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Abstract: Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to
long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white
matter damage but may underestimate focal abnormalities. We investigated the distribution of post-
injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and
12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls
(HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was
performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic
reconstruction and analyzed for global and regional changes with a controlled false discovery rate.
TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the
regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu
of the corpus callosum displayed focal changes in both groups compared with HC but with different
trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05).
While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC,
abnormalities to the fronto-thalamic network were observed in both groups using regional analysis
of the white matter pathways. These results may be valuable to tailor individualized rehabilitative
approaches for post-injury cognitive impairment in both TBI and rSRC patients.

Keywords: traumatic brain injury; sport related concussion; memory impairment; diffusion tensor
imaging; white matter lesions; rehabilitative approaches
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1. Introduction

Traumatic brain injury (TBI) affects more than 27 million people worldwide every year,
often resulting in cognitive and functional deficits, the impairment of daily life functioning,
and reduced quality of life [1–5].

Sport-related concussion (SRC), defined as a mild TBI, affects millions of athletes
each year [6,7]. While most SRC-induced symptoms resolve within 2–3 weeks, headache,
dizziness, confusion, and nausea may be long-lasting. Athletes with persisting symptoms
beyond the first three months post-injury are often called the “miserable minority” re-
flecting a discrepancy into the debate concerning the psychological vs. organic origins of
symptoms [8]. In fact, the treatment of these persisting cognitive deficits is challenging, in
part since gross structural abnormalities on routine neuroimaging [e.g., structural magnetic
resonance imaging (MRI), and computed tomography (CT)] are rare in repeated SRC (rSRC)
compared with moderate and severe TBI [2,3,5,8]. Some of these athletes without trau-
matic damages visible at the routine morphological MRI sequences are not systematically
considered for rehabilitation programs, and the possible long-term consequences of the
brain injury are often neglected without a structural visible injury [9,10]. For these athletes,
a diagnosis of a mild or major neurocognitive disorder caused by brain injury is com-
monly used [11], mostly based on the impaired cognitive function only [11,12]. Memory
impairment has also often been linked to microstructural damage in the brain, and it affects
patients both acutely and chronically after TBI [2,8,13,14].

The use of advanced MRI techniques, such as diffusion tensor imaging (DTI), can, in
higher detail, reveal the presence of white matter injury that may cause injury-induced
symptoms following TBI and SRC [8,15–17]. DTI can both qualitatively and quantitatively
demonstrate pathology not detected by other modalities and is, therefore, an important
tool not only in the research setting but in the clinical setting as well [18]. Altered DTI-
based parameters in the subacute post-injury stage suggests different levels of white matter
damage [19,20]. Robust evidence has shown a vulnerability of white matter bundles near
the midline, such as the fornix and cingulum, to TBI-induced shearing forces [21–23]. In-
vestigations of DTI-based parameters for specific regions such as the corpus callosum (CC),
internal capsule (IC), and corona radiata (CR), indicates that baseline fractional anisotropy
(FA) and mean diffusivity (MD) were associated with executive function and reaction time,
respectively [24–26]. Other cognitive domains, including memory, may also depend on re-
gional white matter integrity rather than generalized white matter injury [2,4,8,13,18,27–30].
Since there may be different subtypes of SRC, requiring specific rehabilitative therapies,
refined white matter analysis is needed to understand the anatomical basis of the persisting
symptoms [31].

Inter-subject differences in the mechanism of injury, as well as other biomechanical
factors such as head and body composition, make it highly probable that, despite some
commonalities, many areas of injury will differ among both patients and athletes [18,32].
The general interpretation of DTI-based-parameter alteration may therefore suffer these
differences at group level, especially if the mean values of FA or MD are analyzed [18]. The
further application of individualized assessments of regional brain injury are needed to
realize the full potential of DTI as a research and clinical tool. These reasons may explain
why, despite the general evidence, DTI is still not integrated in the clinical care of patients
with TBI or SRC [9].

