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based on bioinformatics

Wenna Pan1#, Wenbin Huang2,3#^, Jiajun Zheng4, Zilu Meng1, Xuan Pan1

1Department of Maxillofacial Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China; 2Department 

of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China; 3Department of Hepatobiliary 

Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China; 4Department of Neurosurgery, The First Affiliated Hospital, 

Guangdong Pharmaceutical University, Guangzhou, China

Contributions: (I) Conception and design: X Pan; (II) Administrative support: W Pan, W Huang; (III) Provision of study materials or patients: W 

Pan, W Huang; (IV) Collection and assembly of data: W Pan, W Huang; (V) Data analysis and interpretation: W Pan, W Huang; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Xuan Pan, Bachelor’s degree. Department of Maxillofacial Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical 

University, 19 Nonglinxia Road, Yuexiu District, Guangzhou 510080, China. Email: gyfypanxuan@163.com.

Background: Head and neck squamous cell carcinoma (HNSCC) is currently the sixth most common 
cancer worldwide, and its prevalence and recurrence rates are gradually increasing. To study the relationship 
between HNSCC and cell pyroptosis and provide new treatment options for HNSCC, a prognostic model 
of pyroptosis-related genes (PRGs) was established to predict the prognosis of patients with HNSCC, and an 
immune correlation analysis was performed.
Methods: A total of 53 PRGs were selected. We comprehensively analyzed the role of these PRGs in 
HNSCC through multiple omics data-set integration. We then identified two different molecular subtypes 
and found that changes in multi-layer PRGs were associated with clinicopathological characteristics, 
prognosis, and tumor microenvironment cell-infiltration characteristics in patients. Next, prognostic 
models were generated for nine PRGs; that is, cytotoxic T lymphocyte antigen 4 (CTLA4), V-set and 
immunoglobulin domain containing 4 (VSIG4), heparin-binding-epidermal growth factor (HBEGF), 
aquaporin-1 (AQP1), sodium channel epithelial 1 subunit delta (SCNN1D), argininosuccinate synthase 
1 (ASS1), family with sequence similarity 83 member (FAM83), cyclin dependent kinase inhibitor 2A 
(CDKN2A), and serine protease inhibitor Kazal 6 (SPINK6). Finally, a risk-score model was constructed, and 
the Kaplan-Meier method was used to evaluate overall survival. In addition, the immune environment and 
drug sensitivity were analyzed.
Results: This study showed that pyroptosis is closely related to HNSCC. The scores generated by the risk 
markers based on the new nine PRGs were identified as independent risk factors for predicting HNSCC. 
The differentially expressed genes between the low- and high-risk groups were further found to be related 
to the tumor immune cells and pathways. In addition, the risk score was found to be significantly correlated 
with chemosensitivity.
Conclusions: Our comprehensive analysis of PRGs revealed their potential role in the tumor immune 
microenvironment, clinicopathological characteristics, and prognosis. These findings may improve our 
understanding of pyroptosis in HNSCC and may provide new ideas for evaluating prognosis and developing 

more effective immunotherapy strategies.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common cancer worldwide (1). Research 
has shown that typical risk factors for HNSCC include 
smoking and excessive drinking (2). In addition, human 
immunodeficiency virus (HIV) (3), exposure to radiation (4), 
salted food (5), and poor oral hygiene (6) have also been 
shown to increase the risk of HNSCC.

At present, most HNSCC is accompanied by cervical 
lymph node metastasis, and radical treatment is carried 
out by a combination of surgery, radiotherapy and 
chemotherapy (7). However, recurrent disease and 
metastatic tumors are generally considered incurable and 
have a poor prognosis. Thus, more effective treatments, 
such as targeted therapies, for patients with advanced 
HNSCC need to be explored. To the best of our knowledge, 
no effective biomarker has yet been found (8).

Pyroptosis is a newly discovered form of pyroptosis 
triggered by pro-inflammatory signals (9) and inflammatory 
caspases (1, 4, and 5) after the activation of classical or non-
classical inflammatory body pathways. Research has shown 
that the exogenous activation of pyroptosis can trigger 
powerful anti-tumor effects (10).

The occurrence and development of tumors depend 
on aberrations in oncogenes, tumor suppressor genes, and 
the tumor microenvironment (TME) (10). It has been 
suggested that the TME score could serve as a prognostic 
biomarker for HNSCC. In particular, naive B cells, 
regulatory T cells, and follicular T cells in patients with 
high immunosuppressive HNSCC were associated with 
improved outcomes, while neutrophils and activated mast 
cells in patients with low immunosuppressive HNSCC were 
associated with poorer outcomes (11).

In conclusion, pyroptosis is known to play an important 
role in both tumor and anti-tumor processes. However, anti-
tumor effects require a combination of multiple immune 
factors and multiple pathways. Thus, a comprehensive 
understanding of the characteristics of pyroptosis-mediated 
TME immune infiltration may provide important insights into 
the TME of HNSCC and assist in the prediction of immune 
therapy responses. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-922/rc).

Methods

Downloaded data

We use R version (x64 4.1.1) for data analysis. And we 
obtained the mutation data, RNA sequencing (RNA-seq) 
data, and corresponding clinical information of HNSCC and 
normal patients from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/repository). We also 
downloaded the clinical information of HNSCC patients from 
the Gene Expression Omnibus (GEO) database (GSE41613) 
(https://www.ncbi.nlm.nih.gov). In addition, the copy number 
data of HNSCC patients were downloaded from https://xena.
ucsc.edu/. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Comprehensive analysis of the pyroptosis-related genes 
(PRGs) in TCGA database

Genes reported to be related to pyroptosis in the literature 
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were selected (12). The RNA-seq data from TCGA 
database were used to identify the differentially expressed 
genes (DEGs) between the normal tissues and tumor tissues; 
genes with P values <0.05 were selected. The results were 
visualized, and the DEGs were visualized in a box graph. 
In addition, a protein-protein interaction (PPI) map of the 
DEGs was generated using the STRING website (https://
string-db.org/). Before any comparisons, the expression 
data in TCGA database were normalized to fragments of 
millions of bases per thousand values. “Limma” package 
was used to identify the DEGs with P values <0.05. The 
significance levels of the DEGs are indicated as follows: 
* indicates the P value is <0.05, ** indicates the P value is 
<0.01, and *** indicates the P value is <0.001. The mutation 
data related to the HNSCC patients from TCGA data were 
downloaded, and the data were visualized in a waterfall 
diagram using the “maftools” package. Based on the copy 
data, each variation frequency was statistically plotted in a 
heatmap, and a copy number circle chart was drawn after 
the start- and the end-genes of the copy data were sorted 
into files with Perl.

