2 inderson 2007 42.54 fe 2008 -0.39 ika-Pokorska 2015 45.59 ioy 2017 42.54 fe 2008 -0.39 ika-2017 38.67 2013 1 i 2018 5.03 2018 40.6 u 2018 0 o odabbernia 2014 40.9 idabbernia 2014 43.15 ith 2013 36.63 n 2020 76.17 vakoli 2014 39.7 k 2015 39.7 k 2015 39.7 k 2015 39.7 k 2015 39.7 k 2016 39.7 k 2017 39.7 k 2017 39.7 k 2017 39.7 k 2017 39.7 k 2018 39.7		26					1 201 5 20		
suncao 2006 45.8 II 2011 48.1 ptista 2008 49.5 ptista 2009 38.7 rba 2011 40.71 n 2019 0 adderi 2019 38.2 inderson 2005 38.1 inderson 2007 -1.2 inderson 2007 42.54 fc 2008 -0.39 ivay 2017 42.54 fc 2008 -0.39 ivay 2017 38.67 2013 1 i 2018 0 odabernia 2014 40.9 u 2018 0 odabernia 2014 43.15 nith 2013 36.63 n 2020 76.17 vakoli 2014 43.4 veira 2014 39.7 k 2014 49.22 ang 2020 36.74 terogeneity: Tau ² = 0.00; Chi ² = 23.83, df = st for overall effect: Z = 0.55 (P = 0.58)	13.2	29	37.6	11.1	25	1.9%	1.20 [-5.28, 7.68]		4444444
II 2011 48.1 II 2011 48.1 ptista 2008 49.5 ptista 2009 38.7 rba 2011 40.71 40.71 n 2019 0 naderi 2019 38.2 enderson 2005 38.1 inderson 2007 -1.2 enderson 2009 38 Nka-Pokorska 2015 45.59 noy 2017 42.54 ffe 2008 -0.39 tivoy 2017 -7 rsen 2017 38.67 2013 1 a 2018 5.03 2018 40.6 u 2018 0 obdabbernia 2014 43.15 nith 2013 36.63 n 2020 76.17 vakoli 2014 43.4 veira 2014 39.7 k 2015 39.7 k 2016 30.7 k 2016 30.7 k 2016 30.7 k 2017 30.7 k 2016 30.7 k 2017 30.7 k	10.6	27	46.5	12.7	27	2.0%	-0.70 [-6.94, 5.54]		2224244
ptista 2008 49.5 ptista 2009 38.7 rba 2011 40.71 n 2019 0 ataderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2009 38 ytka-Pokorska 2015 45.59 ytka-Pokorska 2015 45.59 ytka-Pokorska 2015 45.59 ytka-Pokorska 2015 45.59 yta 2017 -7 rsen 2017 38.67 2013 1 2018 5.03 2018 5.03 2018 40.6 u 2018 5.03 2018 40.6 u 2018 0 0 dababernia 2014 40.9 ytmo-Nava 2014 43.15 ni 2020 76.17 vakoli 2014 43.4 u 2014 39.7 k 2015 30.7 k 2015 30.7	13.3	14	44.1	10.5	15	1.4%	4.00 [-4.76, 12.76]		? ? ? 9 9 9 9
ptista 2009 38.7 pha 2011 40.71 n 2019 0 naderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 sinderson 2009 38 kla-Pokorska 2015 45.59 noy 2017 42.54 ffe 2008 -0.39 kvoy 2017 -7 rsen 2017 38.67 2013 1 1 2018 5.03 2018 40.6 u 2018 0 0 dabbernia 2014 40.9 umo-Nava 2014 43.15 nith 2013 36.63 n 2020 76.17 vakoli 2014 49.22 ang 2020 36.74 rtea 2016 36.8 btotal (95% CI)	8.6	13	45.3	10.4	15	1.7%	4.20 [-2.84, 11.24]		
what 2011 40.71 na 2019 0 naderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2007 -1.2 enderson 2007 42.54 ffe 2008 -0.39 ivoy 2017 -7 rsen 2017 38.67 2013 1 i 2018 5.03 i 2018 0 oddabernia 2014 40.9 ymo-Nava 2014 43.15 inith 2013 36.63 in 2020 76.17 vakoli 2014 49.22 anag 2020 36.74 wreta 2016 36.8 bibtotal (95% CI) 50.5 est or overall effect: Z = 0.55 (P = 0.58)	11.1	14	44.4	12.8	15	1.4%	-5.70 [-14.40, 3.00]		9799999
In 2019 0 naderi 2019 38.2 enderson 2005 38.1 enderson 2007 -1.2 enderson 2009 38 blka-Pokorska 2015 45.59 hoty 2017 42.54 ffe 2008 -0.39 ivoy 2017 -7 rsen 2017 38.67 2013 1 a 2018 5.03 to 2018 40.6 u 2018 0 odabbernia 2014 40.9 odabbernia 2014 43.15 nith 2013 36.63 in 2020 76.17 vakoli 2014 43.4 viera 2014 39.7 ik 2014 43.4 viera 2014 39.7 ik 2014 36.7 ibtotal (95% CI)	6.79	14	38.83	3.54	6	2.5%	1.88 [-2.67, 6.43]		??
naderi 2019 38.2 enderson 2005 38.1 inderson 2007 -1.2 enderson 2009 38 jka-Pokorska 2015 45.59 hory 2017 42.54 ffe 2008 -0.39 ivoy 2017 -7 rsen 2017 38.67 2013 1 i 2018 40.6 i 2018 0 odabbernia 2014 40.9 inith 2013 36.63 inith 2014 43.4 veria 2014 39.7 isk 2014 49.22 inang 2020 36.74 isterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = ist for overall effect: Z = 0.55 (P = 0.58) obtal (95% CI) 20.55	6	22	0	8	21	2.6%	0.00 [-4.24, 4.24]		977999
enderson 2005 38.1 enderson 2007 -1.2 enderson 2009 38 3)ka-Pokorska 2015 45.59 hoy 2017 42.54 ffc 2008 -0.39 ivoy 2017 -7 rsen 2017 38.67 2013 1 a 2018 5.03 a 2018 00 odabbernia 2014 40.9 odabbernia 2014 43.15 nith 2013 36.63 nith 2013 36.63 nith 2013 36.63 nith 2014 43.4 veira 2014 39.7 ek 2014 49.22 ang 2020 36.74 ortea 2016 36.8 biotal (95% CI)	9.2	30	39.3	6.3	30	2.7%	-1.10 [-5.09, 2.89]		99??999
enderson 2007 -1.2 enderson 2009 38 blka-Pokorska 2015 45.59 hoty 2017 42.54 ffe 2008 -0.39 ivoy 2017 -7 arsen 2017 38.67 2013 1 u 2018 5.03 u 2018 0 odabbernia 2014 40.9 ormo-Nava 2014 43.15 inth 2013 36.63 un 2020 76.17 vakoli 2014 49.22 anag 2020 36.74 brotal (95% CI) 36.8 brotal (95% CI) est for overall effect: Z = 0.55 (P = 0.58)	13.1	19	36.8	10.1	18	1.6%	1.30 [-6.21, 8.81]		9999999
enderson 2009 38 olka-Pokorska 2015 45.59 oky 2017 42.54 ffe 2008 -0.39 vivoy 2017 -7 rsren 2017 38.67 2013 1 u 2018 5.03 n 2018 0 odabbernia 2014 40.9 omo-Nava 2014 43.15 ninth 2013 36.63 un 2020 76.17 vakeira 2014 49.22 anag 2020 36.74 ortera 2016 36.8 ubtotal (95% CI) etcrogeneity: Tau ² = 0.05; (Pi = 0.58) otal (95% CI) 50.51	6.32	10	-0.8	3.11	8	2.6%	-0.40 [-4.87, 4.07]		9977999
bika-Pokorska 2015 45.59 hoy 2017 42.54 ffe 2008 -0.39 rivoy 2017 -7 rsen 2017 38.67 2013 1 u 2018 5.03 a 2018 40.6 u 2018 0 odabbernia 2014 40.9 mono-Nava 2014 43.15 nith 2013 36.63 nu 2020 76.17 vakoli 2014 43.4 viera 2014 39.7 sk 2014 49.22 anag 2020 36.74 vieterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% Cl)	11	8	35	7	10	1.4%	3.00 [-5.77, 11.77]		2220444
hoy 2017 42.54 ffe 2008 -0.39 vison 2017 -7 zrsen 2017 38.67 2013 1 u 2018 5.03 u 2018 40.6 u 2018 0 odabbernia 2014 40.9 omo-Nava 2014 43.15 ninth 2013 36.63 un 2020 76.17 avakoli 2014 43.4 vavira 2014 39.7 ek 2014 49.22 anag 2020 36.74 ortera 2016 36.8 ubtotal (95% CI) est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI) 56.74	11.8	23	46 42	8 45	22	2 1%	-0.83[-6.81 5.15]		A 2 2 A A A A
