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Alzheimer’s Disease (AD), the leading cause of senile dementia, is a progressive

neurodegenerative disorder affecting millions of people worldwide and exerting

tremendous socioeconomic burden on all societies. Although definitive diagnosis of

AD is often made in the presence of clinical manifestations in late stages, it is now

universally believed that AD is a continuum of disease commencing from the preclinical

stage with typical neuropathological alterations appearing decades prior to its first

symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild

cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic

cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers

have been developed in a search to meet the increasing clinical need of early detection

and treatment monitoring for AD, with reference to the pathophysiological targets in

Alzheimer’s brain. These include the pathological aggregations of misfolded proteins such

as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter

system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization.

In this article we survey the various PET radiotracers available for AD imaging and discuss

their clinical applications especially in terms of early detection and cognitive relevance.
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INTRODUCTION

Alzheimer’s Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative
disorder affecting millions of people worldwide and exerting tremendous socioeconomic
burden on all societies (Goedert and Spillantini, 2006; Querfurth and LaFerla, 2010). AD is
neuropathologically characterized by deposition of senile plaques and neurofibrillary tangles in
the brain tissue. Excessive aggregation of misfolded β-amyloid (Aβ) and hyperphosphorylated
tau proteins leads to cytotoxicity and disruption of cytoarchitecture, and subsequent neuronal
death and brain function decline. Neuroinflammation activation, cholinergic deficit, impaired
glucose utilization and synaptic dysfunction are also outstanding characteristics of AD. Functional
neuroimaging using positron emission tomography (PET) is able to reveal these in vivo
pathological/pathophysiological alterations.With increasing viewpoint of AD as a continuum from
asymptomatic preclinical stage, to prodromal stage with mild cognitive impairment (MCI), and
finally to the advanced stage of dementia, integrated early diagnostic and differentiation paradigms
with the help of PET imaging has been well-acknowledged in multiple diagnostic criteria (Dubois
et al., 2007, 2014; Jack et al., 2011). In this review article, we describe the various PET radiotracers
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available for AD imaging and discuss their clinical applications
especially in terms of early detection and cognitive relevance.
Literature evidence on the predictive ability of PET imaging
with various PET tracers for prodromal stage conversion and
monitoring of disease progression will also be reviewed. Finally,
comments on emerging biomarkers and their prospects in early
detection of AD will be provided.

PET TRACERS FOR IMAGING Aβ

Overview
The disturbance of homeostasis between the accumulation of
neurotoxic Aβ peptides and its clearance in the brain is believed
to be the core event in AD etiology (Hardy and Allsop, 1991;
Hardy and Higgins, 1992). The Aβ peptides are derived from
the breakdown of amyloid precursor protein (APP) through
cleavage by β- and γ-secretase. The soluble oligomers, believed
to be the perpetrator of cytotoxicity, are aggregated by longer
species of the Aβ peptides such as Aβ40 and Aβ42 released
into the extracellular space. The accumulation of Aβ peptides,
from neurotoxic oligomers to further aggregated insoluble β-
sheet fibrils and dense fibrillary plaques, is believed to underlie
subsequent neurofibrillary tangle formation and neuronal loss,
which precede the onset of clinical symptoms by more than
10–15 years (Hardy and Gwinn-Hardy, 1998; Hardy et al.,
1998). However, confirmation of AD neuropathology has long
relied on immunohistochemical staining of Aβ aggregates in
postmortem autopsy tissues. Since the early 2000s, the availability
of antemortem in vivo PET imaging with Aβ radiotracers
has greatly advanced our knowledge on the time course and
correlation of Aβ aggregation, AD progression, and cognitive
decline, and revolutionized AD diagnosis.

Tracer Development
The search for Aβ imaging tracers dated back to the mid-1990s,
culminated in the first in vivo imaging of Aβ in an AD patient
in 2002 with the 11C-labeled Pittsburgh compound B ([11C]PIB,
Figure 1), which is derived from the Aβ staining agent thioflavin-
T (Klunk et al., 2004). [11C]PIB has a relative high selectivity
for Aβ of all forms from soluble oligomers to insoluble fibrils
and plaques over other pathologic proteins such as tau and

FIGURE 1 | Structures of representative PET radiotracers for Aβ imaging.

α-synuclein. Both visual inspection and quantitative analysis
demonstrated higher cortical retention in AD patients than in
cognitively intact subjects, especially in the orbitofrontal cortex,
inferior parietal cortex, posterior cingulate cortex and precuneus,
which resembled the pattern found in immunohistochemical
studies (Rowe and Villemagne, 2011). To date, [11C]PIB is still
the best and most widely used Aβ PET tracer and regarded as the
gold standard.

The short radioactive half-life of ∼20min for the carbon-
11 nuclide limits the use of [11C]PIB to institutions with
on-site cyclotrons, thus inspiring the development of 18F-
labeled Aβ radiotracers. Three of such tracers with favorable
binding and imaging properties, [18F]florbetapir ([18F]AV-
45), [18F]florbetaben ([18F]AV-1, [18F]BAY-94-9172), and
[18F]flutemetamol ([18F]GE-067) (Figure 1), have since been
approved by the United States Food and Drug Administration
(FDA) for clinical diagnosis and differential diagnosis of AD
(Barthel et al., 2011; Lister-James et al., 2011; Curtis et al., 2015).
[18F]NAV4694 ([18F]AZD4694), another promising 18F-labeled
tracer with rapid pharmacokinetics and lower non-specific
binding in the cerebral white matter, is now in clinical trials
(Cselenyi et al., 2012; Therriault et al., 2021). These tracers,
with longer radioactive half-life of ∼110min, are suitable for
long-distance distribution and thus can be more widely used
in the clinics. They are presumed to yield less noisier images
and therefore more precise quantitation of minute cerebral
Aβ accumulation in the early stage of the disease, due to more
abundant radioactivity counts in the later period of scan.
Notably, imaging protocols provided for each tracer are quite
different from one another in terms of scanning window as well
as visual interpretation and quantitative analysis of the images
(Mallik et al., 2017).

Imaging Research Findings and Clinical
Relevance
In general, cortical Aβ retention detected by PET imaging is in
good correlation with immunohistochemical staining of amyloid
plagues at autopsy or biopsy brain samples (Clark et al., 2012;
Rinne et al., 2012; Curtis et al., 2015; Sabri et al., 2015a).
This qualifies the application of Aβ PET imaging as a non-
invasive tool for in vivo detection of cortical Aβ deposition
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in the living brain. In the clinical daily-routine context, Aβ

PET imaging provides plenty valuable information for the
purpose of differential diagnosis between AD dementia and
dementia disorders associated with non-Aβ pathologies such
as frontotemporal lobe dementia (FTLD), which is sometimes
indistinguishable from AD by neuropsychological assessments
and conventional structural imaging modalities only (Rowe et al.,
2008).

On the other hand, it has been emphasized that an
amyloid-positive PET merely reflects the existence of amyloid
neuropathology in vivo and does not necessarily guarantee
a diagnosis of AD, concerning the fact that many otherwise
cognitively normal subjects (even young healthy volunteers) have
been found to be amyloid-positive judging from PET results, and
that cognitive decline is more likely due to factors other than
amyloid pathology in dementia with Lewy bodies (DLB) or in
some co-morbid situations (Johnson et al., 2007; Ossenkoppele
et al., 2015; Petrou et al., 2015). It has also been debated whether
a negative amyloid scan could exclude the possibility of AD (Jack
et al., 2016), since evidence of neurodegeneration in the absence
of amyloid pathology challenges the proposed AD progression
scheme (Sperling et al., 2011).