Classification and immunoassays of pyroptotic typing

First, the clinical data in TCGA and GEO databases were 
integrated, and data on the expression of the PRGs were 
extracted. Second, the survival of the patients with the 52 
PRGs was analyzed using R’s “survival” package, and the 
statistically significant DEGs in terms of overall survival 
(OS) between clusters A and B were selected. Third, R’s 
“rcolorbrewer” package was used to generate a prognostic 
network diagram for these genes.

To explore the relationship between the significantly 
expressed PRGs and the HNSCC subtypes, a consistent 
cluster analysis was performed on the data of all 626 
HNSCC patients integrated from TCGA and GEO 
databases. The K values with the highest intracluster 
correlation and the lowest intercluster correlation were 
selected and typed by increasing the cluster variable (k) 
from 2 to 10. We then drew the survival curve. The gene 
expressions and clinical characteristics, including tumor 
stage, gender, age, and sample typing, of all the HNSCC 
patients in TCGA and GEO databases were combined 
and heatmaps were drawn using the “pheatmap” package 
from R. The Gene Set Variation Analysis (GSVA) package 
of R was used for the GSVA and the single-sample Gene-
Set Enrichment Analysis (ssGSEA). Moreover, R’s “limma” 
package was used to conduct the principal component 

analysis (PCA) on the samples.

DEGs and functional enrichment analysis of pyroptotic 
typing

The “limma” package of R was used to analyze the 
difference between pyroptotic clusters A and B, and a 
logfcfilter <0.585 and an adjusted P value filter <0.05 were 
the filter conditions used to screen for DEG. A Venn 
diagram was drawn with the Venn diagram package. The 
Gene Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis of these DEGs were 
carried out with “clusterprofiler” package.

Construction of prognostic model and risk-score analysis

The statistically significant (P<0.05) DEGs related to 
prognosis from 1,003 DEGs were screened using the 
“survival” package of R. Prognosis-related DEGs were then 
consistently clustered. By increasing the cluster variable 
(k) from 2 to 10, the k value with the highest correlation 
was selected within the groups, and the k value with the 
lowest correlation was selected between the groups, and the 
samples were then typed, and the survival curve was drawn. 
In addition, a heatmap of the DEGs was drawn with R’s 
“pheatmap” package using the gene expression profiles and 
clinical features of all the HNSCC patients in TCGA and 
GEO databases, including tumor stage, gender, age, PRGs 
(hereinafter referred to as PRG clusters), and differential 
prognosis-related clusters of PRG clusters (hereinafter 
referred to as gene clusters). To screen out the pyroptosis-
related DEGs, which are different from each gene cluster, 
R’s “limma” package was used to obtain 37 pyroptosis-
related DEGs under the conditions of sd (expclu [, I]) 
<0.001 and P value <0.05. A box diagram of the above 37 
DEGs was visualized with “ggpubr” package, and a PPI 
diagram of DEGs was made based on the PPIs.

Among the 37 prognosis-related DEGs, nine survival-
related genes were further screened by a least absolute 
shrinkage and selection operator (LASSO)-Cox regression 
model, and the correlation coefficients of these genes were 
obtained. The risk prognostic model was constructed using 
these nine genes and the related risk coefficients. All the 
samples were divided into training and test groups with R 
on the condition that y=rt [, 2], P=0.5, list=F. Patients from 
both groups were used to construct prognostic models, and 
the risk score for each patient was obtained based on the 
formulas and correlation coefficients. The median value of 

https://string-db.org/
https://string-db.org/


Pan et al. Analysis of immuno-phenotyping and pyroptosis in HNSCC302

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):299-316 | https://dx.doi.org/10.21037/tcr-23-922

the risk score in the training group was taken as the cut-off 
value, and the patients in the two groups were divided into 
high- and low-risk groups, respectively. A Sanggi diagram 
was drawn by observing the construction process of the 
prognostic model using the “global” package of R. Time-
dependent receiver operating characteristic (ROC) curves 
were used to evaluate the predictive power of the model for 
1-, 3-, and 5-year survival, and the survival curves of the 
high- and low-risk groups were analyzed.

R’s “limma” package was used to analyze the differences 
in the risk scores between each PRG clusters and gene 
clusters, and the results were drawn in a box diagram using 
“ggpubr” package. Next, R’s “limma” package was used to 
analyze the risk of the PRGs, and the pyroptosis-related 
DEGs were identified as high and low risk (P<0.05), and a 
box diagram was drawn with the “ggpubr” package.

Construction of the nomogram combined with clinical 
factors

After screening the clinical information, an alignment 
diagram was drawn using the “RMS” package of R. Based on 
the multivariate regression analysis, gender, age group, tumor 
stage, risk value, total score, linear predictive value, the 1-, 
3-, and 5-year survival rate were comprehensively analyzed. 
The line segments with scales were drawn on the same plane 
according to the scale to mark the relationship between 
the various variables in the model. In addition, R was used 
to define the function of the risk curve, and a risk curve and 
survival state diagram were drawn for the training and test 
groups under the condition of bioriskplot = function (inputfile =  
null, project = null). Finally, a risk heatmap was plotted using 
the “heatmap” package. This model was validated using the 
GSE41613 and GSE31056 data sets, and risk scores were 
calculated using the same formula as that employed for 
TCGA and GEO (GSE41613) patient analyses.

Immune-cell and TCIA analysis

R was used to calculate the relative contents of the T cells, 
cluster of differentiation (CD)4+T cells, and B cells in each 
sample. Each content was equal to 1. All the immune cells 
were then cycled to determine the correlation between the 
risk score and the immune cells. Next, R’s “ggplot” package 
was used to draw a scatter diagram and a correlation 
heatmap of the immune cells with P values <0.05. Moreover, 
R’s “estimate” package was used to score the mechanism 
cells and immune cells of each sample, and the “ggplot2” 

package was used to draw the violin diagram.
Data from The Cancer Imaging Archive (TCIA; http://

tcia.at/) were downloaded. TCIA data were used to validate 
the performance of predicting anti-PD-1 and anti-cytotoxic 
T lymphocyte antigen 4 (CTLA4) responses. TCIA 
prediction scores were assessed using “limma” and “ggpubr” 
packages in R.

Mutation analysis of high- and low-risk groups

Using R’s “maftools” package, data on the differences in 
the mutations associated with the PRGs in the high- and 
low-risk groups were analyzed, summarized, analyzed, 
annotated, and visualized. The “include” function was then 
used to draw a mutation waterfall graph for the mutation 
data, which is displayed according to the risk grouping. 
Next, R’s “ggpubr” package was used to analyze the 
correlations between the high-risk and low-risk groups, and 
a box graph and a correlation graph were drawn.