101 J J J 42.34 162 2008 -0.39 vivoy 2017 -7 2013 1 u 2018 5.03 j 2018 40.6 vu 2018 0 odabbernia 2014 43.15 mith 2013 36.63 j 2020 76.17 avakoli 2014 43.4 aveira 2014 39.7 ek 2014 49.22 anag 2020 36.74 pritea 2016 36.8 ubtotal (95% CI) eterogeneity: Tau ² = 0.05; (Pi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	7 73	20	42 54	11.6	20	2.0%	0.00[-6.11.6.11]		
1000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 10000 1000 100000 10000	6.57	31	0.77	4 64	32	3 2%	-1 16 [-3 98 1 66]	_	2220000
No. J. 2017 38.67 2013 1 u 2018 5.03 u 2018 40.6 u 2018 0 odabbernia 2014 40.9 omo-Nava 2014 43.15 nith 2013 36.63 un 2020 76.17 avakira 2014 43.4 variar 2014 49.22 anang 2020 36.74 portea 2016 36.8 abbotal (95% CI) est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI) 21.83, df =	273	23	-3.1	173	24	0.8%	-3 90 [-17 03 9 23]		
arsen 2017 36.87 2013 1 u 2018 5.03 u 2018 40.6 u 2018 0 lodabbernia 2014 40.9 momo-Nava 2014 43.15 mith 2013 36.63 un 2020 76.17 avakoli 2014 43.4 aveira 2014 39.7 ek 2014 49.22 hang 2020 36.74 ortea 2016 36.8 ubtotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	12 19	23	42.42	26.95	50	1 40/	3.50 [-17.03, 5.25]		
2013 1 2013 1 u 2018 5.03 u 2018 0 odabbernia 2014 40.9 omo-Nava 2014 43.15 mith 2013 36.63 un 2020 76.17 avakoli 2014 43.4 aveira 2014 39.7 ek 2014 49.22 anag 2020 36.74 ortea 2016 36.8 abbotal (95% CI) est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI) 9.00	15.10	47	42.45	20.05	50	1.4%	-3.76 [-12.10, 4.38]		
u 2010 5.03 u 2018 40.6 vu 2018 0 odabbernia 2014 40.9 mono-Nava 2014 43.15 nith 2013 36.63 un 2020 76.17 avakoli 2014 43.4 aveira 2014 39.7 ek 2014 49.22 anag 2020 36.74 ortea 2016 36.8 ubtotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	8	10	-1	4	21	2.7%	2.00 [-2.07, 6.07]		
1 2018 40.6 1 2018 0 odabbernia 2014 40.9 omo-Nava 2014 43.15 inth 2013 36.63 un 2020 76.17 avakoli 2014 43.4 aveira 2014 39.7 sk 2014 49.22 anag 2020 36.74 ortea 2016 36.8 bbtotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	29	27	8.9	33.6	28	0.5%	-5.87 [-20.44, 12.70]		444444
uu 2018 0 odabbernia 2014 40.9 owno-Nava 2014 43.15 nich 2013 36.63 nich 2013 36.61 un 2020 76.17 vaxakoli 2014 43.4 vaveira 2014 39.7 sk 2014 49.22 nang 2020 36.74 ortea 2016 36.8 bibotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	13.3	43	38.1	11.4	42	2.3%	2.50 [-2.76, 7.76]		444444
odabbernia 2014 40.9 mon-Nava 2014 43.15 nith 2013 36.63 un 2020 76.17 vakoli 2014 43.4 tveira 2014 39.7 sk 2014 49.22 tang 2020 36.74 tottal (95% CI) 36.8 tetrogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	42.54	11	0	3.87	10	0.2%	0.00 [-25.25, 25.25]		7799999
>mmo-Nava 2014 43.15 nith 2013 36.63 nin 2020 76.17 vakoli 2014 43.4 aveira 2014 39.7 sk 2014 49.22 ang 2020 36.74 ortea 2016 36.8 bibtotal (05% CI) 36.8 eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI) 9.55	10.31	18	42.7	10.18	18	1.8%	-1.80 [-8.49, 4.89]		444444
nith 2013 36.63 In 2020 76.17 vaxali 2014 43.4 varia 2014 39.7 sk 2014 49.22 ang 2020 36.74 ortea 2016 36.8 bitotal (95% Cl) terogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) botal (95% Cl)	9.97	20	44.78	10.56	24	2.0%	-1.63 [-7.71, 4.45]		
in 2020 76.17 ivakoli 2014 43.4 veria 2014 39.7 sk 2014 49.22 anag 2020 36.74 brotea 2016 36.8 bibtotal (95% CI) 61.2 est for overall effect: Z = 0.55 (P = 0.58) 0.58	16.59	29	34.99	16.16	23	1.3%	1.64 [-7.31, 10.59]		??
wakoli 2014 43.4 weira 2014 39.7 sk 2014 49.22 hang 2020 36.74 bytte 2016 36.8 bytte 2016 36.8 bytte 2016 36.8 bytte 2016 36.8 bytte 105% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) btal (95% CI)	42.92	102	77.72	61.48	52	0.4%	-1.55 [-20.22, 17.12]		99??999
viveira 2014 39.7 ik 2014 49.22 anga 2020 36.74 virtea 2016 36.8 ibitotal (95% CI) isterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	10.1	30	37	10	30	2.3%	6.40 [1.31, 11.49]	——	?
ek 2014 49.22 nang 2020 36.74 preta 2016 36.8 bibtotal (95% CI) 36.8 eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = 36.8 est for overall effect: Z = 0.55 (P = 0.58) 36.8 btal (95% CI) 36.8	6.63	11	44.1	14.42	13	1.4%	-4.40 [-13.16, 4.36]		
hang 2020 36.74 Jortea 2016 36.8 Jubotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) botal (95% CI)	8	10	53.56	10.1	11	1.6%	-4.34 [-12.10, 3.42]		9999999
vitea 2016 36.8 Jbtotal (95% CI) eterogeneity: Tau ² = 0.00; Chi ² = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% CI)	5.8	30	40.6	8.89	29	2.8%	-3.86 [-7.70 -0.02]		0002000
lbtotal (95% Cl) terogeneity: Tau ² = 0.00; Chi ² = 23.83, df = tst for overall effect: Z = 0.55 (P = 0.58) tal (95% Cl)	3.29	10	40.33	7	9	2.4%	-3.53 [-8.54, 1.48]	+	2200000
eterogeneity: Tau ⁴ = 0.00; Chi ⁴ = 23.83, df = est for overall effect: Z = 0.55 (P = 0.58) otal (95% Cl)		703		,	648	53.0%	-0.30 [-1.36, 0.76]	•	
stal (95% CI)	28 (P = 0	.69); I ² = 0	1%						
		1562			1497	100.0%	0.43 [-0.85, 1.70]	▲	
$atorogonolity: Tauf = 11.26 \cdot Chif = 150.00 \cdot 16$	f - 46 /D	0.00001	12 - 710		1.57	100.070			
eterogeneity. rau = 11.20; $CH = 159.80$, dr		. 0.00001)	- / 176					-20 -10 0 10 20	
est for overall effect. $z = 0.65$ (P = 0.51)	2 /0 0	12) 12	0.1%					Favours [placebo] Favours [intervention]	
est for subgroup afferences: Chi* = 5.90, df =	= 3 (P = 0)	$(12), \Gamma = 4$	9.1%						
isk of blas legend									
A) Random sequence generation (selection bias	s)								
 Allocation concealment (selection bias) 									
C) Blinding of participants and personnel (perfe	ormance b	oias)							
D) Blinding of outcome assessment (detection									
E) Incomplete outcome data (attrition bias)	bias)								
) Selective reporting (reporting bias)	bias)								
) Other bias	bias)								
	bias)								
PE 2 Export plot abouting the second	bias)		non in char	ann in h'-	h de	noiti i li-	protoin obclasterel	(ma/dl) for all interventions	poored to alc