The ability of PET imaging with Aβ tracers to predict
conversion from MCI due to AD, the prodromal stage of the
disease defined by different diagnostic guidelines (McKhann
et al., 2011; Dubois et al., 2014), to AD dementia has also
been extensively investigated. Roughly 70% of amyloid-positive
MCI patients converts to AD dementia within 3 years (Okello
et al., 2009a). As compared to [18F]FDG PET, amyloid PET
has higher sensitivity but relatively lower specificity (Teipel
et al., 2015), which is consistent with the finding that amyloid
accumulation commences at least a decade before the worsening
of synaptic activity and brain function to a clinically significant
level where amyloid deposition reaches a plateau (Jack and
Holtzman, 2013; Jack et al., 2013a). Correlation of Aβ retention to
cognitive performance has been shown to be greater in MCI and
cognitively intact subjects than in AD dementia patients (Pike
et al., 2007, 2011; Villemagne et al., 2008), which could also be
explained by the hypothesized plateau model. Therefore, it is not
surprising that regional hypometabolism and amyloid deposition
in the temporoparietal regions are closely associated with each
other whereas those in the frontal lobe, a region affected only in
advanced AD, are not (Edison et al., 2007; Cohen et al., 2009).

The significance of Aβ PET in subjects without objective
evidence of cognitive decline is emerging most recently. Large-
scale comprehensive studies have shown that Aβ positivity is
linked to high progression risk in subjective cognitive decline
(SCD) and is associated with age and family history other
than sex, education, marital or retirement status and self-
reported lifestyle factors (Papp et al., 2020; Sperling et al., 2020).
Longitudinal follow-up studies suggest that the duration of Aβ

existence might be more important than age or binary result in
affecting both deteriorating rate and the final status of cognition
through elevated entorhinal tau burden (Hanseeuw et al., 2019;
Koscik et al., 2020). Even if Aβ burden detected by PET is below
threshold, its value is still positively correlated to the subject’s
future risk of cognitive decline (Guo et al., 2020).

The Centiloid Scaling Project
As the utilization of amyloid PET in clinical trials and research
expands and multiple tracers are available for such imaging
applications, the urgent need for inter-tracer standardization
and for multi-center collaboration and longitudinal comparison
drove the launch of the centiloid scaling project (Klunk et al.,
2015). According to the concept of the project, one institute
can follow a multi-step regime to create a scaling from 0
(young healthy controls) to 100 (typical AD patients) using
its own amyloid PET data (Rowe et al., 2016). In this way a
universal cutoff value could then be directly or indirectly applied
in multi-center imaging and/or longitudinal studies to allow
for inter-site/inter-tracer comparisons. The study group of the
centiloid project has now made progress in the derivation and
verification of converting formula, enabling the translation of
non-[11C]PIB Aβ PET semi-quantitative values to standardized
[11C]PIB counterparts (Rowe et al., 2017; Battle et al., 2018;
Bourgeat et al., 2018; Navitsky et al., 2018). The authenticity of
the centiloid approach has been confirmed neuropathologically
(Amadoru et al., 2020).

Discussion
The amyloid cascade theory has been the predominant theory of
AD etiology and drove the development of anti-Aβ therapeutics
in the last 3 decades. The availability of Aβ PET imaging
tracers and its applications in AD imaging have indicated that
amyloid pathology may be a high risk factor for future cognitive
decline. However, increasing evidence also indicates that cortical
amyloid is not specific for the presence of cognitive symptoms,
thus affecting the positive predictive value of Aβ PET imaging.
Among populations without dementia, the prevalence of cerebral
amyloid pathology as determined by Aβ PET imaging or cerebral
spinal fluid (CSF) Aβ measurement is associated with age
(Jansen et al., 2015), e.g., 33% of healthy elderly individuals
have significant levels of Aβ deposition without apparent clinical
symptoms (Rowe et al., 2010). Therefore, Aβ deposition alone
cannot explain AD pathogenesis and progression. Repeated
failures of clinical trials for many anti-Aβ drug candidates
have dampened the hope for their efficacy as disease-modifying
therapeutics. Nonetheless, it should be kept in mind that Aβ PET
imaging will still remain the gold standard to investigate disease
mechanisms as it provides information regarding the topography
of Aβ lesions. Although there have been no successful anti-Aβ

drugs up to date, Aβ PET imaging has provided useful outcome
measures for anti-Aβ therapeutics in clinical trials (Salloway
et al., 2014; Honig et al., 2018; Wessels et al., 2020).

PET TRACERS FOR IMAGING TAU
TANGLES

Overview
In addition to the β-amyloid peptides, microtubule-associated
protein tau (MAPT), or simply tau protein, together with
its misfolded products, has been more thoroughly studied in
recent years to explore its relationship with AD. Similar to
the case of senile plaques formed by Aβ, the formation of
neurofibrillary tangles (NFTs) by paired helical filaments (PHFs)
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is also a neuropathological hallmark of AD (Braak and Braak,
1997). PHFs are aggregated by misfolded hyperphosphorylated
tau protein whose binding affinity with the microtubules is
weakened, causing neuronal cytoarchitecture breakdown and
dysfunction (Hoover et al., 2010; Spillantini and Goedert, 2013).

With the repeated failures of anti-Aβ therapeutics in large
scale clinical trials, the focus was shifted from Aβ to tau
on the development of AD therapeutics and imaging agents
(Giacobini and Gold, 2013). However imaging tau in vivo
is more challenging than imaging Aβ. Tau protein has six
unique isoforms characterized by the number of repeats of its
microtubular binding domains, and multiple secondary/tertiary
structures differentiated by the shape of the filaments (Spillantini
and Goedert, 2013). In addition to its much lower abundance
compared to Aβ peptides in the brain, MAPT’s intraneuronal
property demands the qualified tracer to cross neuron cell
membrane in addition to the blood brain barrier. These factors
collectively hamper the screening and identification of sensitive
and specific compounds. Nevertheless, substantial progress
has been made in overcoming these inherent obstacles, and
preliminary studies have shown encouraging results worthy of
the efforts (Hall et al., 2017; Leuzy et al., 2019).

Tracer Development
PET imaging of fibrillary tau traced back to about the same time
for amyloid, with [18F]FDDNP arguably as the earliest tracer
(Agdeppa et al., 2001). Indeed, this tracer labels both amyloid
plaques and fibrillary tau tangles in vivo, but this property is
also its biggest disadvantage, as it has comparable affinity for
both amyloid and tau proteins, i.e., a lack of selectivity for either

target. The first selective tau tracer [18F]THK523 was developed
by Tohoku University of Japan in 2005 (Okamura et al.,
2005). Later structural modifications led to the development of
other tracers in the THK family: [18F]THK5105, [18F]THK5117,
[18F]THK5317, and [18F]THK5351, with improved binding and
in vivo pharmacokinetic properties (Okamura et al., 2013; Chiotis
et al., 2016; Betthauser et al., 2017). However, tracers in this
family were later found to have notable off-target binding to
monoamine oxidase-B (MAO-B), which greatly limited their
utility in imaging of tauopathies including AD (Ng et al., 2017).

[18F]Flortaucipir ([18F]AV1451, or formerly [18F]T807) is
currently the most applied and the only FDA-approved
tau radiotracer (Figure 2) (https://www.fda.gov/drugs/drug-
approvals-and-databases/drug-trial-snapshot-tauvid). It has a
25-fold higher affinity for tau than Aβ, as well as favorable
kinetics for both uptake and washout in the brain without
radioactive metabolites penetrating the blood-brain-barrier (Xia
et al., 2013). [18F]flortaucipir has higher affinity to PHFs over
straight filaments (SF), and to combined 3-repeat (3R) and 4-
repeat (4R) isoforms over 3R or 4R isoforms alone, making
it more suitable for imaging AD pathology than non-AD
tauopathies such as progressive supranuclear palsy (PSP) and
corticobasal degeneration (CBD) (Lowe et al., 2016). It is noted
that suspected minor off-target binding to MAO-A in the basal
ganglia and substantia nigra would limit the application of
[18F]flortaucipir in imaging Parkinsonian tauopathies (Ono et al.,
2017).