Drug-sensitivity analysis

Using the drug information downloaded from R and taking 
a P value <0.01 as the filtering condition, the differences in 
drug sensitivity between the high-risk and low-risk groups 
were analyzed using the “prophetic” package, and a box 
diagram was drawn.

Statistical analysis

OS refers to the interval from the date of diagnosis to the 
date of death. Survival curves were plotted based on the 
Kaplan-Meier log-rank test results. The prognostic value 
for 1-, 2-, and 3-year OS was assessed using the ROC 
curves. All the statistical analyses were performed using R 
version 4.1.1. Statistical significance was set at P<0.05.

Results

Correlation analysis of the PRGs in TCGA database

The RNA-seq data of 501 HNSCC patients and 44 normal 
patients, the clinical information of 528 HNSCC patients, and 
the mutation data of 508 HNSCC patients were extracted 
from TCGA database. After the literature search (12),  
52 PRGs were identified (Table S1). A waterfall diagram of 
the genes related to cell-death mutations (plotted with R)  
is shown in Figure 1A. As Figure 1A shows, a total of  
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506 mutations were found in the sample data, of which  
380 mutations were PRGs. Of these, tumor protein P53 (TP53) 
had the highest mutation rate at 66%. This indicated that 
mutations in TP53 were closely related to the development of 
HNSCC tumors, and tumors might be caused by changes in 
the immune microenvironment of mutant TP53 (13).

In addition, the copy number data of HNSCC patients 
were downloaded and their frequency variability was plotted 
(Figure 1B). Among the 52 PRGs, TP53, gasdermin C 
(GSDMC), and gasdermin D (GSDMD) had a much higher 
frequency of copy number increase than deletion, while 
glutathione peroxidase 4 (GPX4), interleukin 18 (IL18), 
and elastase, neutrophil expressed (ELANE) had a lower 
frequency of copy number increase than deletion. Figure 1C 
shows the locations of the HNSCC alterations in the genes 
on their respective chromosomes. 

We also compared the messenger RNA (mRNA) 
expression levels between the HNSCC and normal tissues 
and found that the expression levels of most of the PRGs 
were positively correlated with the copy number variants, 
such as caspase 9 (CASP9) and absent in melanoma 2 
(AIM2). However, in some copy number variants, such 
as ELANE, mRNA expression was downregulated  
(Figure 1D). Thus, while copy number variation explained 
many observed changes in the expression of PRGs, it 
was not the only factor involved in regulating mRNA 
expression. This indicated that copy number variation was 
involved in regulating the expression of mRNA and has 
some value in the prognosis of HNSCC (14).

The PPI network was used to explore the interactions 
among the PRGs, and the results are shown in Figure 1E. 
We found that there were significant differences in the 
genetic landscape and expression levels of the PRGs between 
the HNSCC and control samples, indicating the potential 
function of PRGs in the carcinogenesis of HNSCC.

Identification of pyroptosis subtypes in HNSCC

The clinical information of 98 patients with HNSCC was 
downloaded from the GEO database. The RNA-q (RNA 
sequencing) of 643 patients with HNSCC was integrated 
with the clinical data of 626 HNSCC patients from 
TCGA and GEO databases, the expression of the PRGs 
was extracted, and the survival of the above-mentioned  
52 PRGs was analyzed with R “survival” package. Next,  
27 genes [bcl2 antagonist/Killer 1 (BAK1), caspase 3 (CASP3), 
caspase 5 (CASP5), caspase 6 (CASP6), caspase 9 (CASP9), 
charged multivesicular body protein 4B (CHMP4B), charged 

multivesicular body protein 7 (CHMP7), cytochrome C, somatic 
(CYCS), GSDMC, granzyme A (GZMA), granzyme B 
(GZMB), high mobility group box 1 (HMGB1), interleukin 1 
alpha (IL1A), interleukin 1 beta (IL1B), interleukin 6 (IL6), 
interferon regulatory factor 1 (IRF1), interferon regulatory 
factor 2 (IRF2), NLR family card domain containing 4 (NLRC4), 
NLR family pyrin domain containing 2 (NLRP2), NLR family 
pyrin domain containing 1 (NLRP1), NLR family pyrin domain 
containing 6 (NLRP6, nucleotide binding oligomerization domain 
containing 2 (NOD2), phospholipase C gamma 1 (PLCG1), 
SR-related CTD associated factor 11 (SCAF11), TIR domain 
containing adaptor protein (TIRAP), tumor necrosis factor (TNF) 
and TP53] were obtained, of which the survival rates of 
patients in PRG clusters A and B were statistically significant 
(Figure S1). The synthesis of PRG’ interactions, regulator 
linkages, and their prognostic value in patients with HNSCC 
was confirmed in the pyroptosis network (Figure 2A).

To explore the relationship between the expression of 
the 27 pyroptosis-related DEGs and HNSCC subtypes, a 
consistent cluster analysis on data of 626 HNSCC patients 
from TCGA and GEO databases. By increasing the 
clustering variable (k) from 2 to 10, it was found that when 
k=2, the intra-group correlation was the highest and the 
inter-group correlation was the lowest, which indicated that 
the 626 patients with HNSCC could be divided into two 
groups according to the 27 DEGs (Figure 2B). The survival 
score of patients with PRG cluster A was higher than that 
of those with PRG cluster B; that is, PRG cluster A was low 
risk and PRG cluster B was high risk. The heatmap shows 
the gene expression profiles and clinical features, including 
tumor stage (I, II, III, IV, or unknown), age (≤60 years 
old, >60 years old, or unknown), gender (male or female), 
database (GSE41613 or TCGA), and PRG cluster (A or B). 
Differences in the clinical features and OS between the two 
clusters were found (P<0.05), which provides preliminary 
evidence that these PRGs show significant effects on OS 
rates in HNSCC We observed that patients in Cluster A 
had a lower TNM (tumor node metastasis) stage (P<0.05) 
than those in Cluster B (Figure 2C,2D).