(**Figure 6**; N = 3, n = 419; WMD = -14.40 mg/dL; CI: -26.51, -2.28; p = 0.02; $I^2 = 47$) compared to placebo. No significant changes were noted for HDL cholesterol (**Figure 3**; N = 6, n = 565; $I^2 = 79$) and LDL cholesterol (**Figure 4**; N = 3, n = 419; $I^2 = 89$). None of the metformin studies examined VLDL cholesterol.

Off Label Lipid Lowering Agents: Others

For other off label lipid lowering agents, there was a statistically significant reduction in total cholesterol levels (**Figure 6**; N = 27, n = 1,322; WMD = -5.18 mg/dL, CI: -10.31, -0.05; p = 0.05; $I^2 = 41$) along with a decreasing trend in levels of triglycerides

udy or Subgroup	Mean [mg/dL]	SD [mg/dL]	Total	Mean [mg/dL] S	D [mg/dL]	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	ABCDEF
.4.1 Lipid Lowering	Agents									
hdani 2018	-15.42	49.78	28	0.5	62.18	28	1.1%	-15.92 [-45.42, 13.58]		
nsley 2008	131.48	38.67	39	123.74	34.8	33	2.4%	7.74 [-9.24, 24.72]		?
binson 2019	91.18	6.95	25	97.71	6.11	25	5.1%	-6.53 [-10.16, -2.90]	-	6666666
ncenzi 2014	85.13	25.38	24	104.21	19.34	25	3.2%	-19.08 [-31.75, -6.41]		2 2 2 0 0 0 0
btotal (95% CI)			116			111	11.8%	-7.90 [-17.56, 1.76]	•	
eterogeneity: Tau ² = ! st for overall effect: 2	50.15; Chi ² = 6.80, Z = 1.60 (P = 0.11)	df = 3 (P = 0)	.08); l ² =	= 56%						
.4.2 Antipsychotic S	witch/Add-on Int	erventions								
berdt 2008	-2.7	19.72	65	-5.41	31.71	68	4.0%	2.71 [-6.22, 11.64]	- -	
n 2013	-15.1	19.8	16	4.4	22.5	14	2.7%	-19.50 [-34.77, -4.23]		? ? ? 9 0 9 0
ischhacker 2010	-12.64	26.02	95	0	43.62	88	3.6%	-12.64 [-23.15, -2.13]		676666
wcomer 2008	-12.7	25.4	80	-5.52	27.64	76	4.1%	-7.18 [-15.52, 1.16]		222444
oup 2011	-15.4	26.04	89	-12.5	25.14	98	4.4%	-2.90 [-10.25, 4.45]		
btotal (95% CI)			345			344	18.8%	-6.45 [-12.83, -0.07]	•	
terogeneity: Tau ² = 2 st for overall effect: 2	28.24; Chi ² = 8.89, 2 = 1.98 (P = 0.05)	df = 4 (P = 0.1)	.06); I ² =	= 55%						
4.3 Off Label Lipid	Lowering Agent: M	Metformin								
ptista 2007	134.5	64.3	36	126.9	63.9	36	1.1%	7.60 [-22.01, 37.21]		
skog 2013	-7.1	23.9	75	-2	24.08	71	4.3%	-5.10 [-12.89, 2.69]	+	
2016	116.8	31.32	103	150.43	47.95	98	3.5%	-33.63 [-44.8922.37]		??
btotal (95% CI)	1010		214			205	8.8%	-12.52 [-35.86, 10.82]		
terogeneity: Tau ² = 3 st for overall effect: 2	851.30; Chi ² = 18.2 Z = 1.05 (P = 0.29)	70, df = 2 (P <	0.0001	l); I ² = 89%						
.4.4 Off Label Lipid	Lowering Agents:	Others								
rami-Weizman 2013	125.6	40	29	133.6	38.7	25	1.8%	-8.00 [-29.03, 13.03]		
suncao 2006	198.8	46	27	180.3	34.1	27	1.8%	18.50 [-3.10, 40.10]	+	777979
II 2011	97.9	35.3	14	88.3	29.3	12	1.5%	9.60 [-15.23, 34.43]		???
ptista 2008	110.1	31.9	13	113.8	31.4	15	1.6%	-3.70 [-27.22, 19.82]	.	
otista 2009	108.5	19.9	14	124.5	20.9	15	2.7%	-16.00 [-30.85, -1.15]		A 7 B A A A
rba 2011	117.07	31.1	14	104.83	31.8	6	1.1%	12 24 [-17 97 42 45]		220000
2019	-1	25	22	4.5	15	21	3.3%	-5.50 [-17.76.6.76]		A 2 2 2 A A
aderi 2019	96.6	31.1	30	106.2	32.5	30	2.5%	-9.60 [-25.70, 6.50]		AA22AA
nderson 2005	112.6	38.9	19	146.4	43.4	18	1 3%	-33.80 [-60.41 -7.19]		
nderson 2007	12.0	86.01	10	7.9	32.81	8	0.3%	4 10 [-53 85 62 05]		
nderson 2009	124	25	10	2.5	52.01	10	2.3%	24 00 [15 80 52 20]		
lka Bokorska 2015	120 42	25 26	22	120.28	24.26	22	2.2%	-9.06 [-22.40 5.57]		
2017	120.42	23.50	20	110.99	24.30	20	2.0%	7 73 [11 59 37 05]		
10y 2017	127.01	34.0	20	12.33	27.07	20	2.1/0	0.00 [12.00 13.00]		
10 2008	-12.57	27.07	51	-12.57	23.32	52	5.1%	0.00 [-13.00, 13.00]		
2017	-15.4	21.25	4/	-2.5	13.44	50	4.470	-13.10 [-20.23, -3.97]		
2015	-3	20	10	-0.06	23	21	2.0%	-4.94 [-20.47, 10.39]		
2018	0.10	32.48	27	11.6	21.05	20	2.8%	-5.42 [-20.06, 9.22]		44444
2018	105.3	28.1	43	99	32.7	42	3.1%	6.30 [-6.67, 19.27]		444444
u 2018	-15.47	27.07	11	-7.73	27.07	10	1.6%	-7.74 [-30.92, 15.44]		
odabbernia 2014	123.9	30.17	18	116.3	22.189	18	2.3%	7.60 [-9.70, 24.90]		444444
mo-Nava 2014	112.93	32.33	20	94.69	23.4	24	2.4%	18.24 [1.26, 35.22]		444444
hith 2013	95.44	38.88	29	96.85	39.81	23	1.8%	-1.41 [-22.97, 20.15]		7799999
n 2020	178.26	37.5	102	183.29	34.02	52	3.4%	-5.03 [-16.80, 6.74]		
vakoli 2014	112.8	35.5	30	103.8	36.7	30	2.2%	9.00 [-9.27, 27.27]		799999
veira 2014	100.9	37.15	11	100.4	64.18	13	0.6%	0.50 [-40.72, 41.72]		
k 2014	104.11	39.9	10	111.22	33.5	11	1.0%	-7.11 [-38.79, 24.57]		
ang 2020	105.18	29	30	112.14	28.62	29	2.8%	-6.96 [-21.66, 7.74]		
btotal (95% CI)	118.4	28.18	10 680	117.8	26.73	9 621	1.5% 60.6%	0.60 [-24.10, 25.30] -1.03 [-5.69, 3.62]	•	<u></u>
terogeneity: Tau ² = 6 st for overall effect: 2	57.76; Chi ² = 52.57 Z = 0.43 (P = 0.66)	7, df = 27 (P =	= 0.002);	; $I^2 = 49\%$						
tal (95% CI)			1355			1281	100.0%	-4.19 [-7.71, -0.67]	•	
terogeneity: Tau ² = 6 st for overall effect: 2	50.05; Chi ² = 96.34 Z = 2.33 (P = 0.02)	4, df = 39 (P <	0.0000	()1); $I^{z} = 60\%$					-50 -25 0 25 50 Favours [intervention] Favours [placebo]	_
k of bias legend	rences: Chi ⁺ = 3.25	$a_{1} = 3 (P = 0)$	0.35), l*	= 7.7%						
Random sequence g Allocation concealm Blinding of participa	eneration (selectio ent (selection bias) ents and personnel	n bias) (performance	hias)							
) Blinding of outcome	assessment (deter	ction bias)	unas)							
	reporting hise)									

that was nonsignificant (**Figure 2**; N = 28, n = 1,337; WMD = -11.06, CI: -23.08, 0.97; p = 0.07; $l^2 = 39$). There were no significant differences for LDL cholesterol (**Figure 4**; N = 28, n = 1,301; $l^2 = 49$), HDL cholesterol (**Figure 3**; N = 29, n = 1,351; $l^2 = 0$), and VLDL cholesterol (**Figure 5**; N = 4; n = 223; $l^2 = 0$).