This work has two aims: first, to assess whether fiber tract analysis (local/regional)
reveals alterations in DTI-based parameters not seen on whole tract analysis (global)
nor morphological MRI in patients with TBI or rSRC athletes; second, to assess possible
connections between local white matter alterations and long-term cognitive status in
both groups.
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2. Materials and Methods
2.1. Study Cohorts

Six patients were enrolled after a moderate (defined as Glasgow coma scale (GCS)
score 9–13, loss of consciousness ≥5 min, and/or focal neurologic deficits [33]) to severe
(GCS score ≤ 8) TBI and treated at the neuro-critical care unit ≥6 months at the department
of neuro-surgery, Uppsala University hospital. Athletes of both sexes with rSRC and
≥6 months duration of post-concussion symptoms, according to the 4th edition of the
Diagnostic and Statistical Manual of Mental Disorders, were recruited [34,35]. Ten age-
matched HCs with no previous TBI, neurological condition, or current or previous active
participation in any contact sport were recruited as a control group. The Regional Research
Ethics Committee in Uppsala granted permission for the study (Dnr 2015/012). Written
informed consent was obtained from all included patients/athletes and HCs. All research
was conducted in accordance with the ethical standards given in the Helsinki Declaration
of 1975, as revised in 2008.

2.2. Image Acquisition and Data Processing

High-resolution 3D-T1-weighted- (T1w), 3D-T2 fluid attenuated inversion recovery
(T2-FLAIR), and susceptibility-weighted angiography (SWAN) images were acquired for
morphological evaluation.

DTI was acquired with a single-shot echo-planar imaging sequence using the following imag-
ing parameters: repetition time = 14,384 ms, echo-time = 78.6 ms, voxel size = 2 × 2 × 2 mm3,
73 slices, b-value = 1000 s/mm2 with 32-directions on a 3.0 Tesla PET/MR-system (Signa
PET/MR, GE Healthcare, Milwaukee, Waukesha, WI, USA). Motion and eddy current
correction of acquired DTI data was performed in eddy, FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki; last accessed 11 October 2021) [36]. The diffusion data were reconstructed in
MNI space using q-space diffeomorphic reconstruction (QSDR) in DSI studio with a dif-
fusion sampling length ratio of 1.25. The output resolution was 2 mm. Briefly, QSDR is
a white-matter-based nonlinear registration approach that directly reconstructs diffusion
information in MNI space. As such, parametric images of FA, AD, and RD were calculated
in MNI space. Detail information on QSDR can be found in Yeh et al. [37]. The QSDR
function also provides a R2-value between subject and MNI diffusion data. A value greater
than 0.6 suggests a good registration result. A value greater than 0.6 was reported for all
subjects. Major projection, commissural, and association white matter pathways (37 tracts
in total) have previously been reconstructed within the HCP-1021 template following the
anatomical criteria used for the Brain-Grid DTT reference atlas [38], which were applied to
each subject.

Along-tract mapping was performed in DSI Studio. All included white matter path-
ways were stretched to correspond to straight lines. FA, AD, and RD were sampled
along these lines and regressed using a kernel density estimator with default regression
bandwidth at 1.0. Each point of these lines corresponds to one coordinate in the tract
file generating indices for a given pathway. These were arranged from start to end with
a corresponding DTI-based parameter for each given index for each subject.

2.3. Neuropsychology

The repeatable battery for the assessment of neuropsychological status (RBANS) [39],
an objective test to measure neuro-cognitive functions including attention, verbal functions,
visuospatial, immediate, and delayed memory, was performed by a trained neuropsycholo-
gist at the time of MRI investigation. Here, RBANS was used to estimate the neuro-cognitive
burden in TBI and rSRC.