Characteristics of the TME in distinct subtypes

The “GSVA” package of R was used for the GSVA and 
ssGSEA. The GSVA results (Figure 3A) showed that 
tryptophan metabolism, the T-cell receptor signaling 
pathway, the B-cell receptor signaling pathway, Leishmania 
infection, the chemokine signaling pathway, primary 
immunodeficiency, natural killer cell mediated cytotoxicity, 

https://cdn.amegroups.cn/static/public/TCR-23-922-Supplementary.pdf
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Figure 1 Analysis of cell PRGs in TCGA. (A) Waterfall diagram of pyroptosis mutations; (B) loss and gain of copy number of PRGs; (C) 
locations of HNSCC alterations in the PRGs on 23 chromosomes; (D) PRGs with differences between the tumor and normal tissues in 
TCGA database, *, P<0.05; **, P<0.01; ***, P<0.001. (E) PPI diagram of pyroptosis DEGs. PRGs, pyroptosis-related genes; TCGA, The 
Cancer Genome Atlas; HBSCC, head and neck squamous cell carcinoma; PPI, protein-protein interaction; CNV, copy number variation; 
DEGs, differentially expressed genes.
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antigen processing and presentation, autoimmune thyroid 
disease, graft versus host disease, allograft rejection, type I 
diabetes, viral myocarditis, systemic lupus erythematosus, 
the intestinal immune network, asthma, cell-adhesion 
molecules,  and the hematopoietic cell  system for 
immunoglobulin A production were highly expressed 
in PRG cluster A and lowly expressed in PRG cluster 
B. Bladder cancer and nitrogen metabolism were highly 
expressed in PRG cluster B ,which suggests that bladder 
cancer and nitrogen metabolism may mutually inhibit 
HNSCC tumors. The ssGSEA results (Figure 3B) showed 
that the scores of CD56 and neutrophil PRG cluster B were 
higher than those of cluster A, and the other immune cells 

scored the opposite. Further, CD56 and neutrophils had 
tumor-promoting effects on HNSCC (15,16).

A PCA, also known as Karhunen-Loéve transformation, 
was conducted to explore and visualize the high-
dimensional data set of the above 27 pyroptotic DEGs. The 
results showed that these DEGs were well differentiated in 
PRG clusters A and B (Figure 3C), indicating that patients 
could be successfully classified by the RPG clusters.

To further explore the differences in gene function and 
pathways between the subgroups of pyroptosis typing, 
“limma” R package was used with a logfcfilter <0.585 and an 
adjusted P valued filter <0.05 as the standard for extracting 
the DEGs. The 1003 DEGs screened were drawn on a 

Figure 2 Primary typing of pyroptosis-related-genes. (A) Prognostic network of pyroptosis DEGs; (B) a total of 626 patients with HNSCC 
were divided into two clusters according to the consensus clustering matrix (k=2); (C) Kaplan-Meier overall survival curves of two clusters; (D) 
pyroptosis DEG heatmap of DEG classification, clinical features, and tumor stages. PRG, pyroptosis-related-genes; DEGs, differentially 
expressed genes; HNSCC, head and neck squamous cell carcinoma.
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Venn map. Based on these DEGs, GO and KEGG pathway 
analyses were carried out. The results showed that the 
DEGs were mainly related to the immune response, the 
chemokine-mediated signal pathway, and inflammatory cell 
chemotaxis (Figure S2A,S2B).

Construction of prognostic model and risk-score analysis

To explore the potential biological behavior of each mode 

of cell death, 355 prognosis-associated DEGs were screened 
from the 1,003 DEGs in the pyroptosis classification 
using the R “survival” package. To further verify this 
regulatory mechanism, we used consensus clustering 
algorithms to classify the patients into two genic subtypes 
based on prognostic genes; that is, gene subtypes A and B  
(Figure 4A). The Kaplan-Meier curve showed that patients 
with gene subtype B had poorer OS than those with gene 
subtype A (log-rank test, P=0.002; Figure 4B). In addition, 

Figure 3 Immunological pathway analysis of PRG clusters. (A) Pathway enrichment analysis of PRG clusters A and B; (B) single-factor 
enrichment analysis of PRG clusters A and B, *, P<0.05; **, P<0.01; ***, P<0.001; (C) PCA analysis of PRG clusters A and B. PRGs, 
pyroptosis-related genes; PCA, principal component analysis.
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the pattern of gene subtype B was associated with advanced 
TNM staging and an older age. There were significant 
differences in prognostic gene expression among the 
two gene subtypes, which is consistent with the expected 
results for the pyroptosis patterns (Figure 4C,4D). We also 
found that these genes and proteins interacted very closely  
(Figure S3A).

Construction and validation of the prognostic model

For the 37 statistically significant prognosis-related DEGs, 
the LASSO-Cox penalty regression model was used for 
dimensionality reduction. A LASSO regression graph was 
generated (Figure S3B), and Lambda was selected as the 
critical value (Figure S3C). Finally, the model was optimized 
using a stepwise regression method, and a prognostic 
model comprising nine survival-related genes [i.e., CTLA4, 
V-set and immunoglobulin domain containing 4 (VSIG4), 
heparin-binding-epidermal growth factor (HBEGF), AQP1, 
SCNN1D, argininosuccinate synthase 1 (ASS1), family 83 
(FAM83), CDKN2A, and serine protease inhibitor Kazal 
6 (SPINK6)] was constructed. The analytical concept 
scoring model was expressed as follows: risk score = 
(0.223 × CTLA4 exp.) + (0.238 × VSIG4 exp.) + (0.163 
× HBEGF exp.) + (–0.331 × AQP1 exp.) + (–0.196 × 
SCNN1D exp.) + (0.219 × ASS1 exp.) + (–0.171 × FAM83 
exp.) + (–0.086 × CDKN2A exp.) + (–0.096 × SPINK6 
exp.).

All  the samples were divided into the training 
group and the test group. The training and test group 
comprised 297 patients, respectively. There were 148 
high-risk and 149 low-risk patients in the training 
group, and 149 high-risk and 148 low-risk patients in the 
testing group. In the training group (Figure 5A), the OS 
rate of the high-risk group was low, and the difference 
between the two groups was statistically significant, 
which showed that the model could predict the survival 
prognosis of patients with HNSCC. The areas under the 
ROC curve of the 1-, 3- and 5-year survival rates were 
0.718, 0.758, and 0.780, respectively, indicating that 
the model had good predictive ability (Figure 5B). The 
survival and ROC curves of the test group also showed 
the predictability of the prognosis model (Figure 5C,5D). 
Moreover, R’s “ggalluvial” package was used to draw a 
Sanggi diagram (Figure S3D) to show the construction 
process of the prognostic model. We also analyzed all 
the samples and verified that the prognostic model had a 
good ability to predict the survival of HNSCC patients 

of HNSCC (Figure S3E,S3F).

