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The equilibrium between the ventricular and lumbar cerebrospinal fluid (CSF)
compartments may be disturbed (in terms of flow and biochemistry) in patients with
chronic hydrocephalus (CH). Using flow magnetic resonance imaging (MRI) and CSF
assays, we sought to determine whether changes in CSF were associated with
biochemical alterations. Nine elderly patients with CH underwent phase-contrast MRI.
An index of CSF dynamics (Idyn) was defined as the product of the lumbar and
ventricular CSF flows. During surgery, samples of CSF were collected from the lumbar
and ventricular compartments and assayed for chloride, glucose and total protein.
The lumbar/ventricular (L/V) ratio was calculated for each analyte. The ratio between
measured and expected levels (Ibioch) was calculated for each analyte and compared
with Idyn. Idyn varied from 0 to 100.103µl2.s2. In contrast to the L/V ratios for chloride
and glucose, the L/V ratio for total protein varied markedly from one patient to another
(mean ± standard deviation (SD): 2.63 ± 1.24). The Ibioch for total protein was strongly
correlated with the corresponding Idyn (Spearman’s R: 0.98; p< 5× 10−5). We observed
correlated alterations in CSF flow and biochemical parameters in patients with CH. Our
findings also highlight the value of dynamic flow analysis in the interpretation of data on
CSF biochemistry.

Keywords: cerebrospinal fluid, biochemistry, phase-contrast magnetic resonance imaging, hydrocephalus,
lumbar and ventricular total protein levels

INTRODUCTION

In 1964, Dichiro (1964) described the active circulation of cerebrospinal fluid (CSF) for
the first time. Over the last two decades, our understanding of CSF dynamics has been
considerably improved by the use of phase-contrast magnetic resonance imaging (PCMRI).
This technique enables the reliable, non-invasive, rapid measurement of CSF and blood flows in

Abbreviations: CC, cardiac cycle; CH, chronic hydrocephalus; CSF, cerebrospinal fluid; ICP, intracranial pressure;
L/V, lumbar/ventricular; MRI, magnetic resonance imaging; PCMRI, phase-contrast magnetic resonance imaging;
SVaqu, stroke volumemeasured at the cerebral aqueduct; SVspine, stroke volumemeasured at the spinal canal at C2-C3;
CCTaqu, cardiac cycle time measured at the cerebral aqueduct; CCTspine, cardiac cycle time measured at the spinal
canal at C2-C3; Vexp, expected ventricular CSF protein level; Vm, measured ventricular CSF protein level.
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various compartments (Barkhof et al., 1994; McCauley et al.,
1995; Hoppe et al., 1998; Knobloch et al., 2014).

Chronic hydrocephalus (CH) is characterized by marked
ventriculomegaly and alterations in CSF flow. The incidence of
CH increases with age, and the diagnosis of this condition is
based on both clinical and radiological data. Magnetic resonance
imaging (MRI) can reveal severe ventricular enlargement (i.e.,
greater than the enlargement due to brain atrophy alone) and
may also evidence CSF ‘‘flow void’’ in the aqueduct (Bradley
et al., 1996) when very high CSF velocities are caused by
active hydrocephalus. Recently, new biophysical approaches have
been used to characterize the role of CSF dynamics in brain
function. During the cardiac cycle (CC), the CSF oscillates
between the intracranial compartment and spinal canal; this
compensates for the vascular changes in brain volume and
thus avoids a marked increase in intracranial pressure (ICP;
Bateman, 2000; Bouzerar et al., 2012; Schmid Daners et al., 2012).
In healthy individuals, the oscillations between the cranium
and the spinal canal involve just 10% or so of the total CSF
volume (Balédent et al., 2001). In CH, the movement of CSF
between ventricular, intracranial subarachnoidal and lumbar
compartments may become disorganized, and patients with
CH may display abnormally low or abnormally high levels
of CSF pulsatility (Chaarani et al., 2013). We reasoned that
the application of PCMRI may improve the diagnosis and
management of patients with CH. It has been estimated that
CH accounts for up to 10% of cases of dementia. Hence,
CH constitutes a modifiable risk factor because it can be
treated by ventriculoperitoneal shunting. The use of PCMRI
enables the volume of CSF flowing through the aqueduct in
either direction during the CC (i.e., the stroke volume, SV)
to be measured easily. In some patients with CH, it is not
clear whether ventricular dilation is due to atrophy or another
active mechanism; in this particular case, some researchers
consider that a high aqueductal CSF SV in patients with dilated
ventricles is a good prognostic marker for the placement of
a shunt (Bradley et al., 1996; Luetmer et al., 2002; Balédent
et al., 2004; Scollato et al., 2008; El Sankari et al., 2011).
However, other recent studies suggest that the aqueductal SV is
correlated with the aqueduct area and the ventricular volume
but not with the severity or duration of clinical symptoms
(Ringstad et al., 2015a). The significance of the aqueductal SV
is therefore still subject to debate (Bradley, 2015; Ringstad et al.,
2015a,b).