Secondary Outcomes: Additional Metabolic Measures

Cumulatively, the pharmacological interventions reviewed in this paper were associated with significant reductions in body weight (Supplementary Figure 1; N = 38, n = 2,380; WMD = -1.13 kg, CI: -2.18, -0.08; p = 0.03), BMI (Supplementary Figure 2; N = 36, n = 2,174; WMD = -0.42 kg/m², CI: -0.85, 0.01; p = 0.05), and waist circumference (Supplementary Figure 3; N = 29, n = 1,532; WMD = -1.34 cm, CI: -2.34, -0.34; p = 0.009) compared to placebo. As for glucose-related parameters, interventions led to significant decreases in blood insulin (Supplementary Figure 4; N = 24, n = 1,636; WMD = -1.64 mIU/mL, CI: -2.76, -0.52; p = 0.004) and HOMA-IR (Supplementary Figure 5; N = 16, n = 867; WMD = -0.52, CI:

-0.89, -0.15; p = 0.005) compared to placebo. Blood glucose levels showed a decreasing trend, but the difference was not significant (**Supplementary Figure 6**; N = 46, n = 3,048; WMD = -1.17 mg/dL, CI: -2.44, -0.11; p = 0.07). Differences in HbA1c levels were also not significant (**Supplementary Figure 7**; N = 19, n = 1,097). Total PANSS scores showed a trend toward improvement in the intervention group, but the difference again was not statistically significant (**Supplementary Figure 8**; N =13, n = 1,005, WMD = -2.15; CI: -4.45, 0.16; p = 0.07). Finally, there were no significant differences in systolic blood pressure (**Supplementary Figure 9**; N = 16, n = 892) and diastolic blood pressure (**Supplementary Figure 10**; N = 15, n = 845).

Risk of Bias

Risk of bias in random sequence generation was deemed to be low in 29 studies, high in 1, and unclear in 18 (**Supplementary Figure 11**). Outcomes did not change significantly after the study with high risk of bias was removed.

DISCUSSION

In this systematic review and meta-analysis, we examined different pharmacological interventions used to treat antipsychotic-induced dyslipidemia in schizophrenia spectrum disorders. The 29 pharmacological interventions analyzed were cumulatively effective in lowering total cholesterol, LDL cholesterol, and triglycerides, while increasing HDL cholesterol. However, improvements were not significant with VLDL cholesterol. Amongst the subgroups analyzed, we found that antipsychotic switching/add-on proved most effective in improving lipid parameters commonly dysregulated in schizophrenia, namely triglycerides and HDL cholesterol (77). Notably, the off-label lipid lowering agent metformin was more promising than approved lipid lowering agents in decreasing triglycerides and total cholesterol levels. However, other off label agents only showed a trend in improving lipid parameters.

Our findings suggest that off label strategies can be effectively employed to ameliorate antipsychotic-induced dyslipidemia. In

particular, metformin shows considerable promise, improving lipid parameters and showing consistent association with a decrease in triglycerides and total cholesterol levels. Similar findings for triglycerides and total cholesterol levels were previously demonstrated in a review by Jiang et al. (78), and in the context of schizophrenia would benefit through evidence specific to long-term outcomes. Prior studies indicate that a 40 mg/dL reduction in LDL cholesterol and triglycerides translates into a 20% and 4-5% decrease in risk for developing cardiovascular disease, respectively, independent of baseline risk (79). Given this, our review suggests that the available strategies for targeting dyslipidemia are inadequate, reinforcing the need for novel, more effective interventions. Furthermore, while our findings provide strong evidence for antipsychotic switch/add-on interventions, study duration ranged from 6 to 24 weeks, which does not provide adequate time to assess the long-term effects of these treatments on dyslipidemia. While aripiprazole and quetiapine are both second generation antipsychotics with less severe metabolic side-effects compared to others like olanzapine and clozapine, they have their own metabolic burden that cannot be ignored and needs to be better understood over the longer term (80, 81). Similarly, while our findings suggest that lipid lowering agents are not effective in improving dyslipidemia, these results may have been limited by the short duration of the included studies. The small number of studies also did not permit examination of the possible effects of dose of lipid-lowering agents.

Current studies provide general support for the potential effectiveness of pharmacological interventions, but further research is warranted to refining recommendations pertaining to individual treatments. Currently in many studies, lipid management was not a primary focus; of the 48 reviewed studies, only 26 identified lipid profile as a primary outcome measure, in contrast to 22 where it was positioned as a secondary outcome. More studies focused on this area of research sets the stage for additional insights and the increased power necessary to detect not only beneficial outcomes, but also the elucidation of specific variables contributing to effective