Construction of nomogram combined with clinical factors

The “limma” package of R was used to analyze the 
differences in the risk scores of the RPG clusters and gene 
clusters. The results showed that there was no difference 
in the risk scores of patients in the RPG clusters (P>0.05) 
(Figure S4A). However, the risk scores of patients differed 
in the gene clusters (P<0.05), and the risk score of the high-
risk group was higher than that of the low-risk group. This 
indicated that a low-risk score may be closely related to 
immune-activation characteristics, while a high-risk score 
may be related to matrix-activation characteristics. More 
importantly, gene subtype B had a significantly higher risk 
score than gene subtype A.

We comprehens ive ly  ana lyzed  the  nomogram 
combined with the clinical factors (Figure 6). We identified  
14 pyroptosis-related DEGs between the high- and low-
risk groups (P<0.05) (Figure 6A). Among them, certain 
PRGs [i.e., CYCS, BAK1, CASP3, nucleotide binding 
oligomerization domain containing 1 (NOD1), protein 
kinase camp-activated catalytic subunit alpha (PRKACA), 
IL6, IL1A, glutathione peroxidase 4 (GPX4), and HMGB1] 
were upregulated in the high-risk group and downregulated 
in the low-risk group, and thus classified as high-risk PRGs. 
While other PRGs (i.e., IL18, GSDMC, NOD2, NLRP1, 
and PLCG1) were downregulated in the high-risk group 
and upregulated in the low-risk group, and thus classified as 
low-risk PRGs.

A multivariate Cox regression analysis was conducted to 
identify the key clinical factors, such as gender, age group, 
tumor stage, risk value, total score, linear predictive value, 
and the 1-, 3-, and 5-year OS rates, and the “RMS” R 
package was used to construct the nomogram (Figure 6B),  
and generate the 1-, 3-, and 5-year calibration curves  
(Figure S4B). As Figure S4B shows, the three curves are 
close to the grey line, indicating that the model is highly 
accurate at predicting the 1-, 3-, and 5-year survival rates of 
patients. All the above results further validated the accuracy 
of our model in assessing the prognosis of HNSCC 
patients.

Finally, the clinical and survival characteristics of the 
prognostic model were analyzed (Figure 6). The risk curve 
and survival state diagram of the test and training groups 
(Figure 6D,6E,6G,6H) were drawn. The results indicated 
that the prognostic model could predict the prognosis 
of HNSCC patients well, and similar results were found 
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Figure 4 Second typing of cell pyroptosis genes (gene clusters). (A) A total of 626 patients with HNSCC were divided into two clusters 
according to the consensus clustering matrix (k=2); (B) Kaplan-Meier overall survival curves for two clusters; (C) Box plot of prognostic 
pyroptosis-related DEGs, *, P<0.05; **, P<0.01; ***, P<0.001; (D) Heatmap of DEGs related to prognosis. PRGs, pyroptosis-related-genes; 
HNSCC, head and neck squamous cell carcinoma; DEGs, differentially expressed genes.
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Figure 5 Validation of prognostic model. (A) Survival curve of the training group; (B) ROC curve of the training group; (C) survival curve 
of the test group; (D) ROC curve of the test group. AUC, area under curve; ROC, receiver operating characteristic.

for the training' group. In addition, the risk heatmap of 
the survival-related genes in the test and training group 
(Figure 6C,6F) showed that low-risk genes, such as CTLA4, 
FAM83E ,  AQP1 ,  SCNND ,  CDKN2A ,  and SPINK6 , 
decreased as risk increased, while high-risk genes, such as 
VSIG4, HBEGF and ASS1 increased as risk decreased.

External risk signature validation

To further validate the risk signatures developed above, 
data pertaining to HNSCC patients from the GSE41613 
and GSE31056 data sets were used. These patients were 

separated into high- and low-risk groups based on the 
median risk scores derived from TCGA and GEO merged 
data. We validated the prognostic model using the external 
data (Figure S5). Significant differences in OS were 
found between the low- and high-risk HNSCC groups  
(Figure S5D). The ROC curve analyses further confirmed 
the predictive accuracy of the model, with respective 
AUCs for 1-, 2-, and 3-year OS of 0.797, 0.818, and 
0.811, respectively (Figure S5C). The distribution of the 
risk scores and survival status between the high- and low-
risk groups is shown in Figure S5A,S5B. The results of 
the validation set demonstrate the ability of our model to 
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Figure 6 Construction and analysis of column chart. (A) Pyroptosis DEGs in the risk groups; (B) nomograph focusing on factors; (C) 
risk heatmap of the survival-related genes in the test group; (D) risk curve of the survival-related genes in the test group; (E) survival state 
diagram of the survival-related genes in the test group; (F) risk heatmap of the survival-related genes in the training group; (G) risk curve of 
the survival-related genes in the training group; (H) survival state diagram of the survival-related genes in the training group. *, P<0.05; **, 
P<0.01; ***, P<0.001. DEGs, differentially expressed genes.
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predict prognosis’ in HNSCC.

Immune-cell and TCIA analysis

To further analyze the immune cells of the prognosis 
model, we analyzed the correlation between the survival-
related genes and immune cells (Figure 7A). Figure S6A 
shows a graph displaying the correlations between the 
risk score of the patients and immune cells. Notably, B 
immature cells, dendritic cells, resting mast cells, plasma 
cells, CD4 memory T cells, CD4+T cells, auxiliary follicular 
T cells, and regulatory T cells were negatively correlated 
with the risk score of the patients. Conversely, M0 and M2 
macrophages, activated mast cells, and quiescent natural 
killers cells were positively correlated with the risk score of 
the patients. 

In addition, we analyzed the TME of each sample, 
including the stromal score, immune score, and Estimation 
of STromal and Immune cells in MAlignant Tumor tissues 
using Expression (ESTIMATE) score (Figure S6B). 
However, no differences in the stromal, immunological, 
and ESTIMATE scores were found between the high- and 
low-risk groups. The association between the risk score and 
immune cells suggests that there is a relationship between 

each immune cell. However, the results showed that the 
risk score was not correlated with the tumor immune 
microenvironment, which may be caused by the interaction 
between various immune pathways and cells.

We next investigated whether pyroptosis-related genetic 
signatures may contribute to the clinical benefit of immune 
checkpoint inhibitor therapy. TCIA analysis showed that 
the immune targets of both PD-1 or CTLA4 were effective 
in the treatment of HNSCC (Figure 7B-7E). These results 
suggest that better treatment options may be available for 
patients with HNSCC, such as single drug therapies and 
combination therapies (17).

