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Erectile dysfunction (ED) is a common sexual dysfunction in males, with multifactorial
alterations which consist of psychological and organic. Diabetes mellitus (DM) induced
erectile dysfunction (DMED) is a disconcerting and critical complication of DM, and
remarkably different from non-diabetic ED. The response rate of phosphodiesterase
type 5 inhibitor (PDE5i), a milestone for ED therapy, is far from satisfactory in DMED.
Unfortunately, the contributing mechanisms of DMED remains vague. Hence, It is urgent to
seek for novel prospective biomarkers or targets of DMED. Numerous studies have proved
that non-coding RNAs (ncRNAs) play essential roles in the pathogenesis process of DM,
which comprise of long non-coding RNAs (lncRNAs) and small non-coding RNAs
(sncRNAs) like microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and circular
RNAs (circRNAs). However, the implications of ncRNAs in DMED are still
understudied. This review highlights the pathophysiology of DMED, summarizes
identified mechanisms of ncRNAs associated with DMED and covers the topic of
perspectives for ncRNAs in DMED.
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INTRODUCTION

Diabetes mellitus (DM) has evolved as one of the most severe and widespread chronic conditions,
leading in life threatening, debilitating and high-cost complications, as well as a reduction in life
expectancy (Heald et al., 2020). Over the last three decades, the worldwide prevalence of DM has
risen fast and reached pandemic proportions, with the 10th edition of the International Diabetes
Federation indicating a prevalence of 536.6 million individuals (Sun et al., 2022). However, lowering
diabetes mortality as a consequence of improved medical treatment, as well as rises in diabetes
incidence in certain countries as a result of rising prevalence of diabetes risk factors, particularly
obesity, are also significant drivers of increased prevalence (Magliano et al., 2019; Chan et al., 2020).
It was concurrent with an increase in the prevalence of microvascular and macrovascular
complications of DM (Graves and Donaghue, 2020).

Erectile dysfunction (ED) is a common and frequently occurring disease, characterized as the
inability to attain or sustain an erection adequate for enjoyable sexual performance (Shamloul and
Ghanem, 2013; Yafi et al., 2016). The incidence of ED is reported to be as high as 75% in diabetics,
more than three times that in non-diabetics (Thorve et al., 2011). Numerous pathological alterations
affecting the corpus cavernosum, including as endothelial dysfunction and nitric oxide (NO)
bioactivity, have been implicated in the development of ED (Lue, 2000). Sildenafil citrate, the
first successful oral medication, is a selective phosphodiesterase type 5 inhibitor (PDE5i). It is
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generally acknowledged as the first-line treatment for erectile
dysfunction (ED). The PDE5i were developed based on the
crucial function of NO in penile cavernous smooth muscle
relaxation, which results in effective erections in 63% of men
with general ED. However, its response rate in DMED is far from
optimal, only about 44% in patients with inadequate glycemic
control (Liu et al., 2010). As a result, DMED is a current research
hotspot. Regrettably, the processes behind DMED remains vague.

Profiling of various cell lines using high-throughput
sequencing found that 74% of the human genome is
transcribed, although only 2% of it contains protein-coding
genes (Esteller, 2011; Djebali et al., 2012). As a result, the vast
majority of the human transcriptome is composed of non-coding
RNAs (ncRNAs). ncRNAs are characterized as regulatory RNAs
that do not comprise a protein-coding region (Carninci et al.,
2005). Based on their length, ncRNAs are classified as small non-
coding RNAs (200 nt) and long non-coding RNAs (lncRNAs,
>200 nt) (Matsui and Corey, 2017). However, according to
localization and functions, ncRNAs can be divided into
lncRNAs, miRNAs, circular RNAs (circRNAs), small nucleolar
RNAs (snoRNAs), small nuclear RNAs (snRNAs) and PIWI-
interacting RNAs (piRNAs). So, it is vital not to be dogmatic with
regard to terminology, as this may impede data interpretation and
mechanistic understanding (Matsui and Corey, 2017). In recent
years, it has become clearer that ncRNAs play a critical role in
normal development and physiology, as well as in diseases (Chi
et al., 2021; de Goede et al., 2021). The functional significance of
ncRNAs is most clear in the case of miRNAs. It has been
demonstrated that human illnesses frequently exhibit
epigenetic and genetic alterations in miRNAs and their
processing machinery (Ji and Guo, 2019; Mori et al., 2019;
Agbu and Carthew, 2021). However, miRNAs are just the tip
of the iceberg; other ncRNAs also have a role in the development
of a variety of other illnesses (Bridges et al., 2021). There is
mounting evidence that ncRNAs grease the wheels of the
development of DM and associated complications (Feng et al.,
2019; Thomas et al., 2019). There is considerable interest in
medicinal methods that target these ncRNAs disruptions (Matsui
and Corey, 2017).