2.4. Data and Statistical Analysis
2.4.1. General White Matter Changes/Damages

The Shapiro–Wilks test was performed on the underlaying data for each analysis to test
for normality; parametric or non-parametric statistical methods were chosen accordingly.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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A Kruskal–Wallis test with Dunn’s test to correct for multiple comparisons was used to test
whole white matter pathway DTI-bases parameter differences between TBI, rSRC, and HCs
for all white matter pathways, respectively. Furthermore, the median and interquartile
range was calculated for TBI, rSRC, and HC and for all white matter pathways and DTI-
based parameters, respectively. General changes were defined as a whole white matter
pathway with significantly decreased total average FA and significantly increased total
average AD or RD [19,20]. For all performed statistical analysis, derived p-values < 0.05
were considered significant. Statistical analysis and graphic plots were created using
GraphPad Prism 9 (v 9.3.1., GraphPad Software, La Jolla, CA, USA).

2.4.2. Focal White Matter Changes/Damages

Focal along-tract analysis was performed using multiple unpaired t-tests comparing
each white matter pathway index in TBI vs. HC and rSRC vs. HC for all DTI-based
parameters and white matter pathways, respectively. The false discovery rate (FDR) was
controlled using the Benjamini–Hochberg procedure with Q = 10%. In this regard, the
number of false positives is kept below 10% of the number of significant indices. We chose
a group of ten sequential significant indices to indicate a significant difference compared
to HCs.

2.4.3. Neuropsychological Test

For descriptive analysis, the average and standard deviation (SD) of each subpart of
the RBANS index was calculated. A group comparison on each subpart between TBI vs.
HCs and rSRC vs. HCs were performed using an unpaired t-test for independent samples
for comparison between groups.

3. Results
3.1. Participants

Six TBI patients (four males, two females, mean age 27 ± 7), 12 rSRC athletes (6 males,
6 females, mean age 26 ± 7) and 10 HCs (five males, five females, mean age 26 ± 5)
were enrolled. No TBI patient had any known psychiatric or psychological disorder prior
to the injury. Four TBI patients had cerebral contusions, and 2 had multiple cerebral
microbleeds (CMB) suggesting diffuse axonal injury. Of the TBI patients, four had a good
clinical recovery on the Glasgow outcome scale (GOS 5) and two a moderate disability
(GOS 4). rSRC athletes had attained a median of 6 sports-related concussions (range 3–10).
Concussion symptoms were assessed by the sport concussion assessment tool (SCAT)-3 [40],
displaying high symptom severity. Non-specific white matter lesions were found in 2 rSRC
athletes. Clinical and radiological data are summarized in Table 1.

Table 1. Summary of the clinical and radiological data of the three groups.

Clinical/Radiological Factors
Groups

TBI SRC HC

Number of patients 6 12 10

Age-mean (SD) 27 (7) 26 (7) 26 (5)

Gender-M/F 4/2 6/6 5/5

Concussions-no (range) - 6 (3–10) -

Contusions-no 4 - -

DAI-no 2 - -

Time since last TBI or SRC (months) 19 (8) 23 (6–132) -

Length of Hospital stay (days) 17 (9) - -



J. Clin. Med. 2022, 11, 358 5 of 16

Table 1. Cont.

Clinical/Radiological Factors
Groups

TBI SRC HC

Injury Mechanisms

Fall 3 - -

Motor vehicle accident 3 - -

Sports-related - 12 -

Neurologic status

GCS at admission (range) 12 (5–14) - -

GCS at discharge (range) 14 (8–15) - -

GOS at the time of MRI (n of pts) 5 (4), 4(2) - -

Symptoms (SCAT)

SSS (range) - 48.5 (3–91) -

NOS (range) - 18 (2–22) -
In athletes, concussion symptoms were assessed by the sport concussion assessment tool (SCAT). The symptom
evaluation score lists 22 symptoms with a severity range of 0–6, and the symptom severity score (SSS) is the sum of
all symptom scorings (range 0–132). The number of symptoms (NOS) is the sum of each symptom with a severity
score between 1 and 6 (range 0–22). TBI: Traumatic brain injury, SRC: Sport-related concussions, and HI: healthy
controls. DAI = diffuse axonal injury; GCS = Glasgow coma scale SCAT = sports concussion assessment tool;
SSS = symptom severity score; NOS = number of symptoms; GOS: Glasgow outcome scale; non-parametric data
(number of SRCs, time since last SRC, SSS, NOS, GCS) is presented as medians and range, and parametric data
(age, time since TBI and length of hospital stay) is presented as means ± standard deviations (SD).

