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A B S T R A C T

Atherosclerosis is a chronic inflammatory disease of the vasculature characterised by the infiltration of activated
neutrophils and macrophages at sites of damage within the vessel wall, which contributes to lesion formation
and plaque progression. Selenomethionine (SeMet) is an organic form of selenium (Se), an essential trace ele-
ment that functions in the regulation of the immune response by both bolstering the endogenous thioredoxin and
glutathione antioxidant defence systems and by directly scavenging damaging oxidant species. This study
evaluated the effect of dietary SeMet supplementation within a high fat diet fed apolipoprotein E deficient
(ApoE−/-) mouse model of atherosclerosis. Dietary supplementation with SeMet (2 mg/kg) increased the tissue
concentration of Se, and the expression and activity of glutathione peroxidase, compared to non-supplemented
controls. Supplementation with SeMet significantly reduced atherosclerotic plaque formation in mouse aortae,
resulted in a more stable lesion phenotype and improved vessel function. Concurrent with these results, SeMet
supplementation decreased lesion accumulation of M1 inflammatory type macrophages, and decreased the ex-
tent of extracellular trap release from phorbol myristate acetate (PMA)-stimulated mouse bone marrow-derived
cells. Importantly, these latter results were replicated within ex-vivo experiments on cultured neutrophils isolated
from acute coronary syndrome patients, indicating the ability of SeMet to alter the acute inflammatory response
within a clinically-relevant setting. Together, these data highlight the potential beneficial effect of SeMet sup-
plementation as a therapeutic strategy for atherosclerosis.

1. Introduction

Atherosclerosis is the major cause of cardiovascular disease and is
characterised by the deposition of fatty material and cholesterol within
the arterial wall [1,2]. Atherosclerosis is a chronic inflammatory dis-
ease that features the ongoing infiltration of a variety of immune cells,
in particular neutrophils and macrophages, which play an essential role
during lesion formation and plaque development [3,4], functioning to
both eliminate cell debris and promote beneficial vessel structural re-
modelling [5–7]. As a part of their inflammatory repertoire, neutrophils
release extracellular traps, aimed to confine infection, signal to and
promote macrophage infiltration [3,8]. Activation of infiltrated neu-
trophils within vessel intima produces excess reactive oxidant species

(ROS) and results in the release of the enzyme myeloperoxidase (MPO).
This exacerbates oxidant generation and contributes to lesion devel-
opment by accelerating the formation of lipid-filled foam cells, which
increases overall oxidative stress [8,9]. Monocyte-derived macro-
phages, recruited to sites of damage within the vessel wall and ather-
osclerotic lesions, can further differentiate into either pro-inflammatory
M1 macrophages or alternatively-activated M2 macrophages
[3,10–12]. These two macrophage phenotypes contribute to athero-
sclerosis development in distinct ways. For example, inflammatory M1
macrophages increase oxidant and pro-inflammatory cytokine produc-
tion, including tumour necrosis factor alpha (TNFα) [10,13] and are
generally the dominant macrophage phenotype in unstable lesions
[11,13]. In contrast, M2 macrophages inhibit inflammation within the
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atherosclerotic environment and promote plaque stabilisation by
eliminating cell debris and promoting tissue fibrosis [14,15]. Unlike
their inflammatory counterpart, M2 macrophages tend to predominate
in small and stable plaque regions, suggesting an anti-atherogenic
function for this alternatively-activated subset of macrophages [15].
How the balance between populations of M1 and M2 macrophages
relates to atherosclerotic disease development is complex and remains
unclear and complex.