[11C]PBB3 is another selective tau tracer that has also
been thoroughly studied in various tauopathies including AD
(Figure 2). [11C]PBB3 binds to both 3R and 4R tau isoforms

FIGURE 2 | Structures of representative PET radiotracers for tau imaging.
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and its affinity for tau is over 40 times higher than that for
amyloid, making it suitable for imaging of various tauopathies in
vivo (Kimura et al., 2015). Minor structural modifications then
afforded [18F]APN-1607 (PM-PBB3) and [18F]AM-PBB3, the
next generation members of the PBB3 family. [18F]APN-1607,
(Figure 2) has recently been reported to possess more favorable
pharmacokinetics and provide higher gray-matter/white-matter
contrast (Hsu et al., 2020; Su et al., 2020; Tagai et al., 2021).

The clinical development of several newer, second generation
selective tau tracers are ongoing, including [18F]PI2620,
[18F]MK6240, [18F]GTP1, [18F]RO-948 (RO6958948), [18F]JNJ-
311 (JNJ64349311), and [18F]JNJ-067 (JNJ-64326067) (Figure 2).
Designers of these new generation tracers are focusing on
improving in vivo characteristics such as higher selectivity,
faster brain penetration/washout, and less off-target binding.
Preliminary studies for these newer tracers have shown
promising results (Declercq et al., 2017; Kuwabara et al., 2018;
Guehl et al., 2019; Rombouts et al., 2019; Teng et al., 2019;
Schmidt et al., 2020).

Off-target binding has been a universal concern for tau
tracers since the early [18F]FDDNP was found to be non-
selective to both amyloid and tau (Thompson et al., 2009). In
PET imaging of neurodegeneration, selectivity of tau tracers
over other pathological proteins such as Aβ, α-synuclein,
and TDP-43 would always require validation. Similarity of
the secondary/tertiary structures of the binding sites of these
proteins makes it difficult to find a truly selective and specific
probe, not to mention the complexity introduced by potential
comorbidity of the neurodegenerative disorders. In addition, off-
target binding in the central nervous system (CNS) has been
widely examined across the tau tracers. It is now known that
MAO-A and MAO-B are the most frequent off-targets whose
secreting neurons are highly overlapped with Parkinsonism-
related brain regions (Lowe et al., 2016; Bischof et al., 2017;
Okamura et al., 2018). Choroid plexus is frequently found to
be a tissue with apparent off-target binding, the mechanism of
which is yet unclear (Ikonomovic et al., 2016). It is postulated that
melanin, neuromelanin, mineralized structures and hemorrhagic
lesions can also cause off-target binding of tau tracers in various
locations. There is also debate that the suspected “off-target”
binding may be reflecting true tau-binding, or binding to some
specific targets yet to be identified (Ikonomovic et al., 2016;
Passamonti et al., 2017). These characteristics pose substantial
difficulties to clinical differentiation and potential post-treatment
evaluation (Passamonti et al., 2017).

Recent cryo-electron microscopic structure discoveries of
AD tau filaments may provide new insights for the binding
interactions between various tau tracers and tangles, and spur
refinements on the design of novel, subtype-selective tau tracers
(Fitzpatrick et al., 2017).

Imaging Research Findings and Clinical
Relevance
According to the amyloid cascade hypothesis, neurodegeneration
characterized by misfolded tau tangle aggregation is the
downstream event secondary to major amyloid deposition (Jack

et al., 2013b). In contrast to the globally elevated pattern seen in
brain amyloid PET of AD dementia patients, the spatiotemporal
distribution of tau tracers follows a typical neuropathological
sequence of spreading (Braak’s stage), as have been demonstrated
in both cross-sectional and longitudinal studies in a wide-
range of subjects from advanced AD dementia patients to
cognitively intact elderly controls (Rabinovici and Jagust, 2009;
Johnson et al., 2016; Wooten et al., 2017; Villemagne et al.,
2018). This quantitative and sequential connection indicates
that this in vivo tangle spreading trajectory may reflect not
merely neuronal dysfunction but also disease progression. In
parallel to postmortem immunohistochemical findings, in vivo
tau deposition varies amongst the brain regions, starting from
the medial temporal lobe, i.e., hippocampus and entorhinal
cortex (Braak stage I–II), to the adjacent neocortices (Braak
stage III–IV), and finally to the entire brain (Braak stage V–VI)
(Cho et al., 2019; Leuzy et al., 2019; Baek et al., 2020; Fleisher
et al., 2020). As expected, clinical manifestation of AD is closely
related to tau retention in the responsible brain regions. For
instance, while temporal lobe deposition correlates well with
memory performances, frontal lobe retention strongly correlates
with execution and global cognition (Ossenkoppele et al., 2016;
Bejanin et al., 2017; Shimada et al., 2017).

According to current experience with all the available tau
tracers, AD is not likely to be the diagnosis of a tau-negative
individual, while non-tauopathies can be basically excluded from
the cause of cognitive decline for a tau-positive individual
(Bischof et al., 2017). Non-AD tauopathies such as FTLD, PSP
and CBD, however, manifest different distribution patterns and
trajectory from AD involving different sub-regions in the brain
stem and basal ganglia as well as cortical regions, which could
be of additional differential diagnostic value in the clinical
context (Bischof et al., 2017; Leuzy et al., 2019). Recently, tau
deposition in cognitively intact healthy elderly subjects has also
been revealed by PET and confirmed by autopsy results. This
phenomenon is coined primary age-related tauopathy (PART)
and believed to produce only minute, if any, clinical symptoms
(Crary et al., 2014). In the absence of amyloid, PART alone is
believed to be insufficient to develop memory decline (Harrison
et al., 2019). Its relationship to suspected non-amyloid pathology
(SNAP) has also been proposed, which presumably underlies the
preclinical abnormalities during the development of AD (Jack,
2014).

Hypometabolism in brain regions that are commonly affected
in advanced AD, including posterior cingulate cortex, precuneus
and temporoparietal association cortex, represents synaptic
dysfunction of the neurons in the course of AD (see below section
on FDG imaging of glucose metabolism). Cortical tau tracer
deposition can be seen in the same areas, establishing a typical
topographic “yin-yang” offset between the two biomarkers.
Further, correlation between these two imaging findings grows
stronger as tau burden increases (Figure 3) (Whitwell et al.,
2018; Lu et al., 2020). These unique phenomena demonstrate
outstanding pathophysiological coherency of excessive MAPT
retention and subsequent destruction of cytoarchitecture,
resulting in synaptic metabolic deficit. On the other hand, multi-
modality studies also reveal that the correspondence between
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FIGURE 3 | Representative images of [11C]PIB, [18F]APN1607, and [18F]FDG PET and MRI of an AD patient, an MCI patient and a high-risk asymptomatic subject. Aβ

was positive for the AD patient and equivocal for the MCI patient and the high-risk asymptomatic subject. Typical Braak Stage V–VI tau deposition was seen in the AD

brain, whereas no tau deposition was seen in the brain of the MCI patient or the high-risk asymptomatic subject. Typical AD-like glucose-hypometabolism was seen in

AD brain including posterior cingulate cortex, parietal, temporal, and pre-frontal cortices, whereas most of these regions are relatively spared in the brain of MCI

patient and high-risk asymptomatic subject. Images provided by PET Center, Huashan Hospital, Fudan University.

frontal hypometabolism and medial temporal tau retention
is present independent of amyloid deposition, which can be
interpreted as aging-related.

The relationship between tau aggregation and cortical
atrophy as demonstrated by structural MRI is similar to that
between tau aggregation and hypometabolism. However the
former was found to be weaker than the later, especially
in conditions other than mild AD (Sepulcre et al., 2016;
Iaccarino et al., 2018). In addition to local correlation, tau
deposition in the parietal lobe and precuneus can also be
correlated to medial temporal lobe atrophy (Shimada et al.,
2017). These observations seem plausible due to the fact that
substantial structural alterations often relate to the later stage of
the disease.