0.1.1 Lipid Lowering Agents	n [mg/dL] SI	ition [mg/dL]	Total M	Place ean [mg/dL] SD	bo [mg/dL]	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% Cl	A B C D E F (
nana anpia aonaning riganto										
hdani 2018	-5.2	73.63	28	4.14	81.54	28	0.6%	-9.34 [-50.03, 31.35]		
nsley 2008	204.95	42.54	39	201.08	46.4	33	1.9%	3.87 [-16.84, 24.58]		?
obinson 2019	163.91	8.22	25	175.75	6.88	25	7.7%	-11.84 [-16.04, -7.64]	+	6666666
ncenzi 2014	161.04	34.18	24	178.56	28.4	25	2.4%	-17.52 [-35.15, 0.11]		???
btotal (95% CI)			116			111	12.5%	-11.52 [-15.51, -7.53]	•	
terogeneity: Tau ² = 0.00; Ch	i ² = 2.60, df =	3 (P = 0.4)	6); $I^2 = 0\%$	5					•	
st for overall effect: Z = 5.66	(P < 0.00001)									
.1.2 Antipsychotic Switch/A	dd-on Interv	entions								
berdt 2008	-4.25	26.3	65	-7.73	35.96	68	4.5%	3.48 [-7.19, 14.15]		•??•••
n 2013	-15.3	33.3	16	5.6	34	14	1.5%	-20.90 [-45.05, 3.25]		? - ?
eischhacker 2010	-14.61	25.01	97	-2.43	26.64	88	6.0%	-12.18 [-19.65, -4.71]		Θ
wcomer 2008	-18.44	26.03	80	-6.52	27.55	76	5.5%	-11.92 [-20.34, -3.50]		????~~~ ~
oup 2011	-19.6	28.21	89	-10.8	26.63	98	5.8%	-8.80 [-16.68, -0.92]		
ao 2015	167.1	35.6	54	175.6	42.9	53	3.0%	-8.50 [-23.45, 6.45]		????
btotal (95% Cl) terogeneity: Tau ² = 12.44; C	hi² = 7.35, df	= 5 (P = 0.	401 20); l ² = 3	2%		397	26.1%	-8.83 [-13.91, -3.74]	•	
st for overall effect: Z = 3.40	(P = 0.0007)									
1.3 Off Label Lipid Lowerin	ng Agent: Met	formin								
ptista 2007	199.6	70	36	204.7	59.5	36	1.0%	-5.10 [-35.11, 24.91]		
skog 2013	-8.9	29.12	75	0.2	28.31	71	5.1%	-9.10 [-18.42. 0.22]		999999
2016	187.94	38.28	103	213.07	60.71	98	3.2%	-25.13 [-39.2411.02]		224444
ototal (95% CI)			214			205	9.3%	-14.40 [-26.51, -2.28]	•	
erogeneity: Tau ² = 53.25; C t for overall effect: Z = 2.33	$hi^2 = 3.77, df$ (P = 0.02)	= 2 (P = 0.	15); I ² = 4	7%						
1.4 Off Label Linid Loweria	a Agents: Ot	iers								
rami_Weizman 2012	211.0	527	20	202.2	51 5	25	1 1%	9 60 [-18 50 27 70]		
irami-weizman 2013	211.9	53.7	29	202.3	51.5	25	1.1%	9.60 [-18.50, 37.70]	-	444444
suncao 2006	198.8	46	27	180.3	34.1	27	1.7%	18.50 [-3.10, 40.10]		
ptista 2008	184	29.1	13	191.1	41.1	15	1.3%	-7.10 [-33.23, 19.03]		444,444
otista 2009	179.9	22.6	14	201.2	26.02	15	2.4%	-21.30 [-39.01, -3.59]		
ba 2011	195.21	42.07	14	175.17	35.81	6	0.7%	20.04 [-16.11, 56.19]		?? 🕊 🖶 🗣
2019	-6	23	22	-3	27	21	3.0%	-3.00 [-18.02, 12.02]		Θ O
aderi 2019	161.8	36.7	30	178.5	35.8	30	2.3%	-16.70 [-35.05, 1.65]		
nderson 2005	202.7	52.5	19	232.8	41.6	18	1.0%	-30.10 [-60.54, 0.34]		999999
nderson 2007	-7.7	16.76	10	-2	31.4	8	1.5%	-5.70 [-29.81, 18.41]		
nderson 2009	188	36	8	178	15	10	1.2%	10.00 [-16.62, 36.62]		222000
lka-Pokorska 2015	192.92	34.62	23	201.4	26.85	22	2.3%	-8.48 [-26.54, 9.58]		977999
lov 2017	201.08	42.54	20	193.35	34.8	20	1.5%	7.73 [-16.36, 31.82]		
fe 2008	-4.25	29.78	31	-8.51	25.52	32	3.4%	4.26 [-9.45, 17.97]		777444
rsen 2017	-19.3	23.99	47	3.5	21.92	50	5.1%	-22.80 [-31.96, -13.64]		224444
2013	-1	39	18	0	21	21	2.0%	-1 00 [-21 13 19 13]		007000
2018	-27 1	201.9	27	14 3	24.6	28	0.2%	-41 40 [-118 10 35 30]	←	020000
2004	180.2	23.0	34	190.4	21.5	34	1 194	-10.20 [-21.01.0.61]		222000
2018	172.2	34.8	43	177.5	34.7	42	3 1%	-5 30 [-20.08 9 48]		
debberrie 2014	102.2	34.0	45	177.5	34.7	42	1. 20/	-3.30 [-20.08, 9.48]		
Naus 2014	198.5	45.05	10	202.5	53.09	18	1.5%	-4.00 [-30.05, 22.05]		
mo-Nava 2014	198.4	51.84	20	170.83	27.46	24	1.4%	27.57 [2.33, 52.81]		444444
ith 2013	157.02	45.61	29	171.11	40.05	23	1.5%	-14.09 [-37.40, 9.22]		44444
1 2020	178.26	38.5	102	183.29	34.02	52	4.0%	-5.03 [-16.92, 6.86]		HHSSSSSSSSSSSSS
vakoli 2014	181	48.8	30	168.7	48.6	30	1.4%	12.30 [-12.35, 36.95]		799999
veira 2014	170.5	43.45	11	178.4	55.89	13	0.6%	-7.90 [-47.68, 31.88]		
k 2014	175.33	41.3	10	189.78	41.2	11	0.7%	-14.45 [-49.78, 20.88]		
ang 2020	177.88	37.12	30	192.58	32.1	29	2.4%	-14.70 [-32.39, 2.99]	+	GGG?GG
tea 2016	195.6	37.64	10	201.78	40.12	9	0.8%	-6.18 [-41.27, 28.91]		??@@@@
terogeneity: Tau ² = 66.63; C	hi² = 44.43, d	f = 26 (P =	689 0.01); l ² :	= 41%		633	52.0%	-5.18 [-10.31, -0.05]	•	
st for overall effect: Z = 1.98	(P = 0.05)									
tal (95% CI)	hi² c1 77 .	- 20 /2	1420	2.7%		1346	100.0%	-7.96 [-11.14, -4.77]	• •	
terogeneity: Tau* = 29.68; C	nr = 61.77, d	r = 39 (P =	0.01); 1* :	= 37%					-100 -50 0 50 100	
st for subgroup differences:	(P < 0.00001)	F _ 2 (P _ C	22) 12 -	21 69/					Favours [intervention] Favours [placebo]	
st for subgroup differences: (- 4.36, di		.22), 1" =	51.0%						
sk of blas legend										
) kandom sequence generatio	on (selection bi	ias)								
	ection bias)									
) Allocation concealment (sele	personnel (pe	rformance	bias)							
 Allocation concealment (seld) Blinding of participants and 	ment (detectio	n bias)								
 Allocation concealment (sele) Blinding of participants and Blinding of outcome assess 	ttrition hias)									
) Allocation concealment (seli) Blinding of participants and) Blinding of outcome assessi) Incomplete outcome data (at	tintion bidby									
 Allocation concealment (seli) Blinding of participants and Blinding of outcome assessiin incomplete outcome data (at Selective reporting (reporting) 	g bias)									
Allocation concealment (sel Blinding of participants and Blinding of outcome assessi Incomplete outcome data (at Selective reporting (reporting Other bias	g bias)									
Allocation concealment (sel Blinding of participants and Blinding of outcome assess Incomplete outcome data (a Selective reporting (reporting Other bias	g bias)									
Allocation concealment (sel: Blinding of participants and Blinding of outcome assessi ncomplete outcome data (al Selective reporting (reporting Other bias	g bias)	oled me	an differ	ence in char	aes in tr	otal ch	olester	ol (ma/dl.) for all inte	eventions as compared to placebo	along with sub

treatment. At present, the significant heterogeneity among studies within intervention categories limit generalizations that can be made with respect to mechanisms or interacting variables. Factors affecting outcomes may include specific antipsychotic treatment, diagnosis and stage of illness, co-morbid health conditions, concomitant medications, and duration of antipsychotic and/or lipid intervention treatment. Differential pharmacological interventions may, in fact, vary as a function of patient population. Moreover, to date, many interventions are confined to a single study, precluding pooled data or comparisons between interventions. Our review restricted the population to schizophrenia patients, even though antipsychotics are used to treat patients with other psychiatric illnesses such as affective disorders who also share the metabolic burden (82) and may benefit from the reviewed interventions. Finally, while behavioral and lifestyle interventions remain first-line treatments for dyslipidemia, our review restricted the search to pharmacological interventions.

Given the prevalence of dyslipidemia in schizophrenia, along with the associated increased risk of metabolic complications

and cardiovascular disease, it is imperative that such studies be undertaken. At present, dyslipidemia is often left untreated (13– 15); indeed, the physical health of this population is generally overlooked while the focus is directed to managing psychotic symptoms (83, 84). The integration of psychiatric and medical care falls short at present (85); however, this overview of dyslipidemia, its prevalence and current treatment underscores the need to ensure a more comprehensive model of care be implemented.

DATA AVAILABILITY STATEMENT

The original contributions generated for the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

PK, SMA, and MKH contributed to developing the original protocol. PK and KC-D contributed to the original screening, data extraction, risk of bias assessments, and writing the first draft of the manuscript (introduction, methods, and results). FP and JL wrote and registered the protocol with PROSPERO, re-ran the search, updated study selection and risk of bias, and contributed to final data extraction and synthesis prior to manuscript submission, as well as updating the first draft. LH assisted with editing and writing the final draft. SMA was

REFERENCES

- 1. World Health Organization. *Global Status Report on Noncommunicable Diseases 2014*. Geneva: World Health Organization (2014).
- 2. Correll CU, Robinson DG, Schooler NR, Brunette MF, Mueser KT, Rosenheck RA, et al. Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders baseline results from the RAISE-ETP study. *JAMA Psychiatry*. (2014) 71:1350–63. doi: 10.1001/jamapsychiatry.2014.1314
- Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, Yao JK, Nimgaonkar VL, et al. Impaired plasmalogens in patients with schizophrenia. *Psychiatry Res.* (2012) 198:347–52. doi: 10.1016/j.psychres.2012.02.019
- Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res. (2008) 7:4266–77. doi: 10.1021/pr800188y
- Thakore JH. Metabolic disturbance in first-episode schizophrenia. Br J Psychiatry Suppl. (2004) 47:S76–9. doi: 10.1192/bjp.184.47.s76
- Verma SK, Subramaniam M, Liew A, Poon LY. Metabolic risk factors in drug-naive patients with first-episode psychosis. J Clin Psychiatry. (2009) 70:997–1000. doi: 10.4088/JCP.08m04508
- Petruzzelli MG, Marzulli L, Giannico OV, Furente F, Margari M, Matera E, et al. Glucose metabolism, thyroid function, and prolactin level in adolescent patients with first episode of schizophrenia and affective disorders. *Front Psychiatry*. (2020) 11:775. doi: 10.3389/fpsyt.2020.00775
- Brown S, Birtwistle J, Roe L, Thompson C. The unhealthy lifestyle of people with schizophrenia. *Psychol Med.* (1999) 29:697–701. doi: 10.1017/S0033291798008186
- Strassnig M, Brar JS, Ganguli R. Self-reported body weight perception and dieting practices in community-dwelling patients with schizophrenia. *Schizophr Res.* (2005) 75:425–32. doi: 10.1016/j.schres.2004.04.007
- 10. Carton L, Cottencin O, Lapeyre-Mestre M, Geoffroy PA, Favre J, Simon N, et al. Off-Label prescribing of antipsychotics in adults, children and elderly

involved in supervising all aspects of the review. GR and MKH contributed to editing the final draft. All authors contributed to the article and approved the submitted version.