Selenium (Se) is a trace element essential for human health, with
evidence for an inverse correlation between Se status and CVD risk in a
number of randomised trials, although there is some inconsistency in
the data. Nonetheless, it is generally accepted that Se supplementation
can be beneficial in situations where basal levels of Se are low (re-
viewed in Ref. [16]), with low levels of Se linked to the development of
a variety of diseases [17]. This is due to the fact that many seleno-
proteins within the body are involved in endogenous antioxidant de-
fence systems, including the glutathione peroxidase (GPX) and thior-
edoxin (TRX) families of enzymes [18,19], which detoxify oxidants
particularly during prolonged conditions of oxidative stress. This is
relevant to many disease settings [20], including chronic inflammatory
diseases such as atherosclerosis [17]. Early in vivo studies utilising
rabbit models demonstrated that Se supplementation could reduce le-
sion formation in atherosclerosis. This was attributed to the ability of Se
to inhibit oxidative stress within the atherosclerotic plaque [21,22]. In
addition, these studies also indicated that Se supplementation may in-
hibit plaque formation by modulating key events during atherosclerosis
development, such as decreasing the underlying inflammatory response
and endothelial dysfunction [23]. In support of these data, and high-
lighting a pivotal role of GPX within this setting, subsequent clinical
studies have demonstrated that patients with low baseline GPX activity
have a higher incidence of recurrent cardiovascular events, whilst
pharmacological intervention to upregulate GPX activity can lower the
risk of such events [24,25].

The metabolism of Se by the body is dependent on its particular
chemical form, with inorganic and organic forms incorporating into
proteins by different pathways and rates, which influences cellular
function [26,27]. The majority of previous studies have relied on Se
supplementation in the form of a diet containing inorganic Se, such as
sodium selenite [21,22]. However, dietary supplementation with in-
organic forms of Se can be problematic, because absorption is mainly
through simple diffusion processes, which are influenced by the mo-
larity within any given microenvironment. This results in a low

transportation efficiency of these compounds, requiring high con-
centrations in order to achieve a beneficial outcome [27]. In contrast,
organic forms of Se, such as selenomethionine (SeMet), are more
readily taken up by cells, resulting in comparatively low dietary levels
being required to bolster and enhance endogenous GPX activity
[26,28].

In the present study, we investigate the efficacy of SeMet dietary
supplementation against the development of atherosclerosis within an
apolipoprotein E deficient (ApoE−/-) mouse model, examining the
ability of this compound to enhance GPX expression and modulate the
neutrophil and macrophage inflammatory responses.

2. Materials and methods

2.1. Animals

All studies were performed in compliance with protocols approved
by the Sydney Local Health District Animal Welfare Committee
(Protocol # 2016/035) on male ApoE−/- mice. Following weaning,
mice were housed in groups of three to five and fed with normal ro-
dent/chow diet (Specialty Feeds, WA, Australia) for 3 weeks. At the
commencement of the long-term feeding study, mice were randomly
separated into two cohorts for 12 weeks, a high-fat diet (HFD) (21%
total fat, 0.15% cholesterol; Specialty Feeds, SF00-219) control group
and a HFD group supplemented with SeMet (2 mg/kg, AK Scientific,
M598). In a separate study, mice received a HFD for 6 weeks before
being separated into either a HFD control group or a HFD group sup-
plemented with SeMet (2 mg/kg) for 6 weeks. Given that mice are
known to eat 4–5 g of food a day, the supplementation of 2 mg/kg (w/
w) in feed used in this study equates to a dietary supplementation of
SeMet of 8–10 μg/day. This is in agreeance with ranges of supple-
mentation within previous animal studies using both selenium and
SeMet [29], as well as within the current recommended dietary al-
lowance of selenium for humans of 55 μg [30].

2.2. Sample collection

Mice were anesthetized by inhalation with 2% isoflurane in 1L/min
of oxygen. Blood was drawn by direct puncture of the right ventricle,
and was then placed into heparinised or EDTA coated tubes (BD
Biosciences, North Ryde, NSW, Australia, 367839) as applicable.
Plasma was separated from whole blood by centrifugation for 15 min at
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2000g and immediately frozen at −80 °C for later analysis of cytokine
and MPO levels. Liver, kidney and tissue from the aortic root were ei-
ther fixed in 10% neutral buffered formalin (Sigma-Aldrich, St. Louis,
Missouri, HT501128) then further processed for histological analysis or
snap-frozen in liquid nitrogen and stored at −80 °C for subsequent
SeMet analysis. Whole aorta sections were also snap-frozen in liquid
nitrogen and stored at −80 °C for subsequent protein and gene ex-
pression analysis.