In other patients with CH, there is a blockage between
the ventricles and the subarachnoid spaces. This blockage is
sometimes difficult to detect on conventional, morphological
images. In such cases, PCMRI shows the abnormal absence
of CSF oscillations in the aqueduct and thus prompt the
neurosurgeon to recommend endoscopic third ventriculostomy
rather than shunt placement (Stoquart-El Sankari et al., 2009).

We hypothesized that the noted hydrodynamic alterations
might also alter the CSF levels of routinely measured clinical
biochemical parameters. In patients with CH, PCMRI studies
have shown that the CSF flows in the ventricles or/and spinal
canal are modified. The putative correlations between CSF
biochemistry and CSF flow dynamics have not previously been

investigated. Indeed, very few publications have even looked at
biochemical differences between CSF samples in the ventricular
and lumbar compartments.

The blood plasma is the source of 80% of all CSF proteins
(350–500 mg/l). The total protein concentration is 2.5 times
higher in the lumbar CSF than the ventricular CSF because of
the gradual influx of proteins moving from the choroid plexus
to the lumbar spinal canal (Regeniter et al., 2009). However, the
concentration of proteins synthesized in the brain is relatively
uniform in all CSF compartments but can sometimes even be
lower in the lumbar region than in the ventricular region (as seen
with tau protein, Reiber, 1994).

In 1958, Fishman et al. showed that the CSF protein
concentration was higher in the lumbar sac than in the ventricles
of patients with CH. Furthermore, the protein concentration
varied greatly from one subject to another. The researchers
concluded that the protein concentration gradient depended (at
least in part) on the relatively high permeability to albumin
of the blood-CSF barrier in the spinal subarachnoid space.
However, this gradient also depends on several other factors,
including: (i) mixing within the ventricles and the subarachnoid
space; and (ii) removal mechanisms, which may operate in
some compartments but not others (Fishman et al., 1958).
Similarly, Weisner and Bernhardt’s (1978) study of samples from
healthy controls showed that the CSF albumin concentration was
2.2 times greater in the lumbar region than in the ventricles.

As suggested by Milhorat (1975), the ventricles’ highly
complex anatomy and the equally complex system of CSF
circulation within the brain may contribute to the maintenance
of a balance between the various compartments (in terms of
both flow rates and CSF biochemistry). We speculated that this
balance might be disturbed in patients with CH and that this
disturbance might (at least in part) be attributed to abnormal
CSF hydrodynamics. Hence, we used flowMRI and standard CSF
assays to establish whether altered CSF flow dynamics in CH
were related to the CSF’s biochemical profile.