FUNDING

SMA is supported by in part by an Academic Scholars Award from the Department of Psychiatry, University of Toronto and has grant support from the Canadian Institutes of Health Research, PSI foundation, Ontario, and the CAMH. MKH was awarded the Cardy Family Schizophrenia Research Chair. GR has received research support from the Canadian Institutes of Health Research (CIHR), University of Toronto, Research Hospital Fund–Canada Foundation for Innovation (RHF-CFI), and HLS Therapeutics Inc. KC-D has received support through scholarships from the Canadian Institutes of Health Research (Canada Graduate Scholarship Masters Award) and the Banting and Best Diabetes Center, University of Toronto. JL is supported by the Ontario Graduate Scholarship and an award from the Institute of Medical Science, University of Toronto.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyt. 2021.642403/full#supplementary-material

individuals: a systematic review of recent prescription trends. *Curr Pharm Des.* (2015) 21:3280–97. doi: 10.2174/1381612821666150619092903

- Paton C, Esop R, Young C, Taylor D. Obesity, dyslipidaemias and smoking in an inpatient population treated with antipsychotic drugs. *Acta Psychiatr Scand.* (2004) 110:299–305. doi: 10.1111/j.1600-0447.2004.00372.x
- Saari K, Jokelainen J, Veijola J, Koponen H, Jones PB, Savolainen M, et al. Serum lipids in schizophrenia and other functional psychoses: a general population northern Finland 1966 birth cohort survey. *Acta Psychiatr Scand.* (2004) 118:510–9. doi: 10.1111/j.1600-0447.2004.00358.x
- Nasrallah HA, Meyer JM, Goff DC, McEvoy JP, Davis SM, Stroup TS, et al. Low rates of treatment for hypertension, dyslipidemia and diabetes in schizophrenia: data from the CATIE schizophrenia trial sample at baseline. *ResSchizophr Res.* (2006) 86:15–22. doi: 10.1016/j.schres.2006.06.026
- Correll CU, Druss BG, Lombardo I, O'Gorman C, Harnett JP, Sanders KN, et al. Findings of a US national cardiometabolic screening program among 10,084 psychiatric outpatients. *Psychiatr Serv.* (2010) 61:892– 8. doi: 10.1176/ps.2010.61.9.892
- Falissard B, Mauri M, Shaw K, Wetterling T, Doble A, Giudicelli A, et al. The METEOR study: frequency of metabolic disorders in patients with schizophrenia. Focus on first and second generation and level of risk of antipsychotic drugs. *Int Clin Psychopharmacol.* (2011) 26:291– 302. doi: 10.1097/YIC.0b013e32834a5bf6
- De Hert M, Cohen D, Bobes J, Cetkovich-Bakmas M, Leucht S, Ndetei DM, et al. Physical illness in patients with severe mental disorders. II. Barriers to care, monitoring and treatment guidelines, plus recommendations at the system and individual level. *World Psychiatry.* (2011) 10:138–51. doi: 10.1002/j.2051-5545.2011.tb00 036.x
- Henderson DC, Copeland PM, Daley TB, Borba CP, Cather C, Nguyen DD, et al. A double-blind, placebo-controlled trial of sibutramine for olanzapine-associated weight gain. *Am J Psychiatry.* (2005) 162:954–62. doi: 10.1176/appi.ajp.162.5.954

- Jeste DV, Gladsjo JA, Lindamer LA, Lacro JP. Medical comorbidity in schizophrenia. Schizophr Bull. (1996) 22:413–30. doi: 10.1093/schbul/22.3.413
- Maayan L, Correll CU. Management of antipsychotic-related weight gain. Expert Rev Neurother. (2010) 10:1175–200 doi: 10.1586/ern.10.85
- Mizuno Y, Suzuki T, Nakagawa A, Yoshida K, Mimura M, Fleischhacker WW, et al. Pharmacological strategies to counteract antipsychoticinduced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. *Schizophr Bull.* (2014) 40:1385–403. doi: 10.1016/S0920-9964(14)70289-0
- Papanastasiou E. Interventions for the metabolic syndrome in schizophrenia: a review. *Ther Adv Endocrinol Metab.* (2012) 3:141–62. doi: 10.1177/2042018812458697
- Ojala K, Repo-Tiihonen E, Tiihonen J, Niskanen L. Statins are effective in treating dyslipidemia among psychiatric patients using second-generation antipsychotic agents. J Psychopharmacol. (2008) 22:33–8. doi: 10.1177/0269881107077815
- De Hert M, Kalnicka D, van Winkel R, Wampers M, Hanssens L, Van Eyck D, et al. Treatment with rosuvastatin for severe dyslipidemia in patients with schizophrenia and schizoaffective disorder. *J Clin Psychiatry.* (2006) 67:1889–96. doi: 10.4088/JCP.v67n1208
- 24. Vincenzi B, Borba CP, Gray DA, Copeland PM, Wang X, Fan X, et al. An exploratory study examining lipid-lowering medications in reducing fasting serum lipids in schizophrenia patients treated with atypical antipsychotics. *Ann Clin Psychiatry*. (2013) 25:141–8.
- Landry P, Dimitri E, Tessier S, Légaré N. Efficacy of lipid-lowering medications in patients treated with clozapine: a naturalistic study. J Clin Psychopharmacol. (2008) 28:348–9. doi: 10.1097/JCP.0b013e3181727592
- 26. Behdani F, Roudbaraki SN, Saberi-Karimian M, Tayefi M, Hebrani P, Akhavanrezayat A, et al. Assessment of the efficacy of omega-3 fatty acids on metabolic and inflammatory parameters in patients with schizophrenia taking clozapine and sodium valproate. *Psychiatry Res.* (2018) 261:243–47. doi: 10.1016/j.psychres.2017.12.028
- Emsley R, Niehaus DJ, Oosthuizen PP, Koen L, Ascott-Evans B, Chiliza B, et al. Safety of the omega-3 fatty acid, eicosapentaenoic acid (EPA) in psychiatric patients: results from a randomized, placebo-controlled trial. *Psychiatry Res.* (2008) 161:284–91. doi: 10.1016/j.psychres.2007.06.029
- Robinson DG, Gallego JA, John M, Hanna LA, Zhang JP, Birnbaum ML, et al. A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: results from a 16 week randomized placebo-controlled trial for participants concurrently treated with risperidone. *Schizophr Res.* (2019) 204:295–303. doi: 10.1016/j.schres.2018.09.006
- 29. Vincenzi B, Stock S, Borba CP, Cleary SM, Oppenheim CE, Petruzzi LJ, et al. A randomized placebo-controlled pilot study of pravastatin as an adjunctive therapy in schizophrenia patients: effect on inflammation, psychopathology, cognition and lipid metabolism. *Schizophr Res.* (2014) 159:395–403. doi: 10.1016/j.schres.2014.08.021
- Xu F, Fan W, Wang W, Tang W, Yang F, Zhang Y, et al. Effects of omega-3 fatty acids on metabolic syndrome in patients with schizophrenia: a 12-week randomized placebo-controlled trial. *Psychopharmacology*. (2019) 236:1273– 79. doi: 10.1007/s00213-018-5136-9
- Tse L, Procyshyn RM, Fredrikson DH, Boyda HN, Honer WG, Barr AM. Pharmacological treatment of antipsychotic-induced dyslipidemia and hypertension. *Int Clin Psychopharmacol.* (2014) 29:125–37. doi: 10.1097/YIC.000000000000014
- 32. Chen Y, Bobo WV, Watts K, Jayathilake K, Tang T, Meltzer HY. Comparative effectiveness of switching antipsychotic drug treatment to aripiprazole or ziprasidone for improving metabolic profile and atherogenic dyslipidemia: a 12-month, prospective, open-label study. J Psychopharmacol. (2012) 26:1201–10. doi: 10.1177/0269881111430748
- 33. Fan X, Borba CP, Copeland P, Hayden D, Freudenreich O, Goff DC, et al. Metabolic effects of adjunctive aripiprazole in clozapine-treated patients with schizophrenia. *Acta Psychiatr Scand.* (2013) 127:217–26. doi: 10.1111/acps.12009
- 34. Fleischhacker WW, Heikkinen ME, Olié JP, Landsberg W, Dewaele P, McQuade RD, et al. Effects of adjunctive treatment with aripiprazole on body weight and clinical efficacy in schizophrenia patients treated

with clozapine: a randomized, double-blind, placebo-controlled trial. Int J Neuropsychopharmacol. (2010) 13:1115–25. doi: 10.1017/S1461145710000490