Here, we begin by discussing the pathophysiology of DMED.
On top of that, we consider in greater detail the growing evidence
for the roles of miRNAs and lncRNAs, which have been
implicated in several cellular processes. Finally, this Review
covers the potential for adopting innovative treatment
techniques to target these ncRNAs disruptions.

DIABETES MELLITUS INDUCED ERECTILE
DYSFUNCTION

DMED is considered to have a multifactorial etiology (Malavige
and Levy, 2009). Numerous physical causes are assumed to be
essential, but psychological and relationship concerns frequently
coincide (Muneer et al., 2014; Najari and Kashanian, 2016).
During an erection, increased blood flow to penile corpora
cavernosa is caused by nerve signals that relax the vascular
and corpus cavernosum smooth muscle cells (CCSMCs)

(McMahon, 2019). This is primarily mediated by NO, which is
generated by parasympathetic nonadrenergic noncholinergic
neurons and cholinergic neurons when they stimulate vascular
endothelial cells (VECs), initiating a biochemical cascade that
leads in smooth muscle relaxation and vasodilation (Udelson,
2007; Mitidieri et al., 2020). Increasing blood flow compresses
subtunical venules to impede venous return, hence preserving the
erection (Yafi et al., 2016) (Figure 1). The pathophysiology of
DMED is primarily characterized by functional and structural
alterations in two dimensions. Early alterations that were mostly
functional in nature: long-term hyperglycemia stimulation results
in dysfunction of the penile artery and endothelium (Castela and
Costa, 2016), increased reactive oxygen species (Yuan et al.,
2020) and decreased NO production and bioavailability (Zhou
et al., 2021). Simultaneously, the generation of contractile
substances like as angiotensin and endothelin raise the
concentration of Ca2+ in CCSMCs and activates RohA/
ROCK signaling pathways (Yuan et al., 2020), resulting in
the impairment of smooth muscle’s diastolic function. As the
disease progresses, a high concentration of reactive oxygen
species and fibrogenic factors are produced in the
cavernosum of the penis, resulting in excessive endothelial
cell apoptosis, smooth muscle atrophy, structural changes
such as fibrosis, and eventually cavernous venous closure
dysfunction (Li et al., 2021).

MIRNAS INDIABETESMELLITUS INDUCED
ERECTILE DYSFUNCTION

For a long period of time, the function of ncRNAs were unknown,
and they were not regarded as critical as transcripts of protein-
coding genes. Our current understanding of the functions which
some research hotspots in ncRNAs, like miRNAs and lncRNAs,
play within cells is expanding rapidly, and we now know more
than ever before about their impact on a wide range of
physiological processes and illnesses (Pandolfini et al., 2019).
One of the most well-studied classes of ncRNAs is miRNAs,
which function to silence genes post-transcriptionally by
interfering with mRNA translation into proteins. Although the
discovery is only a few years old, it is of great significance for our
understanding of post-transcriptional regulation of genes (Bartel,
2018). In contrast to certain miRNAs, which target particular
genes, others might act as master regulators of processes,
regulating hundreds of genes concurrently and cooperating
with other miRNAs (Agbu and Carthew, 2021).

In order to produce mature miRNAs, the RNase III enzymes
Drosha and Dicer participate in a multi-step biogenesis process
(Krol et al., 2010) (Figure 2). The Dicer–TARBP2 (TAR RNA-
binding protein 2) complex loads these molecules into a member
of the Argonaute protein subfamily, which serves as the catalytic
endonuclease component, to create the RNA-induced silencing
complex (RISC). RISC recognizes a complementary region in the
3′UTR of the targeted mRNA and guides the regulation of
mRNA. There is a great deal of control over the loading of
miRNAs into RISC (Gebert andMacRae, 2019) and the operation
of the miRNA machinery itself (Krol et al., 2010). miRNAs
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impede the translation of mRNA by mRNA degradation and
translation start inhibition.