MATERIALS AND METHODS

The Study Population
All procedures involving human subjects were performed in
accordance with the 1983 and 2008 revisions of the Declaration
of Helsinki. The study was conducted at Amiens University
Hospital (Amiens, France). All the patients included in the
present research project were informed by amedical doctor of the
aim of this research. They were all free to reject their participation
without any implication on the following of their care. All
have signed the consent before to be included in the research
population. This study was approved by the local investigational
review board (CPP Nord-Ouest II, Amiens, France; reference:
2010/17). For obvious ethical reasons, it was impossible to obtain
samples of ventricular and lumbar CSF from healthy volunteers;
we therefore studied nine elderly, shunted patients (5 women and
4 men; mean ± standard deviation (SD) age: 73 ± 8; age range:
56–83) with a documented clinical history of CH and easy access
to the CSF during the tap test and the surgical shunt procedure.
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Acquisition of PCMRI Data
All nine patients underwent morphological and CSF flow
MRI of the brain (Table 1). All acquisitions were performed
prospectively with a 3 Tesla MRI system (Signa, General Electric
Medical Systems, Milwaukee, WI, USA). Conventional anatomic
sequences were acquired for each patient. A sagittal T2-weighted
image was used to select two PCMRI flow acquisitions (one
perpendicular to the presumed direction of CSF flow through

the C2-C3 subarachnoid space and the other through the cerebral
aqueduct; Figure 1). Retrospective peripheral gating was used to
measure 32 different time frames over the entire CC for each
of the two flow acquisitions. The main PCMRI parameters were
as follows: echo time: 6–9 ms; repetition time: 20 ms; flip angle:
20◦; field-of-view: 16× 12 mm2; pixel resolution: 0.6× 0.6 mm2;
slice thickness: 5 mm; views per segment: 2; velocity (encoding)
sensitization: 5, 10 or 20 cm/s for the cervical aqueduct and

TABLE 1 | CSF flow assessment (PC-MRI) and CSF protein assay data.

SVaqu µL/CC SVspine µL/CC CCTaqu s CCTspine s Idyn103.µL2.s2 PL g/L PV g/L Vexpg/L PL/PV Ibioch%

P1 0 630 1 1 0 0.67 0.12 0.34 5.6 −64
P2 160 650 0.7 0.7 53 0.38 0.25 0.19 1.5 31
P3 40 250 0.9 0.9 8 1.30 0.3 0.65 4.3 −54
P4 50 290 0.8 0.8 9 0.54 0.18 0.27 3 −33
P5 44 640 0.8 0.8 17 0.83 0.36 0.42 2.3 −13
P6 510 130 0.7 0.7 35 0.41 0.22 0.21 1.9 7
P7 350 430 0.8 0.8 100 0.4 0.33 0.2 1.2 65
P8 120 440 0.8 0.8 31 0.34 0.14 0.17 2.4 −18
P9 293 534 0.6 0.6 57 0.29 0.2 0.15 5 38

Abbreviations: SVaqu, stroke volume at the aqueduct; SVspine, stroke volume through the spinal canal at C2-C3; CCTaqu, cardiac cycle time measured at the cerebral

aqueduct; CCTspine, cardiac cycle time measured at the spinal canal at C2-C3; Idyn, SVaqu × SVspine × CCTaqu × CCTspine; PL, lumbar CSF protein level; PV, ventricular

CSF protein level; Vexp, expected ventricular protein level; Ibioch, (Vm − Vexp)/Vexp × 100.

FIGURE 1 | Quantification of cerebrospinal fluid (CSF) dynamics. A sagittal T2 weighted image (A) was used to select the phase-contrast magnetic resonance
imaging (PCMRI) acquisition planes in patients with chronic hydrocephalus (CH) and ventricular dilation on the axial T2-weighted FLAIR image (B). Images (C,D)
respectively show CSF flowing through the cerebral aqueduct and through the cervical (C2-C3) subarachnoid spaces during the cardiac cycle (CC). Post-processing
of these PCMRI data enables the CSF oscillations during the CC to be quantified (D). Integration of these curves over time yields the CSF stroke volume (SV) for the
aqueduct (SVaqu) and for the spinal canal (SVspine). The CSF SV corresponds to the volume of CSF moving through the slice over the CC and is the primary
descriptor of CSF dynamics (E).
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5 cm/s for the C2-C3 subarachnoid space. The acquisition
time for each flow series was about 2 min, depending on the
participant’s heart rate.