- Newcomer JW, Campos JA, Marcus RN, Breder C, Berman RM, Kerselaers W, et al. A multicenter, randomized, double-blind study of the effects of aripiprazole in overweight subjects with schizophrenia or schizoaffective disorder switched from olanzapine. J Clin Psychiatry. (2008) 69:1046– 56. doi: 10.4088/JCP.v69n0702
- 36. Stroup TS, McEvoy JP, Ring KD, Hamer RH, LaVange LM, Swartz MS, et al. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry. (2011) 168:947–56. doi: 10.1176/appi.ajp.2011.10111609
- 37. Wani RA, Dar MA, Chandel RK, Rather YH, Haq I, Hussain A, et al. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study. *Neuropsychiatr Dis Treat.* (2015) 11:685– 93. doi: 10.2147/NDT.S80925
- Zhao J, Song X, Ai X, Gu X, Huang G, Li X, et al. Adjunctive aripiprazole treatment for risperidone-induced hyperprolactinemia: an 8week randomized, open-label, comparative clinical trial. *PLoS ONE.* (2015) 10:e0139717. doi: 10.1371/journal.pone.0139717
- Higgins JP, Green S. Chapter 7: selecting studies and collecting data. In: Higgins JP, Green S, editors. *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration.* (2011). Available online at: www.handbook.cochrane.org (accessed March 2011).
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. (2011) 343:d5928. doi: 10.1136/bmj.d5928
- Deberdt W, Lipkovich I, Heinloth AN, Liu L, Kollack-Walker S, Edwards SE, et al. Double-blind, randomized trial comparing efficacy and safety of continuing olanzapine versus switching to quetiapine in overweight or obese patients with schizophrenia or schizoaffective disorder. *Ther Clin Risk Manag.* (2008) 4:713–20. doi: 10.2147/TCRM.S3153
- 42. Baptista T, Rangel N, Fernández V, Carrizo E, El Fakih Y, Uzcátegui E, et al. Metformin as an adjunctive treatment to control body weight and metabolic dysfunction during olanzapine administration: a multicentric, double-blind, placebo-controlled trial. *Schizophr Res.* (2007) 93:99–108. doi: 10.1016/j.schres.2007.03.029
- Carrizo E, Fernández V, Connell L, Sandia I, Prieto D, Mogollón J, et al. Extended release metformin for metabolic control assistance during prolonged clozapine administration: a 14 week, double-blind, parallel group, placebo-controlled study. *Schizophr Res.* (2009) 113:19–26. doi: 10.1016/j.schres.2009.05.007
- 44. Chen CH, Huang MC, Kao CF, Lin SK, Kuo PH, Chiu CC, et al. Effects of adjunctive metformin on metabolic traits in nondiabetic clozapine-treated patients with schizophrenia and the effect of metformin discontinuation on body weight: a 24-week, randomized, double-blind, placebo-controlled study. *J Clin Psychiatry*. (2013) 74:e424–30. doi: 10.4088/JCP.12m08186
- 45. Chiu CC, Lu ML, Huang MC, Chen PY, Lin YK, Lin SK, et al. Effects of low dose metformin on metabolic traits in clozapinetreated schizophrenia patients: an exploratory twelve-week randomized, double-blind, placebo-controlled study. *PLoS ONE.* (2016) 11:e0168347. doi: 10.1371/journal.pone.0168347
- 46. Jarskog LF, Hamer RM, Catellier DJ, Stewart DD, Lavange L, Ray N, et al. Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. *Am J Psychiatry.* (2013) 170:1032–40. doi: 10.1176/appi.ajp.2013.12010127
- Wu RR, Zhang FY, Gao KM, Ou JJ, Shao P, Jin H, et al. Metformin treatment of antipsychotic-induced dyslipidemia: an analysis of two randomized, placebo-controlled trials. *Mol Psychiatry*. (2016) 21:1537– 44. doi: 10.1038/mp.2015.221
- Amrami-Weizman A, Maayan R, Gil-Ad I, Pashinian A, Fuchs C, Kotler M, et al. The effect of reboxetine co-administration with olanzapine on metabolic and endocrine profile in schizophrenia patients. *Psychopharmacology*. (2013) 230:23–7. doi: 10.1007/s00213-013-3199-1
- Assunção SSM, Ruschel SI, Rosa LCR, Campos JAO, Alves MJO, Bracco OL, et al. Weight gain management in patients with schizophrenia during

treatment with olanzapine in association with nizatidine. *Braz J Psychiatry*. (2006) 28:270–76. doi: 10.1590/S1516-44462006000400005

- Ball MP, Warren KR, Feldman S, McMahon RP, Kelly DL, Buchanan RW. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. *Clin Schizophr Relat Psychoses*. (2011) 5:17–25. doi: 10.3371/CSRP.5.1.3
- Baptista T, Uzcátegui E, Rangel N, El Fakih Y, Galeazzi T, Beaulieu S, et al. Metformin plus sibutramine for olanzapine-associated weight gain and metabolic dysfunction in schizophrenia: a 12-week double-blind, placebo-controlled pilot study. *Psychiatry Res.* (2008) 159:250–3. doi: 10.1016/j.psychres.2008.01.011
- 52. Baptista T, Rangel N, El Fakih Y, Uzcátegui E, Galeazzi T, Beaulieu S, et al. Rosiglitazone in the assistance of metabolic control during olanzapine administration in schizophrenia: a pilot double-blind, placebo-controlled 12-week trial. *Pharmacopsychiatry*. (2009) 42:14–9. doi: 10.1055/s-0028-1085438
- 53. Henderson DC, Fan X, Sharma B, Copeland PM, Borba CP, Boxill R, et al. A double-blind, placebo-controlled trial of rosiglitazone for clozapine-induced glucose metabolism impairment in patients with schizophrenia. *Acta Psychiatr Scand.* (2009) 119:457–65. doi: 10.1111/j.1600-0447.2008.01325.x
- Borba CP, Fan X, Copeland PM, Paiva A, Freudenreich O, Henderson DC. Placebo-controlled pilot study of ramelteon for adiposity and lipids in patients with schizophrenia. J Clin Psychopharmacol. (2011) 31:653– 8. doi: 10.1097/JCP.0b013e31822bb573
- 55. Fan X, Copeland P, Nawras S, Harrington A, Freudenreich O, Goff DC, et al. Adjunctive telmisartan treatment on body metabolism in clozapine or olanzapine treated patients with schizophrenia: a randomized, double blind, placebo controlled trial. *Psychopharmacology*. (2019) 236:1949–57. doi: 10.1007/s00213-019-5181-z
- Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, et al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. *BMC Psychiatry.* (2019) 19:77. doi: 10.1186/s12888-019-2059-x
- Henderson DC, Fan X, Copeland PM, Borba CP, Daley TB, Nguyen DD, et al. A double-blind, placebo-controlled trial of sibutramine for clozapine-associated weight gain. *Acta Psychiatr Scand.* (2007) 115:101–5. doi: 10.1111/j.1600-0447.2006.00855.x
- Holka-Pokorska JA, Radzio R, Jarema M, Wichniak A. The stabilizing effect of dehydroepiandrosterone on clinical parameters of metabolic syndrome in patients with schizophrenia treated with olanzapine—a randomized, doubleblind trial. *Psychiatr Pol.* (2015) 49:363–76. doi: 10.12740/PP/30180
- 59. Ishøy PL, Knop FK, Broberg BV, Bak N, Andersen UB, Jørgensen NR, et al. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial. *Diabetes Obes Metab.* (2017) 19:162–71. doi: 10.1111/dom.12795
- 60. Joffe G, Takala P, Tchoukhine E, Hakko H, Raidma M, Putkonen H, et al. Orlistat in clozapine- or olanzapine-treated patients with overweight or obesity: a 16-week randomized, double-blind, placebo-controlled trial. *J Clin Psychiatry*. (2008) 69:706–11. doi: 10.4088/JCP.v69n0503
- Krivoy A, Onn R, Vilner Y, Hochman E, Weizman S, Paz A, et al. Vitamin D supplementation in chronic schizophrenia patients treated with clozapine: a randomized, double-blind, placebo-controlled clinical trial. *EBioMedicine*. (2017) 26:138–45. doi: 10.1016/j.ebiom.2017.11.027
- 62. Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Svensson CK, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. *JAMA Psychiatry.* (2017) 74:719–28. doi: 10.1001/jamapsychiatry.2017.1220
- 63. Li J, Li X, Liu E, Copeland P, Freudenreich O, Goff DC, et al. No effect of adjunctive, repeated dose intranasal insulin treatment on body metabolism in patients with schizophrenia. *Schizophr Res.* (2013) 146:40– 5. doi: 10.1016/j.schres.2013.01.034
- Liu F, Xie L, Zhang B, Ruan Y, Zeng Y, Xu X, et al. No effect of adjunctive minocycline treatment on body metabolism in patients with schizophrenia. J Clin Psychopharmacol. (2018) 38:125–8. doi: 10.1097/JCP.000000000000841
- 65. Lu ML, Chen TT, Kuo PH, Hsu CC, Chen CH. Effects of adjunctive fluvoxamine on metabolic parameters and psychopathology in clozapine-treated patients with schizophrenia: a 12-week, randomized,