3.2. General White Matter Changes/Injuries

Differences in DTI-based parameters were observed in 29 white matter pathways
in TBI patients compared to HCs (see Table 2). No rSRC athlete displayed significantly
increased AD or RD or significantly decreased FA for any of the included white matter
pathways (Table 2). On the other hand, six white matter pathways displayed significant
difference in DTI parameters in rSRC compared with HC. The six structures displayed
a completely different trend in DTI parameters with a higher FA and lower AD and RD
compared with HC (Table 2). The median and interquartile range for all white matter
pathways and DTI-based parameters are presented in electronic Supplementary Material
Table S1 (ESM1).

Table 2. Analysis of global white matter damage.

White Matter Structure AD FA RD Injured

TBI vs. HC SRC vs. HC TBI vs. HC SRC vs. HC TBI vs. HC SRC vs. HC TBI SRC

AC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 Y N

AF L <0.0001 <0.0001 <0.0001 <0.0001 0.4062 <0.0001 N N

AF R 0.0006 >0.9999 0.0603 0.6801 0.0002 0.3323 Y N

Internal capsule
Anterior L <0.0001 0.8410 <0.0001 0.0226 <0.0001 0.5070 Y N

Internal capsule
Anterior R <0.0001 0.2387 0.0416 <0.0001 <0.0001 >0.9999 Y N

FAT L 0.0007 >0.9999 0.0125 >0.9999 <0.0001 >0.9999 Y N

FAT R 0.0178 >0.9999 0.0149 0.6267 0.0006 0.2962 Y N

ATR L <0.0001 0.1121 <0.0001 0.0588 <0.0001 0.5310 Y N

ATR R <0.0001 >0.9999 <0.0001 0.6583 <0.0001 0.2591 Y N

Ci L 0.1709 0.0003 <0.0001 0.2943 <0.0001 0.0295 N N
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Table 2. Cont.