The first miRNA profile for DMED patients was conducted by
(Jiang et al., 2015). They assessed the serum miRNA content in
normal individuals, non-diabetic ED, and DMED patients, and
discovered that the serummiRNA content of DMED patients was
considerably elevated for miR-93, miR-320, and miR-16 (Jiang
et al., 2015). Recently, Xu et al. (2021) applied miRNA sequencing
form the serum of diabetic and DMED patients and discovered
that the serum levels of let-7e-5p, miR-30d-5p, miR-199b-5p, and
miR-342-3p were considerably higher in DMED patients. It is
indicated the presence of miRNAs in serum may aid in the early
detection of DMED.

Wei et al. (2011) discovered decreased expression of miR-
145 in the corpus cavernosum of DMED rats, establishing the
first relationship between miRNAs and DMED. It wasn’t until
2016 that the first miRNA profile for erectile dysfunction in
mice with type 2 diabetes was published. eNOS/cGMP/PKG
pathway and the contraction of vascular smooth muscle may
all be affected by specific miRNAs, such as miR-18a, miR206,
and miR-122 and miR-133. The researchers hypothesized
that these miRNAs could have a significant impact on the
endothelium and smooth muscle in the corpus cavernosum
(Pan et al., 2016). Additionally, miR-328 antagomir has been
shown to enhance erectile performance in diabetic rats by
downregulating the expression of advanced glycation end

products and increasing the levels of DKK3, cGMP and
eNOS (Li et al., 2017). According to a recent research,
elevation of NGFRAP1, NGF, and p75NTR in DMED is
related with decreased expression of miR-141, and the
overexpression of miR-141 can improve erectile function
in DMED rats (Wen et al., 2018). Furthermore, Wen et al.
(2019) discovered that DMED rats had significantly higher
levels of miR-205 expression than normal rats, and further
research revealed that miR-205 could directly act on
androgen receptors, causing fibrosis and apoptosis of
corpus cavernosum smooth muscle cells (CCSMCs),
ultimately leading to DMED. This work presented a novel
method by which miRNAs influence AR expression in target
cells, which is predicted to give a new technique for treating
DMED in the clinic by modulating AR expression. As
demonstrated by Huo et al. (2020a), the pathophysiology
of DMED rats may be connected to the downregulation of the
miR-874-3p after an increase in methylation at the promoter
region, followed by the upregulation of the Nupr1/Chop
pathway, thereby speeding the death of CCSMCs in rats
and impairing erectile function. Bioinformatics is a critical
tool for predicting the presence of ED-related miRNAs.
Kazemi et al. (2021) attempted to identify the conserved
site for miRNAs, and revealed that the conserved miR-29-
3p binding site is found in the 3’UTR of genes related
with ED.

FIGURE 1 | Microscopic mechanisms underlying penile smooth muscle relaxation. Cavernous nerve and endothelial cell all can secrete NO to relax corpus
cavernosum smooth muscle cells. As the smooth muscle relaxes, blood fills the lacunar spaces, resulting to compression of the subtunical venules, thereby restricting
the venous outflow.
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Research by Gonçalves et al. (2018) and Tiraboschi et al.
(2021) created three distinct types of ED models in rats: diabetic,
alcoholic, or both. Their outcomes, however, are distinct.
Gonçalves et al. (2018) discovered that in alcoholic and
alcoholic–diabetic conditions, reduced expression of miR-199
and miR-155 boosted endothelin receptor (ETA and ERB)
expression. Then, in another study, miR-15b, miR-16, miR-
138, miR-221, and miR-222 could be considered prospective
biomarkers for diabetic alcoholic ED (Tiraboschi et al., 2021).

Adipose tissue-derived stem cells (ADSCs) can enhance
erectile function in diabetic rats by altering the
microarchitecture of the corpus cavernosum. A second option
is ADSC-exosomes, which is derived from ADSCs. Zhu et al.
(2018) showed that ADSCs-Exosomes had a greater expression of

various pro-angiogenic or antifibrotic miRNAs, including miR-
126, miR-130a, miR-132, let7b, and let7c, than ADSCs. Ouyang
et al. (2019) revealed that some pro-angiogenic miRNAs,
including miR-21-5p, the let-7 family, the miR-10 family, the
miR-30 family, and miR-148a-3p, are expressed at a greater level
in ADSCs-exosomes than in ADSCs. Taken together, these
distinctions between ADSCs and ADSCs-exosomes may
contribute to ADSC-exosomes superior therapeutic efficacy
over ADSCs. Furthermore, Huo et al. (2020b) verified that
exosomal miR-21-5p generated from bone marrow-derived
stem cells (BMSCs) inhibited PDCD4 expression and ED in
rats with DM.