double-blind, placebo-controlled study. *Schizophr Res.* (2018) 193:126–33. doi: 10.1016/j.schres.2017.06.030

- Lu ML, Lane HY, Lin SK, Chen KP, Chang WH. Adjunctive fluvoxamine inhibits clozapine-related weight gain and metabolic disturbances. J Clin Psychiatry. (2004) 65:766–71. doi: 10.4088/JCP.v65n0607
- Lyu X, Du J, Zhan G, Wu Y, Su H, Zhu Y, et al. Naltrexone and bupropion combination treatment for smoking cessation and weight loss in patients with schizophrenia. *Front Pharmacol.* (2018) 9:181. doi: 10.3389/fphar.2018.00181
- Modabbernia A, Heidari P, Soleimani R, Sobhani A, Roshan ZA, Taslimi S, et al. Melatonin for prevention of metabolic side-effects of olanzapine in patients with first-episode schizophrenia: randomized double-blind placebo-controlled study. J Psychiatr Res. (2014) 53:133– 40. doi: 10.1016/j.jpsychires.2014.02.013
- 69. Romo-Nava F, Alvarez-Icaza González D, Fresán-Orellana A, Saracco Alvarez R, Becerra-Palars C, Moreno J, et al. Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. *Bipolar Disord.* (2014) 16:410–21. doi: 10.1111/bdi.12196
- 70. Smith RC, Jin H, Li C, Bark N, Shekhar A, Dwivedi S, et al. Effects of pioglitazone on metabolic abnormalities, psychopathology, and cognitive function in schizophrenic patients treated with antipsychotic medication: a randomized double-blind study. *Schizophr Res.* (2013) 143:18– 24. doi: 10.1016/j.schres.2012.10.023
- Sun F, Ren Z, Jiang Y, Fang X, Wang N, Jin W. A placebo-controlled study on the treatment of metabolic syndrome of qi stagnation and dampness obstruction related to atypical antipsychotics with traditional chinese medicine (TCM). *Evid Based Complement Alternat Med.* (2020) 2020:5103046. doi: 10.1155/2020/5103046
- 72. Tavakoli E, Rezaei O, Fadai R. A comparison on composition of celery, dill and green tea as three medicinal plants with placebo to treat schizophrenia patients' metabolic syndrome. *Afinidad*. (2014) 80:1118–23.
- Taveira TH, Wu WC, Tschibelu E, Borsook D, Simonson DC, Yamamoto R, et al. The effect of naltrexone on body fat mass in olanzapinetreated schizophrenic or schizoaffective patients: a randomized doubleblind placebo-controlled pilot study. J Psychopharmacol. (2014) 28:395– 400. doi: 10.1177/0269881113509904
- 74. Tek C, Ratliff J, Reutenauer E, Ganguli R, O'Malley SS. A randomized, double-blind, placebo-controlled pilot study of naltrexone to counteract antipsychotic-associated weight gain: proof of concept. J Clin Psychopharmacol. (2014) 34:608–12. doi: 10.1097/JCP.000000000000192
- 75. Zhang L, Han Y, Zhao Z, Liu X, Xu Y, Cui G, et al. Beneficial effects of konjac powder on lipid profile in schizophrenia with dyslipidemia: a randomized controlled trial. Asia Pac J Clin Nutr. (2020) 29:505– 12. doi: 10.6133/apjcn.202009_29(3).0009
- Zortea K, Franco VC, Francesconi LP, Cereser KM, Lobato MI, Belmontede-Abreu PS. Resveratrol supplementation in schizophrenia patients: a randomized clinical trial evaluating serum glucose and cardiovascular risk factors. *Nutrients*. (2016) 8:73. doi: 10.3390/nu8020073
- Newcomer JW. Metabolic considerations in the use of antipsychotic medications: a review of recent evidence. J Clin Psychiatry. (2007) 68 (Suppl. 1):20–7.
- Jiang WL, Cai DB, Yin F, Zhang L, Zhao XW, He J, et al. Adjunctive metformin for antipsychotic-induced dyslipidemia: a meta-analysis of randomized, double-blind, placebo-controlled trials. *Transl Psychiatry*. (2020) 10:117. doi: 10.1038/s41398-020-0785-y
- 79. Marston NA, Giugliano RP, Im K, Silverman MG, O'Donoghue ML, Wiviott SD, et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials. *Circulation.* (2019) 140:1308–17. doi: 10.1161/CIRCULATIONAHA.119.041998
- Briles JJ, Rosenberg DR, Brooks BA, Roberts MW, Diwadkar VA. Review of the safety of second-generation antipsychotics: are they really "atypically" safe for youth and adults? *Prim Care Companion CNS Disord.* (2012) 14:*PCC*.11r01298. doi: 10.4088/PCC.11r0 1298
- Komossa K, Rummel-Kluge C, Schmid F, Hunger H, Schwarz S, El-Sayeh HG, et al. Aripiprazole versus other atypical

antipsychotics for schizophrenia. Cochrane Database Syst Rev. (2009) 4:CD006569. doi: 10.1002/14651858.CD006569.pub3

- Mazereel V, Detraux JD, Vancampfort D, van Winkel R, De Hert M. Impact of psychotropic medication effects on obesity and the metabolic syndrome in people with serious mental illness. *Front Endocrinol.* (2020) 11:573479. doi: 10.3389/fendo.2020.573479
- Millar H. Management of physical health in schizophrenia: a stepping stone to treatment success. *Eur Neuropsychopharmacol.* (2008) 18 (Suppl. 2):S121– 8. doi: 10.1016/j.euroneuro.2008.02.002
- Berry A, Drake RJ, Yung AR. Examining healthcare professionals' beliefs and actions regarding the physical health of people with schizophrenia. BMC Health Serv Res. (2020) 20:771. doi: 10.1186/s12913-020-05654-z
- McDonell MG, Kaufman EA, Srebnik DS, Ciechanowski PS, Ries RK. Barriers to metabolic care for adults with serious mental illness: provider perspectives. *Int J Psychiatry Med.* (2011) 41:379–87. doi: 10.2190/PM.41.4.g

Conflict of Interest: MKH has received Alkermes consultation fees. GR has received advisory board support from HLS Therapeutics and consultant fees from Mitsubishi Tanabe Pharma Corporation.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kanagasundaram, Lee, Prasad, Costa-Dookhan, Hamel, Gordon, Remington, Hahn and Agarwal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.