Mutation analysis of high- and low-risk groups

The gene set used comprised all the PRGs (Table S1). 
There was a mutation difference between the high- and 
low-risk groups, such that the mutation rate of the low-
risk group was lower than that of the high-risk group  
(Figure 8A-8C). In addition, the correlation between the 
tumor mutation load and risk score was analyzed, and a 
positive correlation was found between the risk score and 
tumor mutation load (Figure 8D). These results suggest that 
tumor mutations have a negative effect on prognosis.

Figure 7 Immunotherapy analysis of prognostic models. (A) Correlation analysis between survival-related genes and immune cells; (B) 
immunotherapy analysis in CTLA4 immune site negative and PD-1 negative; (C) immunotherapy analysis in CTLA4 immune site negative 
and PD-1 positive; (D) immunotherapy analysis in CTLA4 immune site positive and PD-1 negative; (E) immunotherapy analysis in CTLA4 
immune site positive and PD-1 positive. CTLA4, cytotoxic T lymphocyte antigen 4; PD-1, programmed cell death 1.
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Next, we selected some chemotherapy drugs to 
evaluate the sensitivity of patients in the low- and high-
risk groups to these drugs. Interestingly, we found that the 
semi-inhibitory concentrations of cisplatin, cytarabine, 
docetaxel, and sorafenib were lower in the high-risk group, 
while the semi-inhibitory concentrations of chemotherapy 
drugs, such as gemcitabine and gefitinib, were significantly 
lower in the low-risk group. In summary, these results 
indicate that the PRGs were associated with drug 

sensitivity (Figure S7A-S7Z).

Discussion

In this study, we analyzed the role of PRGs in HNSCC 
from a multivariate genomics perspective and constructed 
a prognostic model of HNSCC with multiple levels 
and structures. Finally, a prognostic model comprising 
nine survival-related genes (i.e., CTLA4, VSIG4, HB-

Figure 8 Mutation analysis of prognostic models (A) Waterfall diagram of PRG mutation in the low-risk group; (B) waterfall diagram of 
PRG mutation in the high-risk group; (C) differential analysis of the tumor mutation load; (D) correlation analysis between the tumor 
mutation load and risk score. TMB, tumor mutation burden; PRG, pyroptosis-related gene.
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EGF, AQP1, SCNN1D, ASS1, FAM83, CDKN2A, and 
SPINK6) was constructed using a univariate Cox regression 
analysis. We verified the feasibility of the model in several 
respects. In the model of the pyroptotic DEGs, CTLA4, 
FAM83E, AQP1, SCNN1D, CDKN2A, and SPINK6 were 
low-risk genes, while VSIG4, HBEGF, and ASS1 were 
high-risk genes. In our study, the correlation between 
prognostic models and immune cells and pathways was well 
demonstrated, but there was no difference in the analysis of 
TME. This may be related to the PPIs in the TME and the 
influence of multiple pathways, such that the ESTIMATE 
score and the immune environment had little effect on 
HNSCC.

Two types of typing were performed in this study: (I) the 
typing of PRG clusters; and (II) the typing of gene clusters. 
We analyzed the differences in the risk scores between the 
two types of models. The risk score was found to be an 
independent factor in the gene clusters, but the risk score 
was not found to be an independent factor in the PRG 
clusters. It may be that the risk score is not representative 
due to the small number of DEGs associated with 
pyroptosis. 

The study showed that the occurrence and development 
of tumors depend on the mutations of carcinogenic and 
suppressor oncogenes, as well as the TME (10). However, 
in HNSCC, the effect of pyroptosis on the TME and 
prognosis is unclear. This study produced a prognostic 
model with nine PRGs (i.e., CTLA4, VSIG4, HBEGF, 
AQP1, SCNN1D, ASS1, FAM83, CDKN2A, and SPINK6), 
and found that it could predict the prognosis of HNSCC 
patients.

Protein CTLA4 is an important negative regulator of 
the immune response (18). It can cause the immune system 
to fail to kill tumor cells (19). In recent studies (20), some 
FAM83 members with sequence similarities have been 
shown to be significantly upregulated in a variety of human 
cancer types. One study showed that FAM83E regulates 
tumor progression (21). Further, the high expression of 
FAM83E has been shown to be related to better survival 
results. The AQP1 gene is located on chromosome 7p14 
and encodes highly conserved transmembrane aquaporin 
to promote transcellular water transport. AQP1 plays 
a carcinogenic role in many types of solid cancer (22). 
In this prognostic model, AQP1 seemed to be a tumor 
suppressor gene that inhibited the growth of HNSCC; 
however, its mechanism in pyroptosis needs to be studied 
further. SCNN1D is the member of the ENaC/degenerin 
superfamily (23), which is widely expressed in non-

epithelial cells and epithelial cells (24). In many tumors, 
SCNN1D is lowly expressed (25), which is consistent with 
our research conclusion. The CDKN2A gene encodes 
the proteins P14 adp ribosylation factor (ARF) and p16 
INK4a, also known as p16 (26). In HNSCC, CDKN2A is 
mainly an inhibitor gene (27). A previous study showed that 
CDKN2A is significantly correlated with the level of pro-
inflammatory factors in HNSCC samples and can be used 
as an independent prognostic factor (28). It may be related 
to the inflammatory response caused by pyroptosis (29). 
Human SPINK6 is a selective inhibitor of kallikrein-related 
peptidase in skin. SPINK6 has been shown to be associated 
with skin cancer and liver cancer cells (30), and to promote 
the metastasis of nasopharyngeal carcinoma through a 
secretory mechanism (31). Interestingly, we found that 
SPINK6 is a low-risk pyroptosis gene of HNSCC; however, 
the relationship between pyroptosis and SPINK6 needs to 
be further explored. 

VSIG4  i s  speci f ica l ly  expressed in  monocytes , 
macrophages, and dendritic cells (32). Recent studies have 
confirmed that VSIG4 is overexpressed in a variety of cancer 
cells and plays a role in cellular immune function and in 
promoting tumor progression as a carcinogenic oncogene 
(33,34). It is well known that NLRP3 inflammasome 
promotes  inf lammation or induces inf lammatory 
pyroptosis (35). In this study, the prognosis of VSIG4 was 
positively correlated with macrophages. Consistent with 
the results of the present study, another study showed that 
VSIG4 initiates inhibitory signals to specifically weaken 
the expression of NLRP3 in macrophages and affects 
pyroptosis (36). We speculated that VSIG4 negatively 
regulates the expression of NLRP3 by upregulating the 
immune response of macrophages, affects pyroptosis, 
and thus promotes the occurrence of tumors. HBEGF 
is expressed under inflammatory and pathological 
conditions (37). Some studies have shown that fibroblasts 
from RA (rheumatoid arthritis) (38) and colon tumors (39) 
promote the occurrence of inflammation with macrophages. 
Our study showed that HBEGF, as a high-risk gene, is 
more meaningful for mast cells. ASS1 is a urea cycle 
enzyme that is essential in the conversion of nitrogen 
from ammonia and aspartic acid to urea (40). ASS1 has 
been shown to play an important role in inhibiting tumor 
cell proliferation, tumor cell migration, tumor invasion, 
and tumor angiogenesis (41). However, there may be 
significant differences in the expression levels of ASS1 in 
different tumor types (42-45). ASS1 was a high-risk gene 
for prognosis in HNSCC, and the mechanism is likely 
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to be closely related to cell metabolism and the immune 
response (46).