In general, CSF phosphorylated tau (p-tau, representing
misfolded tangle formation) and total tau (t-tau, representing
neurodegeneration) levels parallel in vivo tau tracer binding
(Mattsson et al., 2018; Leuzy et al., 2019; Okafor et al., 2020).
However, discordant results have also been found in small
subgroups, possibly due to varying detectability around the CSF
threshold and uneven rate of tau tangle formation in different
disease stages (Murray et al., 2015; Thal et al., 2015). Although
it is believed that elevated CSF tau levels precede tau imaging

manifestation, tau PET has the advantage of visualization and
topographic quantitation capacity, as well as relative non-
invasiveness (Wolters et al., 2020).

Discussion
The research and development of tau PET tracers has gained
undeniable progress in the last few years. Although some issues
remain, especially isoform selectivity and other potential off-
target binding, the applications of these tracers in AD imaging
have provided, and are expected to continue to provide valuable
information on the time course and topography of tau tangles in
AD, and the correlation with cognitive dysfunction. Longitudinal
and cross-sectional multi-target and multi-modality studies are
encouraged to further elucidate the role of tau in the course of
AD, as well as its interaction and relationship with Aβ deposition,
synaptic dysfunction, brain atrophy, and other pathological
biomarkers. Another important application of tau imaging is
its utility for patient selection and endpoint measurements in
phase 2 and phase 3 clinical trials of disease-modifying anti-tau
treatments that have been gaining increasing impetus (Giacobini
and Gold, 2013).

Coming from different compound families, the currently
available tau tracers have different affinities for the variousMAPT
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isoforms or tangle structures, hence distinctive topographic
binding patterns in the same tauopathy. Selectivity to isoforms
and structures could be a future direction to design new probes as
3R-specific or 4R-specific.We could therefore foresee a future tau
imaging landscape where different tracers “rule” their own pieces
of territory (i.e., specific tauopathy characterized by specific
isoform or structure) in case that the correlation of tau imaging
results similar to the “Aβ centiloid” is not achievable.

PET TRACER FOR IMAGING GLUCOSE
METABOLISM: [18F]FDG

Overview
As a radionuclide-labeled analog of glucose, the major metabolic
substrate of neurons, [18F]fluorodeoxyglucose ([18F]FDG, or
FDG) has long been used in the investigation of CNS disorders
to reflect neuronal degeneration and injury. In fact the first
report of this most widely used tracer was a brain imaging study
(Phelps et al., 1979), although now the majority of its clinical
application is for oncological purposes. The characteristic AD
pathology (McGeer et al., 1986) and neurodegenerative changes
(Mielke et al., 1996; Scholl et al., 2011) are associated with
cortical hypometabolism demonstrated in pre-mortem FDG PET
imaging. Clinical application of FDG PET in AD lies mainly in
differential diagnosis from other causes of dementia, as well as
treatment effect evaluation of disease-modifying or progression-
slowing therapies. Clinical value of FDG PET has also been
investigated for its predictive ability for conversion to AD
dementia of high-risk subjects assumed to be in the prodromal
or asymptomatic stage.

AD Dementia Patients
The characteristic manifestation of FDG PET in AD dementia
is hypometabolism in the posterior part of cerebrum including
the posterior cingulate cortex (PCC), precuneus (PrC), and
parietotemporal association cortices such as the angular gyrus.
These regions are the most discriminating components of
AD-specific cerebral hypometabolic pattern as well as strong
indicators of disease severity and progression. It is of significant
differential value that PCC and PrC are substantially spared in
other minor causes of senile dementia including frontotemporal
lobe dementia (FTLD), dementia with Lewy bodies (DLB),
Parkinson’s Disease dementia (PDD), and vascular dementia
(VaD). The hippocampus and entorhinal cortex are involved in
the earliest stages of AD according to neuropathological findings
based on NFT formation (Braak and Braak, 1997), however
glucosemetabolism in these areas cannot be readily distinguished
between AD patients and normal controls. This is largely due to
the frequent presence of medial temporal hypometabolism even
in normal aging, and the partial volume effect (PVE) correlated
with regional cortical atrophy. Frontal lobe hypometabolism is
often associated with advancement, executive dysfunction, or
atypical behavior in AD cases, although it could also be observed
in normal aging. Occipital lobe hypometabolism is related to the
posterior cortical atrophy (PCA) subtype of AD, but care should
be taken when differentiating dementia types because this is also
a prominent sign of DLB.

MCI Patients
Early differentiation of MCI due to AD is crucial since early
therapeutic intervention is indicated to be beneficial at least in
slowing disease progression (Vellas et al., 2007; Molinuevo et al.,
2011). It should be noted, though, that the etiology of MCI is
heterogeneous, meaning that approximately half of the patients
convert to dementia other thanAD, or do not convert at all (Rowe
et al., 2010; Bennett et al., 2012; Frisoni et al., 2017). Therefore,
whether FDG PET has discriminative and predictive ability for
MCI patients is of great clinical relevance.

Hypometabolism revealed by FDG PET in typical AD-affected
brain regions including the inferior parietal lobe, precuneus
and posterior cingulate cortex is present early in prodromal
AD, namely MCI stage. In a meta-analysis comparing the
accuracy of 3 different imaging modalities, FDG PET (sensitivity
= 88.8%, specificity = 84.9%) exhibits higher sensitivity and
higher specificity than cerebral blood flow SPECT (sensitivity
= 83.8%, specificity = 70.4%) and structural MRI (sensitivity
= 72.8%, specificity = 81%) in terms of predicting short-term
conversion to AD dementia (Yuan et al., 2009). Interestingly,
FDG PET performs better in excluding non-converters than
[11C]PIB Aβ PET (specificity: 74.0 vs. 56.2%), while its sensitivity
is lower (sensitivity: 78.7 vs. 93.5%) (Zhang et al., 2012). This
could be explained by the compensatory mechanism of preserved
cerebral synaptic function against amyloid burden. Aside from
the advantage of accurate short-term predictive ability, FDG PET
can also exclude other potential etiology underlying MCI such as
FTLD and DLB, in contrast to other biomarkers including CSF
Aβ1−42 and t-tau/p-tau assays (Arbizu et al., 2018).

The value of FDG PET in MCI has been acknowledged
in existing diagnostic criteria (Albert et al., 2011; Dubois
et al., 2014). Meanwhile, future researches in this field are
encouraged to overcome the various current limitations in terms
of methodology normalization, gold standard verification, and
effectiveness/economy evaluation (Arbizu et al., 2018).

High-Risk Asymptomatic Subjects
People with subjective cognitive decline (SCD) rather than
objective evidence of cognitive impairment, subjects burdening
amyloidosis, and family members of AD patients expressing
PSEN1/2 or APP mutation were reported to have higher
tendencies to develop to AD dementia (Bateman et al., 2011;
Villemagne et al., 2011; Wolfsgruber et al., 2016). It is
hypothesized that neurodegenerative alterations could have be
silently undergoing in these subjects.

Various confounding factors lead to heterogeneity of the
underlying etiology for SCD, leaving controversy in the regional
metabolic manifestation of typical AD-affected areas in this
subgroup (Scheef et al., 2012; Brugnolo et al., 2014; Van Der
Gucht et al., 2015). Although amyloid-positive asymptomatic
subjects, as defined by CSF Aβ1−42 or amyloid PET, will
have higher risk of converting to AD in a life-long period,
the utility of FDG PET reflecting neurodegeneration in this
population is still not comparable to that in MCI patients, due
to its poor performance in prediction of short-term conversion
(Villemagne et al., 2011). Glucose metabolic abnormalities
prior to the onset of clinical symptoms were observed in
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asymptomatic carriers of mutated APP and PSEN1/2 genes
(Mosconi et al., 2008; Benzinger et al., 2013), who theoretically
would suffer from dementia eventually. Nonetheless, the
relationship between cerebral hypometabolism and time-to-
conversion cannot be easily concluded in the absence of well-
designed longitudinal studies.