White Matter Structure AD FA RD Injured

TBI vs. HC SRC vs. HC TBI vs. HC SRC vs. HC TBI vs. HC SRC vs. HC TBI SRC

Ci R <0.0001 <0.0001 0.0006 0.0026 <0.0001 0.0017 Y N

CS L <0.0001 0.1422 0.0006 >0.9999 <0.0001 >0.9999 Y N

CS R <0.0001 >0.9999 0.0322 0.8871 <0.0001 >0.9999 Y N

External capsule L <0.0001 0.8449 0.0374 0.0980 <0.0001 0.5370 Y N

External capsule R <0.0001 >0.9999 0.0410 >0.9999 <0.0001 0.6081 Y N

FM <0.0001 0.4771 0.0006 0.0028 <0.0001 <0.0001 Y N

Fo L <0.0001 <0.0001 <0.0001 0.0011 <0.0001 0.0001 Y N

Fo R <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 Y N

Genu CC 0.0019 >0.9999 <0.0001 0.3754 <0.0001 0.0060 Y N

hSLF L <0.0001 0.5733 0.0002 0.8185 <0.0001 0.8285 Y N

hSLF R <0.0001 >0.9999 0.0005 0.7111 <0.0001 >0.9999 Y N

IFOF L <0.0001 0.3086 0.0036 0.0009 <0.0001 0.1810 Y N

IFOF R <0.0001 >0.9999 0.2301 >0.9999 <0.0001 0.7752 Y N

ILF L 0.0116 0.3316 0.0157 >0.9999 <0.0001 >0.9999 Y N

ILF R <0.0001 >0.9999 0.0140 >0.9999 <0.0001 0.6816 Y N

MLF L 0.1890 0.0226 0.2841 0.0774 <0.0001 0.3796 N N

MLF R 0.5220 >0.9999 0.0011 0.0105 <0.0001 <0.0001 N N

OR L <0.0001 0.6411 0.0207 0.5038 <0.0001 >0.9999 Y N

OR R <0.0001 >0.9999 >0.9999 >0.9999 <0.0001 0.8799 N N

Internal capsule
posterior L <0.0001 0.0622 <0.0001 >0.9999 <0.0001 >0.9999 Y N

Internal capsule
posterior R <0.0001 >0.9999 0.0144 0.8507 <0.0001 >0.9999 Y N

UF L <0.0001 0.3353 0.1033 0.0110 <0.0001 0.0007 Y N

UF R 0.1262 0.4169 0.0729 0.7228 0.0022 0.0070 N N

VO L 0.5318 >0.9999 0.0022 >0.9999 <0.0001 >0.9999 N N

VO R 0.4149 0.1643 0.1207 0.0106 0.0240 0.3355 N N

vSLF L 0.0027 0.0081 0.2355 >0.9999 0.0249 >0.9999 Y N

vSLF R <0.0001 0.0105 0.0012 0.5643 <0.0001 0.5110 Y N

Adjusted p-values are presented for each comparison between traumatic brain injury (TBI), healthy controls
(HC), and repeated sport-related concussions (rSRC) and HC including, all DTI-based metrics and white matter
pathways. Values in red emphasize results wherein the axial diffusivity (AD) or radial diffusivity (RD) values
are increased in comparison to HC, defining the criteria for white matter pathway injury. Values in green
emphasize results wherein AD or RD decreases, which is contradictory to the theory presented. Y: yes (injured),
N: not injured, L: left, R: right; AC: anterior commissure; AF: arcuate fasciculus; FAT: frontal aslant tract;
ATR: anterior thalamic radiation; Ci: cingulum; CS: cortico-spinal tract; FM: forceps major; Fo: fornix; CC: corpus
callosum; hSLF: horizontal component of superior longitudinal fasciculus; IFOF: inferior fronto-occipital fasciculus;
ILF: inferior longitudinal fasciculus; MLF: middle longitudinal fasciculus; OR: optic radiation; UF: uncinate
fasciculus; VO: vertical occipital fasciculus; vSLF: vertical component of superior longitudinal fasciculus.

3.3. Focal White Matter Changes/Injuries

Three white matter structures displayed regional differences in DTI-based parameters
in both groups compared to HCs. The left frontal aslant tract (FAT) displayed lower FA
and higher RD in the fronto-opercular region in TBI patients. The same pathway displayed
higher FA and lower RD in the supplementary motor area region in rSRC patients. The
right anterior thalamic radiation (ATR) displayed lower FA and higher AD and RD in TBI
patients localized mostly at the thalamic level. The rSRC group displayed higher FA and
lower AD and RD mostly at the thalamic level. The genu of the corpus callosum (CC)
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showed lower FA, higher AD and RD in the TBI group close to the midline. In the rSRC
group, the focal analysis showed higher AD and lower RD close to the midline (Figure 1).

Figure 1. Focal analysis of three white matter pathways with white matter changes identified in
both TBI patients and in rSRC patients compared with HC. False discovery rate (FDR) analysis was
performed, as such significant differences are displayed as continuous lines on the x axis of each DTI-
based parameter for each white matter pathway. The left frontal aslant tract (FAT) displayed lower
FA and higher RD in the fronto-opercular region in TBI patients, while a higher FA and lower RD
in the supplementary motor area region were found in the rSRC group. The right anterior thalamic
radiation (ATR) displayed lower FA and higher AD and RD in the TBI group localized mostly at
the thalamic level, while the rSRC group displayed higher FA and lower AD and RD mostly at the
thalamic level. The genu of the corpus callosum (CC) showed lower FA and higher AD and RD in
the TBI group close to the midline, while the rSRC group displayed a higher AD and lower RD close
to the midline. TBI: traumatic brain injuries; rSRC: repeated sport related concussions; HC: healthy
controls; AD: axial diffusivity; RD: radial diffusivity; FAT: frontal aslant tract; ATR: anterior thalamic
radiation; CC: corpus callosum.