Table 1 summarizes the miRNAs in DMED and their possible
mechanism. Clearly, the majority of miRNAs appear to be

FIGURE 2 | The biogenesis of miRNAs and an example of miRNA in DMED.
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intimately linked to smooth muscle contraction or apoptosis.
Thus, it is beneficial to regulate miRNAs in order to optimize
smooth muscle performance.

LNCRNAS IN DIABETES MELLITUS
INDUCED ERECTILE DYSFUNCTION

IncRNAs has some structural characteristics of mRNA, including
3′poly(A) tails and terminal 5′caps, but lacks open reading frame,
so it does not encode protein (Statello et al., 2020). Rapid
advancements in high-throughput sequencing technology have
resulted in the identification of an increasing number of
differentially expressed lncRNAs (Fang et al., 2018;
Uszczynska-Ratajczak et al., 2018). They are abundant in
tissues, urine, and serum, with expression patterns that vary
according to cell type, tissue, and developmental stage (Encode
Project Consortium, 2012). lncRNAs are functionally involved in
a variety of complicated biological processes via a variety of
methods. These include transcription factor titration (Luo et al.,
2016), splicing modification, miRNA sponging (Fatica and
Bozzoni, 2014), and chromatin modification enzyme
recruitment (Isoda et al., 2017; Mumbach et al., 2019).
Additionally, there is mounting evidence that lncRNAs have a
role in the onset and progression of a variety of disorders,
including cardiovascular diseases (Wang and Sun, 2020),
metabolic syndrome (Sun L.-Y. et al., 2018), renal fibrosis
(Yang et al., 2019), and malignancies (Tan et al., 2021).

Huo et al. (2019) has demonstrated that the lncRNA
myocardial infarction-associated transcript (MIAT) is a
competitive endogenous RNA for miR-328a-5p. Additionally,

by suppressing miR-328a-5p, excessive levels of MIAT/
lipoprotein lipase (LPL) pathway can induce damage and
death in vascular endothelial cells (VECs). Thus, the MIAT/
miR-328a-5p/LPL signaling pathway may provide therapeutic
targets for DMED attenuation if the expression of the three
critical sites is reversed.

Although stem cell therapy is widely accepted as an effective
treatment for erectile dysfunction, the underlying processes are
still a mystery. By promoting the degradation of FOXM1 protein
and decreasing VEGF expression, lncRNA MEG3 plays a vital
role in the differentiation of bone marrow-derived mesenchymal
stem cells (BM-MSCs) into VECs (Sun X. et al., 2018). VEGF
expression was upregulated by another lncRNA,MALAT1, which
worked as a sponge for miR-206 and aided in the differentiation
process (Sun et al., 2020).

In general, researchers specializing in the pathophysiology of
DMED do not appear to devote sufficient attention to lncRNAs
(Chen et al., 2020). Other studies, on the other hand, may
discover the mechanism through which BM-MSCs increase
erectile function, hence improving therapy options for DMED.

THERAPIES TARGETING NCRNAS

NcRNAs and the protein machinery involved in their synthesis or
function have been identified as targets for innovative treatment
strategies and tested in clinical practices (Figure 3). Until now,
the majority of research in this field has focused on miRNAs’
function in cancer to repress tumor growth (Matsui and Corey,
2017; Mollaei et al., 2019). Additionally, antisense
oligonucleotides (ASOs) complementary to miR-122 are being

TABLE 1 | miRNAs in DMED.

Study (Author,
year)

miRNA name Specimen Function

Jiang et al. (2015) miR-93, miR-320, and miR-16 blood (human) prospective markers
Xu et al. (2021) let-7e-5p, miR-30d-5p, miR-199b-5p and miR-342-3p blood (human) prospective markers
Wei et al. (2011) miR-145 Penis (rat) Prospective markers
Pan et al. (2016) miRNA-18a, miRNA-206, miRNA-122 and miRNA-133 penis (mouse) regulate eNOS/cGMP/PKG pathway and the contraction of

vascular smooth muscle
Li et al. (2017) miRNA-328 penis (rat) increases AGEs and inhibits DKK3, cGMP and eNOS.
Gonçalves et al.
(2018)

miRNA-199 and miRNA-155 blood and
penis (rat)

inhibits ETA and ETB receptors

Wen et al. (2018) miRNA-141 penis (rat) inhibits the NGF/p75NTR signaling via NGFRAP1
Zhu et al. (2018) miR-126, miR-130a, miR-132, let-7b and let-7c penis (rat) enhances the treatment of ADSC-Exosomes in DMED.
Huo et al. (2019) miR-328a-5p penis (rat) competitive endogenous RNA for lncRNA MIAT.
Ouyang et al.
(2019)

miR-21-5p, the let-7 family, the miR-10 family, the miR-30
family, and miR-148a-3p

penis (rat) enhances the treatment of ADSC-Exosomes in DMED.