In view of the above-mentioned facts, it is not recommended
to clinically apply FDG PET to asymptomatic subjects with only
one risk factor for diagnostic or prognostic purposes. Further
investigation is needed to verify whether FDG PET is useful
for individuals with multiple risk factors (Mosconi et al., 2008;
Vannini et al., 2017).

Treatment Monitoring
FDG PET has been used as an imaging biomarker for outcome
assessment in multiple clinical trials of AD therapeutics (Hoyer,
2002; Landau et al., 2011; Herholz, 2012). Global as well as sub-
global or regional FDG uptake alterations following medication
or surgical treatment has been observed in multiple clinical
research studies (Nordberg et al., 1992; Heiss et al., 1994; Mega
et al., 2001; Potkin et al., 2001; Tune et al., 2003; Schmidt et al.,
2008; Tzimopoulou et al., 2010; Craft et al., 2012; Smith et al.,
2012).

Discussion
FDG PET has been most widely used in dementia research
and as an important adjunct imaging tool in the diagnosis of
AD. On the whole, FDG PET enables early diagnosis of AD
and thus early therapeutic intervention, as well as treatment
strategy optimization in a large proportion of cases (Laforce et al.,
2010; Elias et al., 2014). Delaying of disease progression and
prevention of life quality deterioration as instructed by FDG PET
can help lessen the overall healthcare expenditure (Banerjee and
Wittenberg, 2009; Getsios et al., 2012).

Although quite a few critical issues in the utility of FDG
PET for AD diagnosis have already been resolved, there are still
many others that require verification with larger cohorts and
better-designed trials (Garibotto et al., 2017).

PET TRACERS FOR IMAGING
NEUROINFLAMMATION

Overview
Increasing evidence has helped with the formation of
neuroinflammation hypothesis of AD etiology (McGeer and
McGeer, 2010; Morales et al., 2014). Similar to the cases in other
systems of the human body, it is now believed that the impact
on CNS under different phases of the inflammatory process
could be different. While acute inflammation could be protective
to the brain against the harmful effects of invading pathogens
and traumatic injuries, consistent stimulation by inflammatory
factors could, on the other hand, be detrimental to the neurons
and eventually induce neurodegeneration and loss of cognitive
functions (Wyss-Coray and Mucke, 2002; Mrak and Griffin,
2005). It is also suggested that the neuroinflammation underlying
AD starts from the earliest stages without any obvious clinical
symptoms, and lasts to the end stage of the disease (Vehmas

et al., 2003; Hoozemans et al., 2005). Therefore it is hypothesized
that the clinical onset of AD dementia could be partly prevented
or postponed by anti-inflammation interventions, which is
based on results from retrospective observation studies and
prospective trials (McGeer et al., 1996; Hoozemans et al., 2011).
Multiple pathophysiological factors can trigger the process
of immunoactivation in the CNS, in which complements,
cytokines, growth factors, reactive oxygen species, microglia and
astrocytes participate (Barger and Harmon, 1997; Akiyama et al.,
2000). PET radiotracers have been developed to image these
neuroinflammatory targets in vivo (Zimmer et al., 2014; Varley
et al., 2015).

Tracer Development
The 18-kDa translocator protein (TSPO) is a mitochondrial
protein. Under normal circumstances, it is low-expressed
in specific brain regions in the microglia, the monocyte-
macrophage-dendritic cell family member majorly active in
the CNS and comprising ∼15% of the non-neuronal cells
within. TSPO is found to participate in amino acid and
cholesterol transportation, and to serve as a “switch” in activating
microglia from the resting state in response to various stimuli
including infection and traumatic injury (Streit et al., 2004). Pro-
inflammatory cytokines and neurotoxic substances are released
by significantly proliferated microglia after the induction of
soluble or fibrillary Aβ and subsequent TSPO regulation, which
could be related to the fact that amyloid plaques are found to be
colocalized with activated microglia in vivo in the brain where
massive neuronal destruction and brain atrophy occur (McGeer
et al., 1988; Venneti et al., 2009; Schilling and Eder, 2011). These
characteristics made TSPO the predominant target for imaging
in vivo inflammatory process in AD.

[11C]PK11195 was the first successfully developed TSPO
tracer for human PET imaging (Figure 4) (Cagnin et al., 2001),
but it remains controversial whether its binding is correlated
with amyloid deposition, probably due to its low specific binding
signal and hence low sensitivity to detect small changes in
TSPO under disease conditions (Edison et al., 2008; Wiley et al.,
2009; Yokokura et al., 2011). To overcome the shortcomings of
[11C]PK11195, a series of 2nd generation TSPO tracers were
developed and evaluated, including [11C]PBR28, [11C]DAA1106,
[18F]DPA713, [18F]DPA714, [18F]FEPPA, [18F]FEMPA, and
[18F]FEDAA1106 (Figure 4; Varley et al., 2015; Calsolaro and
Edison, 2016; Edison et al., 2018). Though the majority of these
radioligands are more sensitive than [11C]PK11195, subsequent
studies found that their brain uptake are regulated by the
TSPO gene rs6971 polymorphism, thus requiring phenotyping
of individual subjects to match imaging results to their
TSPO affinity status (Owen et al., 2012). More recently, 3rd
generation, putative “phenotype-insensitive” TSPO probes such
as [11C]ER176 (Figure 4) are being developed and evaluated
(Wadsworth et al., 2012; Ikawa et al., 2017).

Similar to the paradigm of TSPO imaging of microglial
activation, MAO-B is found to be elevated in reactive
astrocytes and chosen as the target for in vivo imaging
of neuroinflammation. The selective MAO-B tracer
[11C]deuterium-L-deprenyl ([11C]DED) has been applied
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FIGURE 4 | Structures of representative PET radiotracers for TSPO imaging.

to studies of neurodegenerative disorders including AD (Carter
et al., 2012). Type-2 imidazoline receptor, a newly discovered
target for imaging astrocyte, is now being evaluated for its
potential in differentiating AD and control using [11C]BU99008
under ongoing trial (Wilson et al., 2019).

Imaging Research Findings and Clinical
Relevance
In vivo TSPO imaging is generally able to discriminate between
AD dementia patients and normal control subjects (Cagnin
et al., 2001; Yasuno et al., 2008; Suridjan et al., 2015; Varrone
et al., 2015; Hamelin et al., 2016; Kreisl et al., 2016a). The
majority of the multi-modality studies report that regional TSPO
binding correlates to [11C]PIB retention positively, and FDG
uptake as well as cortical volume negatively (Edison et al., 2008;
Yokokura et al., 2011; Kreisl et al., 2013, 2016b) (Figure 5). In
most cases the extent of TSPO binding is associated with not
only baseline cognitive performance, but also its deterioration
over time (Edison et al., 2008; Okello et al., 2009b; Yokokura
et al., 2011; Kreisl et al., 2013, 2016a). Elevated TSPO binding in
advanced AD dementia patients is seen in various cortical regions
following an anticipated distribution pattern (Cagnin et al., 2001;
Hamelin et al., 2016). Apart from global discrimination, regional
TSPO binding is correlated to attenuated corresponding brain
function. One study uncovered an inverse correlation between
visuospatial function and [18F]FEPPA binding in the parietal
and posterior internal capsule, as well as correlation between
language ability and binding in the latter region (Suridjan et al.,
2015). Interestingly, early-onset AD (EOAD) is reported to
be associated with higher TSPO binding than late-onset AD
(LOAD), especially in the frontal and parietal cortices, suggesting
greater microglial activation in the former condition (Kreisl et al.,
2013). In addition, a longitudinal study revealed that TSPO