3.4. Neuropsychology

Both TBI patients and rSRC athletes were impaired on the RBANS global outcome
analysis compared with HC (TBI: 75 ± 24; rSRC: 80 ± 17; HC: 105.5 ± 2; TBI to HC: p = 0.03
rSRC to HC: p = 0.006). RBANS Memory scores were lower in both TBI, and SRC when
compared to HC (p = 0.048 and p = 0.04; respectively). The RBANS Verbal scores were
lower in rSRC athletes compared to HC (p = 0.048) although not in TBI (p = 0.07). No
significative difference was detected among the groups for the other RBANS functional
domains (Figure 2).
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Figure 2. Each domain of RBANS is shown for TBI, rSRC, and HC. Significant differences in RBANS
Memory score were detected between HC and TBI patients, as well as rSRC athletes. For the other
domains of the RBANS, there were no significant differences among the groups. TBI: traumatic brain
injuries; rSRC: repeated sport-related concussions; HC: healthy controls; RBANS: repeatable battery
for the assessment of neuropsychological status. * Statistical significance with p value < 0.05.
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4. Discussion

The most important finding in our study was that focal regional differences in white
matter pathways were observed at the chronic stage post-injury in both TBI patients and
rSRC athletes who had a similar impairment on memory testing in comparison to healthy,
age-matched controls (HC). For the development of novel treatments, and for precision
rehabilitation, an enhanced understanding of the structural basis of persistent symptoms is
crucial [41].

White matter changes, demonstrated by differences in DTI-based parameters, have
been previously identified in TBI patients [19,21,25,28,30]. Furthermore, differences in
DTI-based parameters are also seen in patients with only minor cognitive impairment and
in patients with normal conventional MRI, supporting the role of DTI in detecting subtle
injuries missed by other modalities [8,20,25,30,42]. In our study, TBI patients displayed
significant changes in DTI-based parameters compared with HC in 29 of the 37 analyzed
white matter structures in the global white matter analysis. Using the same analysis in-
terpreting the mean values for each single white matter in rSRC athletes, no white matter
pathways displayed global axonal or myelin abnormalities compared with HC. However,
a different trend in DTI parameters compared with HC was observed in six white matter
pathways compared with HC. It is suggested that different injury mechanisms and levels
of energy produced by trauma to cortical and subcortical structures may be explaining
factors [15,26,28,30]. This variability leads to a lack of consensus on the interpretation of
chronic DTI-based parameters after TBI or rSRC [16,21,23]. In fact, DTI has been demon-
strated to be sensitive to a wide range of group differences, although no specific trends
have been consistently identified [29,43]. For this reason, we performed post-hoc analyses
to investigate specific and focal injuries to white matter pathways. A similar method
was previously used to analyze regional white matter changes after radiation therapy in
DTI-based parameters [44] and to investigate white matter anomalies in a patient with
visual snow syndrome [45]. We found a different level of regional differences in the same
white matter networks only partially revealed by the global analysis. Several white mat-
ter pathways displayed regionally decreased AD and RD in their midline segments in
rSRC, in agreement with previous reports in chronic rSRC [16,46–48]. On the other hand,
there are conflicting results showing increased AD and RD indicative of damage to axonal
fibers or myelin, respectively [43,49]. Plausibly, focal and/or incomplete damage to myelin
or axonal fibers may not affect the entire pathway in terms of DTI-based metrics at the
chronic stage. Incomplete damage to both myelin and axons in rSRC may induce a myelin
repair process with a change in the dominant cell type contributing to the signal, with
axonal bundles being replaced by astrocytes and/or microglia [15]. Hence, significantly
higher AD and RD and, potentially, lower FA in rSRC patients could be expected at the
chronic stage [16,21,42,50]. Animal models showed that neuronal shrinkage can occur in
the absence of cell death or perisomatic axotomy [16,51]. Decreased AD and RD post injury
may be related to such shrinkage, leading to less surface area along axons for parallel
diffusion [16,51].