Analysis of PCMRI Data
Data were analyzed using dedicated PCMRI image processing
software (Balédent et al., 2001) with an optimized CSF
flow segmentation algorithm. The software automatically
extracts the anatomic regions of interest and calculates
the corresponding flow curves over the 32 CC segments
(Figure 1).

The CSF flow curves were integrated to provide the CSF
SVs, which correspond to the CSF volumes displaced in both
directions through the cerebral aqueduct (SVaqu) and the spinal
canal (SVspine) over the CC (Nitz et al., 1992; Enzmann and Pelc,
1993). SVs are quoted in µL/CC.

An overall index of CSF dynamics (‘‘Idyn’’) was derived as
a guide to the CSF volume displaced in the ventricles and the
spinal canal during the CC. It was defined as the product of
the two CSF SVs and the two CC times (CCTaqu and CCTspine);
Idyn = SVaqu × SVspine × CCTaqu × CCTspine.

The CCT was measured using a plethysmographic sensor
worn on the patient’s finger during the MRI. The sensor
monitored the changes in blood volume in the finger during the
CC. The PCMRI acquisition was synchronized with the systolic
pulse.

CSF Sampling and Biochemical Analysis
All patients underwent a CSF tap test during placement
of their shunt. During surgery, CSF samples (at least one
for the ventricular compartment and one for the lumbar
compartment) were collected from each patient. The
samples were collected between 9.00 and 10.30 am after
overnight fasting, in accordance with our university medical
center’s validated, aseptic protocols. The plastic vials were
immediately sent to the university medical center’s central
laboratory. Chloride, glucose and total protein levels were
determined using conventional techniques (Advia 2400
analyzer, Siemens Healthcare Diagnostics, Tarrytown, NY,
USA). Briefly, chloride was assayed potentiometrically
using an ion-selective electrode. The glucose level was
determined in an enzymatic assay based on hexokinase
and glucose-6-phosphate. The CSF total protein level was
determined using pyrogallol red/acidic molybdate reagent.
Levels of the resulting blue pyrogallol/molybdate/protein
complex were quantified by reading the optical density
at 596/694 nm. Ventricular and lumbar levels were
measured for each CSF component. Under physiological
conditions, the ventricular CSF protein level is around
half the lumbar level (Laterre et al., 2008). We therefore
defined a biochemical index (‘‘Ibioch’’), in order to assess the
difference between expected and measured protein levels in the
ventricle:

Ibioch =
(
Vm − Vexp

)
/Vexp × 100 (1)

where Vm and Vexp are respectively the measured and expected
ventricular CSF protein levels. Vexp was calculated as half the

lumbar CSF protein level (based on the normal L/V ratio
in healthy individuals; Laterre et al., 2008). An Ibioch of ∼0
indicates that CSF protein is distributed normally between the
ventricular and lumbar compartments, an Ibioch above 0 reveals a
higher-than-expected ventricular CSF protein level and an Ibioch
below 0 reveals a lower-than-expected ventricular CSF protein
level.

Statistical Analysis
A nonparametric Spearman’s test was used to assess the
correlations between PCMRI and clinical biochemical
parameters. A p-value below 0.05 was considered to be
statistically significant. We also applied linear regression
analysis, with extraction of the linear equation and calculation of
the regression coefficient R2.

RESULTS

PC-MRI Analysis
In the group of CH patients, PCMRI analysis revealed a wide
range of CSF flow profiles (from stenosis to hyperdynamic flow)
when measured at the cerebral aqueduct or at the spinal level.
The mean ± SD (range) values of SVaqu and SVspine were
174± 174 (0–510) and 444± 188 (130–650)µL/CC, respectively.
The mean values of CCTaqu and CCTspine were 0.8 ± 0.12 and
0.79 ± 0.12 s, respectively. The Idyn values ranged from 0 to
100.103 µl2.s2 (Table 1). Hence, patients with CH displayed
major hydrodynamic alterations in ventricular and/or lumbar
CSF compartments.