FIGURE 5 | Single subject images from a patient with posterior cortical

atrophy (top row), a patient with amnestic Alzheimer’s disease (center row),

and a healthy control subject (bottom row). The posterior cortical atrophy

subject showed focal occipito-temporal [11C]PBR28 binding, with FDG

hypometabolism in the same region (arrows). While the posterior cortical

atrophy subjects showed occipito-temporal PIB binding, PIB binding was also

found in frontal cortex. The subject with amnestic Alzheimer’s disease showed

more diffuse [11C]PBR28 binding, with occipital sparing on PIB and classic

bilateral temporo-parietal hypometabolism on FDG imaging. The control

subject showed low amounts of diffuse [11C]PBR28 binding and absence of

cortical [11C]PIB binding. Courtesy from Kreisl et al. (2016b).

binding inMCI converters to AD dementia is drastically different
from that of non-converters (Kreisl et al., 2016a). These results
are concordant with previous finding that chronic microglia
participation may be associated to the brain in AD progression
(McGeer and McGeer, 2010; Morales et al., 2014).
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However, conflicting results are also present in various
aspects. Absence of the expected correlation between TSPO
binding and cortical amyloid retention or neuronal metabolism
has been repeatedly reported (Okello et al., 2009b; Wiley et al.,
2009; Schuitemaker et al., 2013). There are also studies showing
the inability of TSPO tracers to discriminate healthy subjects
from patients withMCI or even advanced dementia (Okello et al.,
2009b; Wiley et al., 2009; Schuitemaker et al., 2013; Golla et al.,
2015). Likewise, significant association between TSPO binding
and memory performance or disease severity is not always found
(Yasuno et al., 2008; Schuitemaker et al., 2013). Single-nuclide
polymorphism of rs6971 has been discovered to regulate TSPO
binding in vivo and may partly contribute to the conflicting
findings so far, since binding adjusted to individual phenotyping
shows increased discriminating accuracy (Suridjan et al., 2015).
In addition to doubts about the sensitivity of current TSPO
tracers to detect subtle alterations in the prodromal stages of AD,
there are data relating higher binding of [18F]DPA714 to slower
cognitive decline, suggesting a neuroprotective role of microglial
activation perhaps in the early phase of the disease (Hamelin
et al., 2016).

According to a collective study with both [11C]DED and
[11C]PIB, astrocytosis is most profound in amyloid-positive MCI
subjects, followed by advanced AD patients as well as amyloid-
negative MCI subjects and healthy controls (Carter et al., 2012;
Rodriguez-Vieitez et al., 2016). This PET finding suggests that
astrocytic reaction diminishes after prodromal AD converts to
dementia, and is supported by postmortem autoradiographic
study showing highest binding of MAO-B radioligand in the
earliest Braak stages (Gulyas et al., 2011).

Discussion
It is universally acknowledged that neuroinflammation
plays an active part in the course of AD. PET imaging
of neuroinflammation targets have, in part, confirmed
the correlation between Aβ deposition and elevated
microglia/astrocyte activation/neuroinflammation. Nonetheless,
in light of the complexity of both the process and components,
questions such as “Is neuroinflammation beneficial at the
beginning and harmful thereafter?” and “Is TSPO imaging
and MAO-B imaging reflecting true activation of microglia
and astrocytes?” remain to be answered. In order to obtain
a clearer picture of the various aspects of inflammation
in the CNS, further exploration is needed with some of
the clues now at hand. First, microglia can be polarized
to either M1, releasing neurotoxic substances, or to M2,
releasing neuroprotective cytokines (Mosser and Edwards,
2008). Highly selective radioligands discriminating the two
opposing activations will help answer these questions. Further,
longitudinal studies, ideally tracking from the very early stage
to the end stage of the disease across subjects, will be more
informative than cross-sectional studies in mapping the time
course and topography of microglia activation in disease
progression. In addition, genotype-insensitive TSPO tracers
under development require verification and validation in large-
sample cohorts (Wadsworth et al., 2012; Zanotti-Fregonara
et al., 2014; Ikawa et al., 2017). Finally, multi-modality imaging

approaches will be helpful in revealing the interactions between
neuroinflammation and various pathologic/pathophysiological
components in AD.

PET TRACERS FOR IMAGING TARGETS IN
THE CHOLINERGIC SYSTEM

Overview
The basal/rostral forebrain cholinergic pathways are believed
to play an important role in a variety of neuropsychological
functions including attention, consciousness and memory
processing (Perry et al., 1999). Cholinergic replacement
countering the loss of cholinergic neurotransmission in
neurodegeneration is the theoretical basis of AD-treatment
strategies using clinically approved medications (Bartus et al.,
1982; Schliebs and Arendt, 2011). Cholinergic depletion and
the resulting deficit in neuronal compensatory plasticity are
confirmed in autopsy studies of AD patients (Bierer et al.,
1995; Craig et al., 2011). PET imaging tracers targeting various
aspects of cholinergic neurotransmission and metabolism can
help us to better understand the role of cholinergic neuropathy
and its interaction with other pathologic/pathophysiological
components in the course of AD.

Tracer Development
Acetylcholinesterase (AChE) is the major target of AD
medications, most of which are acetylcholinesterase inhibitors
(AChEIs). These therapeutic agents, including galantamine,
rivastigmine, tacrine and donepezil, block AChE to inhibit
hydrolysis of ACh, thus increasing ACh level in the synaptic
cleft. N-[11C]methyl-4-piperidinyl propionate ([11C]PMP)
and N-[11C]methyl-4-piperidyl acetate ([11C]MP4A) are two
selective substrates for AChE that have been successfully
brought to in vivo human imaging research (Figure 6).
Another presynaptic cholinergic PET tracer [18F]FEOBV,
selective to the vesicle ACh transporter (VAChT), is reported
to have been assessed in humans (Aghourian et al., 2017).
Postsynaptic acetylcholine receptors can be classified into
nicotinic acetylcholine receptors (nAChRs) and muscarinic
acetylcholine receptors (mAChRs). While most of the previous
human PET studies used α4β2 or non-selective nAChR
tracers including [11C]nicotine, 2-[18F]F-A-85380 ([18F]2-FA),
[18F]AZAN, and [18F]flubatine (also known as [18F]NCFHEB)
(Figure 6) (Nordberg et al., 1990; Sabri et al., 2008, 2015b;
Wong et al., 2013), successful development of selective tracers
for new targets such α7 nAChR and M1 and M4 mAChR
has been reported recently. Recent imaging evaluations in
humans indicated that [18F]ASEM, [11C]LSN3172176, and
[11C]MK-6884 (Figure 6) have appropriate kinetics and imaging
properties and are promising tracers for their respective targets
α7 nAChR and M1 and M4 mAChR (Hillmer et al., 2017; Wong
et al., 2018; Masdeu et al., 2020; Tong et al., 2020; Naganawa
et al., 2021b). [18F]ASEM and [11C]MK-6884 have been used in
preliminary studies of α7 nAChR and M4 mAChR in AD (see
below), while evaluation of M1 mAChR in AD is ongoing with
[11C]LSN3172176 in our laboratories.
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FIGURE 6 | Structures of representative PET radiotracers for cholinergic targets.

Imaging Research Findings and Clinical
Relevance
AChE imaging using [11C]PMP and [11C]MP4A showed reduced
cortical binding in AD patients than in healthy controls,
especially in regions innervated with cholinergic projections
(Iyo et al., 1997; Kuhl et al., 1999). AChE binding is lower in
AD patients than in healthy controls, in parallel with VAChT
reduction, and is further decreased by treatment with AChE
inhibitors donepezil, rivastigmine and galantamine (Kuhl et al.,
1999, 2000; Shinotoh et al., 2001; Kaasinen et al., 2002; Kadir
et al., 2008). However this induced inhibition is absent for
nAChR binding, suggesting that allosteric modulation effect
maintains ACh signaling by up-regulating nAChR but not AChE
(Maelicke et al., 2001). The degree of treatment-induced decline
in AChE binding is more prominent in the frontal cortex than
in the temporoparietal cortices, and correlated to improvement
in frontal lobe functions such as execution and attention rather
than episodic memory. Correlation between AChE hydrolysis
and hypometabolism in the posterior cingulate cortex is also
absent, while a connection between higher hydrolysis rate and
APOE4 positivity exists (Kuhl et al., 1999; Eggers et al., 2006).