Wen et al. (2019) miR-205 penis (rat) acts on androgen receptors, causing fibrosis and apoptosis of
CCSMCs

Huo et al. (2020a) miR-874-3p penis (rat) inhibits the Nupr1/Chop pathway
Huo et al. (2020b) miR-21-5p penis (rat) inhibited PDCD4 expression, enhances the treatment of ADSC-

Exosomes in DMED.
Kazemi et al. (2021) miR-29-3p penis (rat) prospective marker
Tiraboschi et al.
(2021)

miR-15b, miR-16, miR-138, miR-221 and miR-222 blood and
penis (rat)

prospective marker

eNOS, endothelial nitric oxide synthase; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; AGEs, advanced glycation end products; DKK3, dickkopf-3; ET, endothelin
receptor; NGF, nerve growth factor; p75NTR, p75 neurotrophin receptor; NGFRAP1, nerve growth factor receptor–associated protein 1; ADSCs, Adipose tissue-derived stem cells; MIAT,
myocardial infarction-associated transcript; CCSMCs, corpus cavernosum smooth muscle cells.
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developed to treat Hepatitis C virus (Thakral and Ghoshal, 2015)
and miR-21 mimics are being applied to treat cutaneous and
pulmonary fibrosis (Matsui and Corey, 2017). While this research
is still in its infancy, there is tremendous interest in extending
comparable methodologies to different types of diseases, both for
miRNAs and other ncRNAs.

Therapies That Inhibit miRNAs Function
Because miRNAs control their targets via base pairing, ASOs have
been developed to therapeutically decrease miRNA activity.
Through base pair complementarity, ASOs block miRNA
targets. Three distinct classes of ASOs have been developed:
locked nucleic acids (LNAs) (Elmén et al., 2008), anti-miRNA
oligonucleotides (AMOs) (Yu et al., 2020), and antagomirs
(Krützfeldt et al., 2005). Each of these classes incorporates a
variety of chemical changes to boost stability and efficacy. For
example, antagomirs were first synthesized as miRNA silencing
agents in 2005, and they are chemically modified, cholesterol-

conjugated oligonucleotides complementary to or the same as
miRNAs (Krützfeldt et al., 2005; Mohr and Mott, 2015).
Antagomirs bind on the 3’ untranslated region of targeted
mRNA strands, which is expected to avoid other miRNAs
positioning as to inhibit miRNAs function (Krützfeldt et al.,
2005).

ASOs have been shown to be effective in some instances.
Antagomirs have been used to target miR-328 in the setting of
DMED (Li et al., 2017). Systemic dosing of these antagomirs has
been demonstrated to inhibit miR-328 activity in the penis and
reduce advanced glycation end products to improve erectile
function. However, because diseases are pleiotropic and
diverse in their biology, silencing a single miRNA may not
always be adequate. Recent studies in this field reveal that
single ASOs targeting multiple miRNAs can suppress several
miRNAs at once (Lu et al., 2009). A multiple-target anti-miRNA
antisense oligodeoxyribonucleotide (MTg-AMO) is the result of
this strategy. In a wide variety of malignancies, miR-21, miR-155

FIGURE 3 | Therapies targeting ncRNAs.
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and miR-17-5p are overexpressed, and one MTg-AMO was
created to target these three oncogenic microRNAs. Individual
AMOs that target a single miRNA and combinations of AMOs
that target several miRNAs were shown to be less effective than
thisMTg-AMO (Lu et al., 2009). In the future, MTg-AMOsmight
be engineered to concurrently block the activity of miRNAs that
have a role in DMED.

Another novel approach is to develop competitive inhibitors
of miRNA activity. Vectors having several artificial miRNA
binding sites are called “miRNA sponges”. They are used to
create enormous amounts of transcript under the direction of
powerful promoters and keep homologous miRNAs from
binding to their native targets as a sponge (Cohen, 2009;
Hansen et al., 2013). This method was utilized to decrease
miR-141 and miR-205 expression, revealing their function in
DMED (Wen et al., 2018; Wen et al., 2019).