Biochemical Variations in the Lumbar
and Ventricular Compartments and their
Correlation with CSF Flows
We first compared the biochemical CSF parameters in the
ventricular compartment with those in the lumbar compartment
(Figure 2). The mean ± SD (range) ventricular and lumbar
CSF chloride levels were respectively 124 ± 3.5 (121–130)
and 123 ± 2.8 (117–126) m.mol.l−1, the mean ventricular
and lumbar CSF glucose levels were respectively 3.8 ± 0.8
(2.9–5.3) mmol.l−1 and 3.4 ± 0.6 (3–4.9) mmol.l−1, and the
mean ventricular and lumbar CSF protein levels were respectively
0.23 ± 0.08 (0.12–0.36) and 0.57 ± 0.3 (0.29–1.3) mmol.l−1

(Table 1).
There were no significant ventricular vs. lumbar differences

in the chloride and glucose levels. The L/V ratios for chloride
and glucose were respectively 0.99 ± 0.01 and 0.91 ± 0.10.
The value of the L/V protein ratio varied greatly from one
patient to another but was correlated with the CSF dynamic
index (Figure 3A; Spearman’s R: 0.98; p = 4.10−6). The
mean value was 2.63 ± 1.24 (Figure 2). The corresponding
Ibioch values were also widely distributed (range: −64.2% to
65%; mean ± SD: −4.5 ± 43%). Nevertheless, the respective
values of Idyn and Ibioch were highly correlated (Spearman’s
R: 0.98; p = 5.10−5), suggesting the presence of a strong,
linear relationship between CSF dynamics and CSF total protein
levels.
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FIGURE 2 | Biochemical analyses of lumbar and ventricular CSF samples. (A) Lumbar and ventricular CSF chloride levels in individual patients; L/V ratio ' 1
(mean ± standard deviation (SD): 0.99 ± 0.01). (B) Lumbar and ventricular CSF glucose levels in individual patients; note the absence of a significant difference
between lumbar and ventricular values, L/V ratio ' 1 (mean ± SD mean: 0.91 ± 0.1). (C) Lumbar and ventricular CSF protein values in individual patients, showing a
significant difference in CSF protein levels between the lumbar and ventricular compartments. The L/V ratio ranged from 1.21 to 5.58 (mean ± SD: 2.63 ± 1.46).
Abbreviations: L/V, lumbar/ventricular; SD, standard deviation; [ ], concentration.

FIGURE 3 | (A) In patients with CH, the CSF protein ratio (PL/PV) calculated for the lumbar spaces (PL) and the ventricle spaces (PV) was strongly correlated with
the CSF flow from the aqueduct and the spinal spaces, represented by Idyn = SVaqu × SVspine × CCTaqu × CCTspine. (B) Similarly, Ibioch and Idyn were strongly
correlated. Ibioch = (Vm − Vexp)/Vexp × 100. An Ibioch of ∼0 shows that CSF protein is distributed evenly between the ventricular and lumbar compartments. An Ibioch

above 0 reveals a higher-than-expected ventricular CSF protein level, and an Ibioch below 0 reveals a lower-than-expected ventricular CSF protein level.
Abbreviations: CH, chronic hydrocephalus; PL, lumbar protein level; PV, ventricular protein level; SVaqu, stroke volume measured at the cerebral aqueduct; SVspine,
stroke volume measured at the spinal canal at C2-C3; CCTaqu, cardiac cycle time measured at the cerebral aqueduct; CCTspine, cardiac cycle time measured at the
spinal canal at C2-C3; Vexp, expected ventricular CSF protein level; Vm, measured ventricular CSF protein level.