The binding of novel VAChT tracer [18F]FEOBV is found
to be lower in AD than in healthy controls in a recent multi-
tracer study involving [18F]FDG and [18F]NAV4694 as well
(Aghourian et al., 2017). [18F]FEOBV PET is shown to have
higher sensitivity than [18F]FDG in discriminating AD from

healthy controls (Figure 7). There is also a positive correlation
of [18F]FEOBV binding to minimal mental state examination
(MMSE) and Montreal cognitive assessment (MoCA). A more
recent study attributed basal forebrain degeneration in AD to the
loss of cortico-amygdalar cholinergic input, as demonstrated by
[18F]FEOBV binding decline (Schmitz et al., 2018).

Nicotinic AChR binding reduction is not only lower in
AD and MCI subjects than in cognitively-intact volunteers,
but also in MCI converters to AD dementia than in non-
converters (Nordberg et al., 1990, 1995; Kendziorra et al.,
2011). Binding quantitation of the AD-affected brain regions is
significantly responsible for their coupling cognitive functions
(Ellis et al., 2008; Sabri et al., 2008; Kendziorra et al., 2011;
Okada et al., 2013). Frontal [11C]PIB retention is found to
be inversely correlated with [18F]2-FA binding in the medial

frontal cortex and nucleus basalis magnocellularis of AD patients

(Maas et al., 2000). PET imaging with [18F]flubatine, a new-

generation α4β2 tracer with more favorable kinetics, reveals
receptor deficiency within the basal forebrain-cortical and septo-
hippocampal cholinergic projections (Sabri et al., 2018). Episodic
memory, working memory and executive functions are well-
correlated with impairment of α4β2 nAChR in the corresponding
cortices. Initial imaging studies with the α7 nAChR selective
radioligand [18F]ASEM in healthy controls and MCI subjects
indicated elevation of this receptor subtype with healthy aging,
and in MCI, in a direction opposite of that for α4β2 nAChR in
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FIGURE 7 | Averaged [18F]FEOBV VAChT PET (A,B), [18F]FDG PET (C,D),

and [18F]NAV4694 Aβ PET (E,F) images of healthy controls (A,C,E) and AD

patients (B,D,F). PET images in control subjects revealed the greatest

[18F]FEOBV uptake in brain areas known to be the most innervated by the

cholinergic systems, including the striatum, thalamus, cerebral cortex as a

whole, hippocampal area and cerebellum (A). In AD patients, PET imaging

revealed a significant reduction of [18F]FEOBV uptake in comparison with

control subjects (B). Distinct cerebral hypometabolism (D) and amyloid

deposition (F) were seen in the AD patients, as compared to control subjects

(C,E). Courtesy from Aghourian et al. (2017).

AD (Coughlin et al., 2018, 2019). A preliminary imaging study
of M4 mAChR in AD revealed reduced uptake of [11C]MK-6884
primarily in the parietotemporal cortex in a pattern consistent
with clinical symptom presentations and FDG hypometabolism
(Masdeu et al., 2020).

Discussion
PET imaging studies with tracers for both pre- and post-
synaptic cholinergic targets have confirmed the abnormalities of
cholinergic transmission in vivo, in AD, as manifested in altered
levels of AChE, VAChT, and α4β2 and α7 nAChR’s, and their
correlations with Aβ deposition and cognitive functions. The α7
nAChR is a target gaining increasing focus in recent years, due to
its newly discovered participation in preventing amyloid toxicity

and tau hyper-phosphorylation, in increasing synaptic strength
and stability, and in modulating neuroinflammation by acting
on non-neuronal cells (Wang et al., 2003; Conejero-Goldberg
et al., 2008; Halff et al., 2014; de Oliveira et al., 2016; Maurer and
Williams, 2017; Gamage et al., 2020). Renewed interests have also
been seen in the mAChR, especially the M1 and M4 subtypes,
for therapeutic development for AD (Levey, 1996; Schliebs and
Arendt, 2011; Melancon et al., 2013). Investigation of these
additional targets with recently available PET tracers will lead to a
more thorough understanding of cholinergic involvement in AD
etiology and progression.

PET TRACERS FOR IMAGING SYNAPTIC
DENSITY

Overview
The total number of synapses in the neocortices is approximately
164 × 1012 (Tang et al., 2001). Synapses are critical for
neurotransmission in neuron-neuron interaction, the deficiency
of which would result in neuronal dysfunction and consequent
occurrence of neuropsychiatric symptoms including amnesia,
apathy and executive dysfunction. Loss of synapses has long been
regarded as a pathologic hallmark of AD (Scheff et al., 1990;
Terry et al., 1991; Scheff and Price, 2006) and correlates strongly
with cognitive impairment (Hamos et al., 1989; DeKosky and
Scheff, 1990; Terry et al., 1991; DeKosky et al., 1996; Robinson
et al., 2014). Synaptic density reductions are seen in the neocortex
and limbic system in MCI, a prodromal form of AD and
other dementias (Masliah et al., 1994, 2001; Pham et al., 2010).
Accumulation of toxic Aβ oligomers is believed to lead to the
loss of synapses and presynaptic proteins in MCI patients (Pham
et al., 2010; Wei et al., 2010; Beeri et al., 2012; Robinson et al.,
2014).More recent research also suggests an emerging role for tau
mediated toxicity at the synapses (Pooler et al., 2014; Wang and
Mandelkow, 2016). Thus PET imaging of the synapses provides a
tool for direct visualization of synaptic density loss along the AD
pathogenesis and progression pathway.

Tracer Development
Synaptic vesicle glycoprotein 2 (SV2) is one of the synaptic
proteins highly expressed on the presynaptic membrane. Among
the 3 forms of SV2, only SV2A is extensively expressed in
glutamatergic and GABAergic neurons throughout the CNS
(Dong et al., 2006). Traditionally, synapses can only be
observed by electron microscopic and immunohistochemical
examinations in biopsy and autopsy tissue samples. Recently
a series of novel PET radiotracers selectively targeting SV2A
have been developed (Figure 8) (Mercier et al., 2014; Estrada
et al., 2016; Nabulsi et al., 2016; Becker et al., 2017; Li et al.,
2019; Cai et al., 2020a), enabling non-invasive observation and
quantification of synaptic density in humans (Finnema et al.,
2016; Bahri et al., 2017; Cai et al., 2020b; Naganawa et al., 2021a).

Imaging Research Findings and Clinical
Relevance
A recent human SV2A PET study using [11C]UCB-J in cohorts
of MCI/AD patients and age-matched cognitively intact elderly
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FIGURE 8 | Structures of representative PET radiotracers for SV2A.

FIGURE 9 | Representative images of T1WI MRI and [18F]SynVesT-1 PET of a

[18F]Florbetapir positive AD patient. SV2A binding is significantly reduced in the

left hippocampus (white arrow). Images provided by PET Center, Huashan

Hospital, Fudan University and Department of Nuclear Medicine, East Hospital,

Tongji University.

subjects revealed significant reduction of synaptic density in the
hippocampus and entorhinal cortex (44 and 27%, respectively)
(Chen et al., 2018). Moreover, statistically significant correlations
were found between hippocampal synaptic density and episodic
memory (Logical Memory II and Rey Auditory Verbal Learning
Test, R= 0.56, P = 0.01) and global function (Clinical Dementia
Rating Sum of Boxes, R = −0.61, P = 0.003) (Chen et al.,
2018). These findings suggest that [11C]UCB-J can capture
the early pathological alterations in the hippocampus and
entorhinal cortices, brain structures not readily analyzed in
FDG PET compared to neocortices due to attenuated sensitivity
introduced by size-related partial volume effect despite their early
involvement in AD’s Braak Staging (Braak and Braak, 1997).