Therapies That Restore miRNAs Function
Numerous techniques for reactivating miRNAs with disease-
suppressive effects that are downregulated in DMED have
been proposed. A new study shows that “miRNA replacement
therapy”, a method for restoring miR-874-3p expression in
DMED, has been successfully used (Huo et al., 2020a). This
miRNA was delivered by an f in a rat model of DMED, which
resulted in improved erectile function and decreased apoptosis.
Conventional gene therapy procedures, on the other hand, have
the same issues in delivering protein-coding genes via viral
delivery (Kay, 2011).

A substantial body of research indicates that the majority of
human diseases are characterized by miRNA production
abnormalities that result in a global decrease in miRNA levels.
As a result, a therapeutic benefit might be gained by returning the
global miRNAome to a normal state. A new “miRNAome-based”
approach has been proposed as a result of these discoveries. By
binding to TARBP2, the small chemical enoxacin facilitates RNAi
and miRNA processing (Shan et al., 2008). Following therapy
with enoxacin, a global restoration of downregulated miRNAs to
more normal miRNA expression patterns has been demonstrated
to prevent tumor progression (Melo et al., 2011). The medication
had no effect on healthy cells and was not hazardous to mice.
Other methods for reviving the global miRNAome include the
use of histone acetylase inhibitors and DNA demethylating
agents. Epigenetic silencing of diseases-suppressive miRNAs is
released by these chemicals, which have demonstrated
therapeutic effectiveness and have been approved for the
treatment of some hematological malignancies despite their
lack of target specificity (Rodríguez-Paredes and Esteller, 2011;
Zhang and Zhang, 2020). However, no comparable research
exists in DMED up to now.

Targeting Other Types of ncRNAs
It’s possible that similar techniques outlined before for improving
deregulated miRNAs may be applicable to additional ncRNAs,
hence expanding the therapeutic target pool. Even while lncRNAs
can be targeted using siRNAs (Zhang et al., 2021), they are more
challenging to block than miRNAs because of their complex
secondary structures (Tsai et al., 2010). Our growing

understanding of other ncRNAs is also being leveraged to
generate innovative therapeutic strategies for a variety of
diseases (Matsui and Corey, 2017). While further research is
necessary, cell lines, mouse models and non-human primate
investigations have yielded encouraging findings so far.
Clinical applications of ncRNAs-based therapeutics are still a
long way off, but researchers are optimistic.

PERSPECTIVES FOR NCRNAS IN
DIABETES MELLITUS INDUCED ERECTILE
DYSFUNCTION
There has been considerable interest in ncRNAs recently, but
more research is needed to properly understand their
function and the mechanisms through which they exert
their effects. One significant hurdle will be identifying all
of the human genome’s functional ncRNAs, for which
developing genomic, epigenomic, and bioinformatic
techniques will be critical. ENCODE, for example, is
making significant progress in its mission to catalog all of
the human genome’s functional components (Birney et al.,
2007; Encode Project Consortium, 2012). Second-generation
sequencing methods, like RNA sequencing, will yield a more
complete view of the human ncRNA transcriptome (Pareek
et al., 2011). The use of bioinformatics methods to find
ncRNAs that may be useful will also be critical (Chen
et al., 2019). Due of the complex secondary structures that
ncRNAs form to function, sequence-based alignments alone
may be insufficient to detect ncRNAs. Albeit plenty of
algorithms have been established to predict ncRNAs with
potential function (Wang et al., 2020; Singh et al., 2021; Fu
et al., 2022), only a few kinds of ncRNAs can be identified
so far.

The identification of ncRNA defects in human diseases has
boosted expectations in the therapeutic field. Inhibition of crucial
DMED-promoting genes that were previously not regarded feasible
conventional therapeutic targets is now possible with siRNAs or
miRNAs, which expand the universe of “druggable” targets.
Clinical studies utilizing compounds derived from ncRNAs are
currently being conducted. However, novel techniques, such as
small molecule inhibitors of the miRNA machinery, are on the
horizon. Many hurdles must be overcome before this strategy may
be beneficial in treating DMED in a way that standard treatments
haven’t yet been able to. Furthermore, except for miRNAs and
lncRNAs, there are currently no research examining the
involvement of additional ncRNAs in DMED. New discoveries
are predicted to be made as the field evolves. Exciting times lie
ahead for us (Esteller, 2011).

CONCLUSION

Since their identification as functional RNAs, ncRNAs have been
regarded as the milestone in the treatment of numerous diseases,
even though therapeutic applications are still in their infancy.
Similarly, the discovery of ncRNAs has ushered in a new age in
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DMED, one that may provide a slew of novel biomarkers or
therapeutic targets and revolutionize how DMED is diagnosed
and treated.
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