DISCUSSION

CSF pressure and volume have long been studied in animal
models of hydrocephalus and in the context of shunt design

(Chahlavi et al., 2001; Pickard et al., 2005). Consequently, there
are large bodies of data on pressure-volume relationships in the
ventricular-subarachnoid system and the impact of CSF turnover
on brain metabolism (Silverberg et al., 2010).
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In animal models, it is increasingly clear that low CSF
turnover impairs brain metabolism and fluid balance both early
and late in life (Silverberg et al., 2001, 2003; Owen-Lynch et al.,
2003; Johanson et al., 2004; Praticò et al., 2004; Nagra et al.,
2008). Although a large number of studies have focused on
CSF formation and turnover, the dynamics of CSF within the
cerebrospinal system have not been extensively characterized
(Oreskovíc and Klarica, 2010; Pollay, 2010). Experiments in
small animal models (such as mice) are complicated by the low
total volume of CSF. Hence, the composition and dynamics
of the CSF in the various compartments are not easy to
study.

We hypothesized that CSF dynamics have an impact on CSF
biochemistry. To the best of our knowledge, the present study is
the first to have evaluated the association between CSF dynamics
and CSF biochemistry in humans.

The present PCMRI study was designed to obtain an overview
of CSF dynamics in patients with CH. Dynamic gadoteridol-
enhanced MRI studies of the guinea pig have shown that:
(i) movement of the tracer between the subarachnoid space
and the ventricles was proportional to the CSF pressure; and
(ii) that CSF turnover may be proportional to the ICP (Yamada
et al., 2005). It has long been known that an increase in the
mean CSF pressure is also associated with an increase in the
amplitude of CSF pressure oscillations (Nornes et al., 1977;
Czosnyka et al., 1988). However, the relationship between CSF
pressure and CSF SV remains unclear. In patients with CH, some
researchers have found that the ICP pulse wave is positively
correlated with the volume of CSF movement through the
cerebral aqueduct (Hamilton et al., 2012), whereas others have
not observed this relationship (Ringstad et al., 2015a). The
aqueductal SV accounts for only a part of the craniospinal system.
Under physiological conditions, CSF oscillations through the
foramen magnum influence the ICP. We consider that CSF
dynamics should be studied in the subarachnoidal spaces as well
as in the aqueduct. The fact that the spinal canal receives all
the CSF from the ventricles and the intracranial subarachnoïd
compartments (Balédent et al., 2001) prompted us to define
Idyn, a quantitative, dynamic marker that takes account of both
spinal and ventricular CSF SVs and the CC duration. In previous
work, we had found that the mean ± SD CSF oscillation in a
population of elderly, healthy volunteers was 34 ± 16 µL/CC in
the aqueduct of Sylvius and 457 ± 147 µL/CC in the cervical
spaces (Stoquart-El Sankari et al., 2007). In the current study,
our PCMRI data revealed a broad range of alterations in CSF
flow—ranging from abnormally slow to abnormally high. Indeed,
flow at the aqueduct was either stenosed, normal or elevated (i.e.,
huge volume oscillations through an enlarged aqueduct; Table 1).
Our data also showed that movement of the CSF in both the
ventricular and lumbar compartments varies over the course of
the CC.

Few studies have analyzed CSF biochemistry in both
the ventricular and lumbar compartments. We showed that
ventricular and lumbar CSF levels of small molecules (chloride
and glucose) were similar. Indeed, electrolytes diffuse passively
from the CSF to the interstitial tissue. The glucose concentration
appears to be much the same through the whole cerebrospinal