The loss of synaptic density in the hippocampus of AD
patients was replicated in a study using another SV2A

radiotracer [18F]UCB-H, in which a 11 ∼ 18% reductions of
synaptic density in the basal forebrain and anterior/dorsomedial
thalamus were found to be correlated with cognitive alterations
(Bastin et al., 2020; Mecca et al., 2020). In a more recent
[11C]UCB-J study with a larger cohort of 34 AD and MCI
patients, the significant loss of synaptic density measured by
PET in the hippocampus and entorhinal cortex followed by
parahippocampal cortex, amygdala, lateral temporal cortex,
pre-frontal cortex, posterior cingulate cortex/precuneus, lateral
parietal cortex, and pericentral cortex was found to be generally
correlated with atrophy measured by structural MRI which is in
line with autopsy reports, and was more significantly correlated
with CDR-SB (r = −0.54, P = 0.00003) and episodic memory
(r = 0.56, P = 0.00001) than in the smaller sample reported
earlier (de Wilde et al., 2016; Chen et al., 2018; Mecca et al.,
2020). The relationship between cognitive performances and
medial temporal (especially hippocampus and parahippocampal
gyrus) synaptic density loss in aMCI was strengthened by a
mutually correlated regional tau accumulation, as was revealed by
a multi-tracer PET study using [18F]MK-6240 and [11C]UCB-J
(Vanhaute et al., 2020).

Discussion
SV2A PET has shown great promise as a biomarker for the
non-invasive detection of synaptic density, which can serve as
a useful tool for studying synaptopathies in neurodegenerative
and psychiatric disorders including AD (Cai et al., 2019; Heurling
et al., 2019). Due to the ubiquitous distribution of synaptic
vesicles throughout the CNS, a highly selective molecular probe
such as SV2A PET tracer can spot the subtle alterations of
synaptic density both quantitatively and topographically.

It is anticipated that with the help of multi-target molecular
imaging approaches, the correlation between synaptic loss and
other pathophysiological factors related to AD can be further
elucidated. For instance, the relationship between pathological
amyloid and tau protein aggregations, neuronal glucose utility
impairment, dysfunctions in various neurotransmitter systems
and synaptic loss would be better understood. Since pathological
synaptic alterations emerge in the early stage of AD and
continue throughout its course, many unanswered questions
and controversial issues, e.g., sequence on the emergence
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of pathologic and physiological biomarkers, energetic, and
neurotransmitter system abnormalities, and their relative
impacts on disease progression, would be hopefully settled. It
is perceivable that SV2A PET has the potential in AD early
detection, differential diagnosis and conversion prediction of the
prodromal stage subjects. Many studies using SV2A PET imaging
in AD and other neurodegenerative diseases are ongoing, and
results are emerging rapidly in publications. The introduction of
additional 18F-labled SV2A radiotracers with favorable kinetics
and high specific binding profiles, such as [18F]SynVesT-1 (also
known as [18F]SDM-8 and [18F]MNI-1126) and [18F]SynVesT-2
(also known as [18F]SDM-2), should facilitate these studies since
they are suitable for central production and distribution for use
in off-site imaging facilities (Figures 8, 9). Further, PET imaging
with these SV2A radiotracers will be useful as endpoint measure
in AD drug clinical trials (e.g. NCT03493282: Effect of CT1812
treatment on brain synaptic density).

SUMMARY AND CONCLUDING REMARKS

Alzheimer’s disease, characterized by impairments of
cognitive functions and memory loss, is an extremely
complex neurodegenerative disorder involving multiple
pathophysiological processes, from loss of synapses and
neurons, to neuroinflammation, to deposition of Aβ plaques and
neurofibrillary tau tangles. Early diagnosis is the key to effectively
treat the disease before manifestation of clinical symptoms. The
past two decades have witnessed the development of PET imaging
agents targeting various pathologic and physiological biomarkers
in AD which has greatly contributed to the investigation and
diagnosis of this disease.

Radiotracers targeting pathologic hallmarks of AD such as
Aβ and tau proteins have allowed the differentiation of AD
and non-AD dementia, the tracking of pathological protein
burden over the temporal course of the disease, the stratification
of patients for clinical trials, and the monitoring of biological
effects of therapeutic agents. Nonetheless, there remained a
few unanswered questions to be further studied concerning the
relationship between these targets and the etiology of AD.

Pathophysiological alterations such as neuroinflammation
as well as neurotransmitter and synaptic dysfunction are
increasingly thought to commence from the earliest stage of the
pathological changes in AD, and PET radiotracers targeting these
biomarkers may help to elucidate their roles in AD progression
in synergy with the core pathologies.

Measurement of synaptic density through PET imaging
of the synaptic biomarker SV2A opens a new avenue for
the investigation of neurodegenerative diseases. Initial in
vivo imaging results from prodromal AD and AD dementia
cohorts were in excellent correlation with cognitive impairment.
Preliminary results of healthy aging subjects also demonstrated
the early involvement of synaptic density alterations and
its relationship to tau aggregation, which is in concordance
with autopsy neuropathological findings. SV2A PET imaging,
now at its early discovery phase, is expected to provide

further important information on synaptic protein alterations,
along with other pathological changes, during the entire AD
progression continuum, and contribute to the early detection of
the disease.

PET imaging of biomarkers has played an important role
in AD drug development. This trend will continue, as newer
imaging biomarkers are increasingly incorporated into clinical
trials of next-generation AD drugs as outcome measures. It is
expected that applications of PET imaging biomarkers in drug
clinical trials will continue to greatly facilitate the development
of AD therapeutics.

The United States National Institute of Aging (NIA) and the
Alzheimer’s Association (AA) recently put forward a research
framework for AD, i.e., the NIA-AA Research Framework, which
is based on the current understanding of the AD continuum
and grounded on a biomarker-based definition of AD (Jack
et al., 2018). Biomarkers are grouped into three categories: Aβ

deposition, pathologic tau, and neurodegeneration (ATN) based
on the nature of the pathologic process that each measures.
Biomarkers of Aβ plaques (labeled “A”) are represented by
cortical Aβ plaque burden assessed by amyloid PET imaging or
decreased CSF Aβ42. Biomarkers of fibrillar tau (labeled “T”)
are elevated CSF phosphorylated tau (p-tau) and/or cortical
tau tangles measured by tau PET imaging. Biomarkers of
neurodegeneration or neuronal injury (labeled “N”] are based
on CSF total tau (t-tau), hypometabolism as revealed by FDG
PET imaging, and brain atrophy detected by MRI. It is evident
that PET imaging targeting various biomarkers is an essential
component of this ATN research framework, as it provides one
biomarker measurement for each of the arms: amyloid PET for
A, tau PET for T, and FDG PET for N. The recent emergence
of synaptic PET imaging targeting SV2A may provide another
biomarker for N, neurodegeneration that more closely tracks
with the progression of the disease and cognitive impairment,
and less sensitive to cofounding factors such as blood glucose
level, stimulation and medication which affect FDG PET, a
surrogate measure of synaptic/neuronal function (Herholz, 2008;
Burns et al., 2013; Ishibashi et al., 2015). These advancements
in the development of PET radiotracers for AD biomarkers have
been made possible through the efforts of numerous researchers
in the PET imaging field in the last two decades. Collectively, AD
imaging studies with various radiotracers have greatly increased
our knowledge on the etiology and progression of this complex
neurodegenerative disorder, and facilitated the research and
development of AD therapeutics. It is believed that PET imaging
with effective tracers targeting various AD pathophysiological
biomarkers will continue to advance our understanding of the
disease, and hopefully provides a sensitive and definitive tool for
early diagnosis and monitoring of treatment effect.
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