Conclusions

Our comprehensive analysis of PRGs revealed that 
their extensive regulatory mechanisms affect the tumor 
immune interstitial microenvironment, clinicopathological 
characteristics, and patient prognosis. More importantly, 
the immune-related mechanisms underlying pyroptosis may 
be related to PD-1/PD-L1- or CTLA. Our study identified 
some novel genetic markers for predicting the prognosis 
of patients with HNSCC and provides an important 
foundation for future studies on the relationship between 
PRGs and immunity in HNSCC. However, due to the 
limitations of the database samples, we were unable to 
obtain the patients’ treatment plans and related information, 
and were thus unable to equilibrate the various samples. In 
addition, due to the lack of data, it was difficult to confirm 
whether these regulatory factors also play a corresponding 
role in the pyrolytic pathway of HNSCC. This question 
deserves further investigation. Further in vitro and in vivo 
experiments should be performed in the laboratory to test 
our hypothesis.

Acknowledgments

We sincerely acknowledge TCGA and GEO databases 
for providing their platforms and the contributors for 
uploading their meaningful data sets.
Funding: The study was funded by the Science and 
Technology Research Program of Guangdong Province 
(No. 2016A020213001), the Science and Technology 
Research Program of Guangzhou City (No. 20180310064), 
and the National Natural Science Foundation of China (No. 
81472451).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-922/rc

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-922/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.

com/article/view/10.21037/tcr-23-922/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Global Burden of Disease Cancer Collaboration; 
Fitzmaurice C, Allen C, et al. Global, Regional, and 
National Cancer Incidence, Mortality, Years of Life Lost, 
Years Lived With Disability, and Disability-Adjusted Life-
years for 32 Cancer Groups, 1990 to 2015: A Systematic 
Analysis for the Global Burden of Disease Study. JAMA 
Oncol 2017;3:524-48.

2. Leemans CR, Snijders PJF, Brakenhoff RH. The 
molecular landscape of head and neck cancer. Nat Rev 
Cancer 2018;18:269-82.

3. Haase K, Piwonski I, Stromberger C, et al. Incidence 
and survival of HNSCC patients living with HIV 
compared with HIV-negative HNSCC patients. Eur Arch 
Otorhinolaryngol 2021;278:3941-53.

4. Preston-Martin S, Thomas DC, White SC, et al. Prior 
exposure to medical and dental x-rays related to tumors of 
the parotid gland. J Natl Cancer Inst 1988;80:943-9.

5. Yu MC, Yuan JM. Epidemiology of nasopharyngeal 
carcinoma. Semin Cancer Biol 2002;12:421-9.

6. Guha N, Boffetta P, Wünsch Filho V, et al. Oral health 
and risk of squamous cell carcinoma of the head and neck 
and esophagus: results of two multicentric case-control 
studies. Am J Epidemiol 2007;166:1159-73.

7. Ang KK, Chen A, Curran WJ Jr, et al. Head and neck 
carcinoma in the United States: first comprehensive report 
of the Longitudinal Oncology Registry of Head and Neck 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-23-922/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Cancer Research, Vol 13, No 1 January 2024 315

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):299-316 | https://dx.doi.org/10.21037/tcr-23-922

Carcinoma (LORHAN). Cancer 2012;118:5783-92.
8. Hammerman PS, Hayes DN, Grandis JR. Therapeutic 

insights from genomic studies of head and neck squamous 
cell carcinomas. Cancer Discov 2015;5:239-44.

9. Shen Y, Li X, Wang D, et al. Novel prognostic model 
established for patients with head and neck squamous cell 
carcinoma based on pyroptosis-related genes. Transl Oncol 
2021;14:101233.

10. Feng X, Luo Q, Zhang H, et al. The role of NLRP3 
inflammasome in 5-fluorouracil resistance of oral 
squamous cell carcinoma. J Exp Clin Cancer Res 
2017;36:81.

11. Zhang J, Zhong X, Jiang H, et al. Comprehensive 
characterization of the tumor microenvironment for 
assessing immunotherapy outcome in patients with head 
and neck squamous cell carcinoma. Aging (Albany NY) 
2020;12:22509-26.

12. Song W, Ren J, Xiang R, et al. Identification of pyroptosis-
related subtypes, the development of a prognosis model, 
and characterization of tumor microenvironment 
infiltration in colorectal cancer. Oncoimmunology 
2021;10:1987636.

13. Kong W, Han Y, Gu H, et al. TP53 mutation-associated 
immune infiltration and a novel risk score model in 
HNSCC. Biochem Biophys Rep 2022;32:101359.

14. Chera BS, Kumar S, Beaty BT, et al. Rapid Clearance 
Profile of Plasma Circulating Tumor HPV Type 16 DNA 
during Chemoradiotherapy Correlates with Disease 
Control in HPV-Associated Oropharyngeal Cancer. Clin 
Cancer Res 2019;25:4682-90.

15. Mandal R, Şenbabaoğlu Y, Desrichard A, et al. 
The head and neck cancer immune landscape and 
its immunotherapeutic implications. JCI Insight 
2016;1:e89829.

16. Hu S, Lu H, Xie W, et al. TDO2+ myofibroblasts mediate 
immune suppression in malignant transformation of 
squamous cell carcinoma. J Clin Invest 2022;132:e157649.

17. Mei Z, Huang J, Qiao B, et al. Immune checkpoint 
pathways in immunotherapy for head and neck squamous 
cell carcinoma. Int J Oral Sci 2020;12:16.

18. Schubert D, Bode C, Kenefeck R, et al. Autosomal 
dominant immune dysregulation syndrome in humans 
with CTLA4 mutations. Nat Med 2014;20:1410-6.

19. Guan X, Wang Y, Sun Y, et al. CTLA4-Mediated 
Immunosuppression in Glioblastoma is Associated 
with the Infiltration of Macrophages in the Tumor 
Microenvironment. J Inflamm Res 2021;14:7315-29.