system. In contrast, total protein levels differed markedly
when comparing the ventricular and lumbar regions. In the
lumbar compartment, most CSF proteins are derived from
plasma proteins (as a result of close interaction with blood
vessels; Laterre et al., 2008). This mechanism might explain
why protein levels are higher in the lumbar compartment
than in the ventricular compartment. Distribution of various
substances along the CSF spaces also depends on the rate of
their removal into microvessels: faster removal corresponds
to more limited distribution. When interpreting experimental
results, it is important to distinguish between the movement
of CSF/water (99% of the CSF’s volume is water) on one hand
and the distribution of substances inside the CSF system on
the other (Vladíc et al., 2000; Bulat and Klarica, 2011). The
flow oscillations induced by the CC cause CSF with a high
protein concentration (in the lumbar compartment) to mix
with CSF with a lower protein concentration (in the ventricular
compartment). Given that we were unable (for ethical reasons)
to measure ventricular CSF protein levels in a control group,
we calculated Ibioch from the expected and measured ventricular
protein levels. According to Laterre et al’s (2008) study in adults,
Vexp is half the lumbar CSF protein level under physiological
conditions. Ibioch ranged from −64.2 to 65%, which strongly
suggests that the L/V ratio varies. Interestingly, we showed that
CSF protein variations were strongly correlated with the CSF
flow oscillations during the CC. Our Ibioch-Idyn correlation was
independent of the exact value of the physiological L/V protein
ratio and thus evidenced a relationship between oscillatory
movement of the CSF and variations in CSF biochemistry.
The observed variations in the CSF flow patterns (Idyn), the
L/V protein ratio and Ibioch strongly support this hypothesis.
(Figure 3).

Lastly, the stable isotope labeling approach recently described
by Lehmann et al. (2015) could be of great value for quantifying:
(i) the rates of synthesis and clearance of a large range of
proteins in the lumbar and ventricular CSF; and (ii) the large
interindividual differences in protein concentration found in
patients with CH.

In conclusion, the results of our pilot study in a reliable
human model suggest that the amplitude of the CSF flow during
the CC influences CSF protein levels and the distribution of
protein within the central nervous system’s cavities. This proof-
of-concept study opens up new avenues in the investigation of
the relationship between clinical biochemical parameters and
dynamic MRI parameters, which should now be confirmed
in a larger cohort. Although further research should seek
to determine which proteins are the most informative, we
have demonstrated the value of combining PCMRI with
CSF biomarker assays. Recent studies have emphasized how
difficult it is to diagnose Alzheimer’s disease—especially in
patients with normal pressure hydrocephalus (Graff-Radford,
2014). CSF biomarkers and proteomic methods (Fonteh et al.,
2006) are of value for the diagnosis of neurodegenerative
disorders (Davidsson et al., 2002; Seppälä et al., 2012; Sweeney
et al., 2015) and neurovascular ischemic disorders (Siman
et al., 2005; Vilar-Bergua et al., 2015). Combining these
biological tools with PCMRI (and not just conventional

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2016 | Volume 8 | Article 154

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Puy et al. Biochemistry and Flow of the Cerebrospinal Fluid

MRI) may improve the diagnosis and monitoring of these
conditions.
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Vladić, A., Strikić, N., Jurćić, D., Zmajević, M., Klarica, M., and Bulat, M. (2000).
Homeostatic role of the active transport in elimination of [3H]benzylpenicillin
out of the cerebrospinal fluid system. Life Sci. 67, 2375–2385. doi: 10.
1016/s0024-3205(00)00823-7

Weisner, B., and Bernhardt, W. (1978). Protein fractions of lumbar, cisternal and
ventricular cerebrospinal fluid. Separate areas of reference. J. Neurol. Sci. 37,
205–214. doi: 10.1016/0022-510x(78)90204-6

Yamada, S., Shibata, M., Scadeng, M., Bluml, S., Nguy, C., Ross, B., et al.
(2005). MRI tracer study of the cerebrospinal fluid drainage pathway in
normal and hydrocephalic guinea pig brain. Tokai J. Exp. Clin. Med. 30,
21–29.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Puy, Zmudka-Attier, Capel, Bouzerar, Serot, Bourgeois, Ausseil
and Balédent. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution and
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 8 June 2016 | Volume 8 | Article 154

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

	Interactions between Flow Oscillations and Biochemical Parameters in the Cerebrospinal Fluid
	INTRODUCTION
	MATERIALS AND METHODS
	The Study Population
	Acquisition of PCMRI Data
	Analysis of PCMRI Data
	CSF Sampling and Biochemical Analysis
	Statistical Analysis

	RESULTS
	PC-MRI Analysis
	Biochemical Variations in the Lumbar and Ventricular Compartments and their Correlation with CSF Flows

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	REFERENCES