These data suggest that the time course of physiological recovery extends longer
than initially thought in rSRC athletes [17]. In addition, previous inconsistent results
matching cognitive outcome and DTI may depend on the different DTI analysis methods
used [22–24,43,51,52]. Changes in DTI-based parameters may be subtle and difficult to
detect due to technical factors (such as the number of DTI directions, the algorithm used
for the analysis, normalization process, the technique of tractography, the choice of global
or focal indices’ analysis among others) [52–55]. When the structural injury is focal and/or
partially repaired, analysis of regional DTI-based metrics changes should be investigated
to identify anatomical and possible links to functional information/dysfunction.

Both TBI patients and rSRC athletes performed significantly worse in the memory do-
main. This result agrees with other studies demonstrating impaired neuropsychological out-
come in TBI patients and rSRC athletes during the subacute/chronic stage [2,4,5,7,20,23,39,56].
In patients with evidence of structural and functional abnormalities after TBI, effective
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cognitive rehabilitation interventions initiated post TBI enhance the recovery process and
minimize the functional disability [57]. In rSRC patients, the persistence of symptoms long
beyond the generally accepted time frame for recovery may reflect the development of post-
concussion syndrome (PCS) [58,59]. There is, however, no consensus regarding the clinical
neuroradiological criteria for PCS and, increasingly, the term persistent post-concussive
symptoms (PPCS) is used [60]. Despite persisting symptoms, many of these athletes have
normal MRI investigations [59]. The possible evidence of white matter alterations may
represent an important factor to consider to plan early education [61], cognitive behavioral
therapy [62], and/or aerobic exercise therapy [63], which have been shown to be effective
in certain patients with post-concussion syndrome [59]. Moreover, since memory seems the
common most affected domain in our two populations, the specific use of external memory
aids and computer-assisted strategies may be indicated, since they have also been shown
to improve attention, memory, and executive skills after TBI and therefore may be of help
in SRC patients with memory impairment [10,64–66].

The indication for tailored cognitive rehabilitation based on the affected white matter
networks and functional impairment would therefore be necessary to either restore or
compensate for memory deficits or other functional impairments commonly debilitating to
rSRC patients, as well as for TBI patients [67,68].

4.1. Functional Correlates of Regional White Matter Injuries

We found FAT, ATR, and CC to be among the abnormal white matter pathways due
to significant variations in DTI-based parameters, at the regional analysis in both TBI and
rSRC athletes. The two groups displayed similar functional outcome and a similar mid-line
location for the DTI-based parameters changes at the regional analyses for the ATR and
CC. FAT is a key component of a cortico-basal ganglia- thalamic-cerebellar circuit involved
in action control [69,70]. In both hemispheres, the FAT plays a role in selecting among
competing representations for actions that require the same motor resources (mainly the
articulatory apparatus on the left hemisphere and the oculomotor and manual/limb action
systems on the right hemisphere) [69,71,72]. Its damage has been related to impairment in
speech and language functions, as well as executive functions, visual–motor activities, in-
hibitory control, working memory, and attention [69,71]. The damage/changes to segments
of ATR can also be observed in the midline fluid percussion brain injury, a rodent model
of diffuse TBI wherein memory deficits are observed [73]. Electrophysiological evidence
suggests a crucial role for ATR connectivity in human memory formation, connecting the
anterior and midline thalamic nuclear groups to the frontal lobe [74–79]. Commissural
white matter pathways such as the genu and splenium of the CC are more vulnerable in
their segment close to the midline due to a close relationship with fibrotic structures such
as the falx cerebri [28,80,81]. Lesions or regional changes of the CC are known to disable
the interhemispheric communication of multiple memory systems and disturb memory
function [82–84], in particular in long-term verbal memory performance [85,86].