20. Ma Z, Zhou Z, Zhuang H, et al. Identification of 

Prognostic and Therapeutic Biomarkers among FAM83 
Family Members for Pancreatic Ductal Adenocarcinoma. 
Dis Markers 2021;2021:6682697.

21. Cipriano R, Miskimen KL, Bryson BL, et al. Conserved 
oncogenic behavior of the FAM83 family regulates 
MAPK signaling in human cancer. Mol Cancer Res 
2014;12:1156-65.

22. Huo Z, Lomora M, Kym U, et al. AQP1 Is Up-
Regulated by Hypoxia and Leads to Increased Cell Water 
Permeability, Motility, and Migration in Neuroblastoma. 
Front Cell Dev Biol 2021;9:605272.

23. Hanukoglu I, Hanukoglu A. Epithelial sodium channel 
(ENaC) family: Phylogeny, structure-function, tissue 
distribution, and associated inherited diseases. Gene 
2016;579:95-132.

24. Zhao R, Ali G, Chang J, et al. Proliferative regulation 
of alveolar epithelial type 2 progenitor cells by human 
Scnn1d gene. Theranostics 2019;9:8155-70.

25. Ji HL, Zhao RZ, Chen ZX, et al. δ ENaC: a novel 
divergent amiloride-inhibitable sodium channel. Am J 
Physiol Lung Cell Mol Physiol 2012;303:L1013-26.

26. Cottone L, Eden N, Usher I, et al. Frequent alterations in 
p16/CDKN2A identified by immunohistochemistry and 
FISH in chordoma. J Pathol Clin Res 2020;6:113-23.

27. Comprehensive genomic characterization of head and neck 
squamous cell carcinomas. Nature 2015;517:576-82.

28. Yang J, Jiang Q, Liu L, et al. Identification of prognostic 
aging-related genes associated with immunosuppression 
and inflammation in head and neck squamous cell 
carcinoma. Aging (Albany NY) 2020;12:25778-804.

29. Hsu SK, Li CY, Lin IL, et al. Inflammation-related 
pyroptosis, a novel programmed cell death pathway, and 
its crosstalk with immune therapy in cancer treatment. 
Theranostics 2021;11:8813-35.

30. Ge K, Huang J, Wang W, et al. Serine protease 
inhibitor kazal-type 6 inhibits tumorigenesis of human 
hepatocellular carcinoma cells via its extracellular action. 
Oncotarget 2017;8:5965-75.

31. Zheng LS, Yang JP, Cao Y, et al. SPINK6 Promotes 
Metastasis of Nasopharyngeal Carcinoma via Binding and 
Activation of Epithelial Growth Factor Receptor. Cancer 
Res 2017;77:579-89.

32. Kim KH, Choi BK, Kim YH, et al. Extracellular 
stimulation of VSIG4/complement receptor Ig suppresses 
intracellular bacterial infection by inducing autophagy. 
Autophagy 2016;12:1647-59.

33. Liao Y, Guo S, Chen Y, et al. VSIG4 expression on 
macrophages facilitates lung cancer development. Lab 



Pan et al. Analysis of immuno-phenotyping and pyroptosis in HNSCC316

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):299-316 | https://dx.doi.org/10.21037/tcr-23-922

Invest 2014;94:706-15.
34. Byun JM, Jeong DH, Choi IH, et al. The Significance 

of VSIG4 Expression in Ovarian Cancer. Int J Gynecol 
Cancer 2017;27:872-8.

35. Miao EA, Rajan JV, Aderem A. Caspase-1-induced 
pyroptotic cell death. Immunol Rev 2011;243:206-14.

36. Huang X, Feng Z, Jiang Y, et al. VSIG4 mediates 
transcriptional inhibition of Nlrp3 and Il-1β in 
macrophages. Sci Adv 2019;5:eaau7426.

37. Bollée G, Flamant M, Schordan S, et al. Epidermal growth 
factor receptor promotes glomerular injury and renal 
failure in rapidly progressive crescentic glomerulonephritis. 
Nat Med 2011;17:1242-50.

38. Kuo D, Ding J, Cohn IS, et al. HBEGF(+) macrophages 
in rheumatoid arthritis induce fibroblast invasiveness. Sci 
Transl Med 2019;11:eaau8587.

39. He Z, Chen L, Chen G, et al. Interleukin 1 beta and 
Matrix Metallopeptidase 3 Contribute to Development 
of Epidermal Growth Factor Receptor-Dependent 
Serrated Polyps in Mouse Cecum. Gastroenterology 
2019;157:1572-1583.e8.

40. Rabinovich S, Adler L, Yizhak K, et al. Diversion of 
aspartate in ASS1-deficient tumours fosters de novo 
pyrimidine synthesis. Nature 2015;527:379-83.

41. Huang HY, Wu WR, Wang YH, et al. ASS1 as a novel 
tumor suppressor gene in myxofibrosarcomas: aberrant 
loss via epigenetic DNA methylation confers aggressive 
phenotypes, negative prognostic impact, and therapeutic 
relevance. Clin Cancer Res 2013;19:2861-72.

42. Delage B, Fennell DA, Nicholson L, et al. Arginine 
deprivation and argininosuccinate synthetase expression in 
the treatment of cancer. Int J Cancer 2010;126:2762-72.

43. Yang TS, Lu SN, Chao Y, et al. A randomised phase II 
study of pegylated arginine deiminase (ADI-PEG 20) in 
Asian advanced hepatocellular carcinoma patients. Br J 
Cancer 2010;103:954-60.

44. Szlosarek PW, Klabatsa A, Pallaska A, et al. In vivo loss of 
expression of argininosuccinate synthetase in malignant 
pleural mesothelioma is a biomarker for susceptibility to 
arginine depletion. Clin Cancer Res 2006;12:7126-31.

45. Kobayashi E, Masuda M, Nakayama R, et al. Reduced 
argininosuccinate synthetase is a predictive biomarker for 
the development of pulmonary metastasis in patients with 
osteosarcoma. Mol Cancer Ther 2010;9:535-44.

46. Mao Y, Shi D, Li G, et al. Citrulline depletion by ASS1 is 
required for proinflammatory macrophage activation and 
immune responses. Mol Cell 2022;82:527-541.e7.

Cite this article as: Pan W, Huang W, Zheng J, Meng Z, 
Pan X. Construction of a prognosis model of head and neck 
squamous cell carcinoma pyroptosis and an analysis of immuno-
phenotyping based on bioinformatics. Transl Cancer Res 
2024;13(1):299-316. doi: 10.21037/tcr-23-922