Taken together, these findings suggest that regional differences in the frontal and
fronto-thalamic networks (FAT, ATR) may be key contributors to the poor memory per-
formance observed in our study. The additional involvement of the genu of CC, may
have resulted in a lack of interhemispheric modulation and resilience leading to a less
compensable functional impairment [82–87]. Knowledge of the presence of such white
matter changes is of importance to individualize treatment strategies [41].

4.2. Limitations

Our study has some limitations. The sample size of the three groups is small, especially
the TBI group. Although the groups are thoroughly characterized and matched (age and
gender) the injury mechanisms resulting in the TBI or rSRC were heterogeneous. Hence, our
results should, therefore, be interpreted with caution. The limited sample size influenced
our analysis and some of the variables such as age, gender, and hospitalization time were
not included as confounding factors in this article. Since the TBI group is too small and
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other studies from our group did not identify significant differences among subgroups
of rSRC athletes [88], we did not include the other variables in our analysis, which was
beyond the aim of this article. We aimed to investigate differences in white matter changes
with two different methods and to match the neuropsychological outcome with diffusion
changes in the two groups. Further studies with larger cohorts are needed to clarify the role
of the confounding factors in TBI and rSRC subjects at the chronic phase. We also believe
that only longitudinal studies with repeated investigations would minimize the risk of
hidden differences between the groups displaying trends for possible recovery. Another
limitation is that we cannot exclude that possible comorbidities, such as post-traumatic
stress disorder (PTSD), which has been described in TBI patients, might have contributed to
the worse performance on memory domain by the TBI group [89]. On the other hand, the
similar performance in rSRC athlete, the different background of the TBI patients included
in this study and the absence of similar white matter alterations as previously reported
may indicate a different reason for the results presented in this article.

To our knowledge, this is the first study applying focal injury analysis to white
matter pathways in both TBI patients and rSRC athletes. Hence, another limitation may
be linked to our methods with the creation of several small indices for each DTI-based
parameter together with the intrinsic sensitivity to noise. We defined regional differences
as a minimum of 10 consecutive indices reaching the pre-determined significant levels
in comparison to controls at group level in both direction (increased or decreased when
compared with healthy controls). We believe the FDR analysis may represent a reliable and
solid way to discriminate the effects of confounds through the analysis of voxel’s spatial
neighborhood. Another limitation is the possible role of cerebral contusions and CMB on
our DTI results. Post-traumatic lesions such as contusions and CMB can be associated
with lasting changes in perilesional white matter properties, even remotely from the lesion,
and midsagittal CMB have been associated with cognitive decline after TBI [90–92]. Since
we did not anatomically normalize CMB, an effect on the DTI results cannot be excluded.
However, at the time of DTI, neither acquisition nor an expansive effect of the contusions
was present, nor was a significant deformation of anatomical structures detected. The
quality of the normalization process was carefully assessed before the analysis. In view of
the differences in acquisition period and the different trend in AD and RD between TBI
and rSRC, a major role for CMB is unlikely. Further studies with more advanced models of
white matter investigations are necessary to minimize the effects of confounds and to, in
detail, assess network vulnerability in TBI and rSRC.

5. Conclusions

In our study, TBI patients and rSRC athletes displayed different morphological images
and different DTI abnormalities at the first level analysis of white matter but shared
a similarly impaired memory performance at the chronic stage after injury. DTI analysis
detected white matter pathway changes especially in TBI patients but underestimated focal
or incomplete abnormalities when the white matter pathway was considered as one entity.
At the regional analysis, similar regions of the left FAT, the genu of the CC, and the right
ATR displayed different focal changes in both rSRC and TBI patients, reflecting possible
differences in trauma and recovery mechanisms. The concomitant presence of white
matter findings and the functional impairment observed in both TBI patients and rSRC
athletes may suggest a long-term chronic impairment in some subgroups of patients despite
the normal standard MRI images. This information seems crucial to better interpret the
functional outcome of athletes with rSRC and to tailor individualized rehabilitative plans.
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