2.3. Quantification of SeMet by ICP-MS

Quantification of SeMet in plasma and tissue homogenates was
performed after separation using a Dionex Ultimate 3000 UPLC system
(Thermo Scientific) in combination with inductively coupled plasma
mass spectrometry (ICP-MS). Plasma and tissue samples were trans-
ferred to Vivaspin® 500 μL centrifugal filter units (Sartorius AG,
Göttingen, Germany, VS0191) with a semi-permeable membrane with
molecular mass cut-off of 3 kDa and centrifuged at 14000g for 30 min.
The filtrates were injected onto a C18 Gemini UPLC column (5 μm,
250 × 2 mm (Phenomenex, Værløse, Denmark), and separated with a
mobile phase containing 200 mM ammonium acetate in 5% v/v me-
thanol (pH 7), and flow rate of 200 μL min−1. The SeMet was quantified
with an Agilent 8800 ICP-MS Triple Quad equipped with a 1.5 mm ID
quartz injector torch and sampler and skimmer cones made of platinum
(Agilent Technologies, Santa Clara, USA). Daily optimization was per-
formed using a Se-standard solution (50 μg L−1 Se in mobile phase),
and the analyses were carried out in MS/MS mode with oxygen as re-
action gas (monitoring 77Se → 93SeO and 80Se → 96SeO).

2.4. Analysis of atherosclerosis lesions

Characterisation and extent of lesion formation was examined by
two approaches. Firstly, whole cleaned and formalin fixed aortic sec-
tions were stained with Oil Red O solution (Sigma-Aldrich, O0625)
using the enface technique described by Lin and colleagues [31].
Images of Oil red O stained aortic sections were captured with a digital
camera attached to a Nikon SMZ800 Zooming Body Microscope and
staining area measured using ImageJ software (National Institutes of
Health, MD) [32]. Overall lesion burden was expressed as a percentage
of red staining area relative to the entire surface area of the aortic
section. Secondly, lesion size was assessed in aortic root cross-sections
following H&E staining (Hematoxylin: Sigma-Aldrich, H3136; Eosin:
Polysciences Inc, Warrington Township, PA, 17269) and presented as
percentage of total vessel aortic root area. Lesion cross-sections from
the aortic root were also assessed using immunohistochemical methods
described by Menon & Fisher [33]. For identification of macrophages,
sections were stained with the pan-macrophage marker F4/80 (Abcam,
Cambridge, UK, ab6640), macrophage phenotype markers iNOS
(Abcam, ab15323) for M1 and Egr2 (Abcam, ab43020) for M2. For
identification of fibrosis sections were stained with antibodies targeting
either α-smooth muscle actin (Abcam, ab5694) or periostin (Abcam,
ab215199). Images were captured on an Axio Scan. Z1 slide scanner
(Zeiss, Oberkochen, Germany) and quantified using either ImagePro
(Media Cybernetics, Rockville, Maryland) or Zen (Zeiss) software.

2.5. Detection of peroxidase activity and antioxidant content

For total peroxidase activity in whole blood a bioluminescence
assay was used as described by Gross et al. [34], with minor mod-
ifications. In brief, whole blood was freshly drawn into heparinised
coated collection tubes and used within 3 h. 10 μL heparinised whole
blood was diluted with 190 μL MEBSS buffer pH 7.4 (Suppl Table 1.)
supplemented with 100 μM luminol (Sigma-Aldrich, A4685) in the
presence or absence of 5 μM phorbol 12-myristate 13-acetate (PMA;
Sigma-Aldrich, P8139) was combined in black-coated 96-well plates
and the luminescence signal recorded at 1 min intervals over a 45 min

period using a CLARIOstar Microplate Reader (BMG Labtech, Sydney,
NSW, Australia). MPO protein levels in plasma were measured by an
MPO ELISA kit following manufacturer's instructions (Abcam,
ab155458). The effect of SeMet on MPO activity was assessed in vitro
using 10 μL of purified MPO (200 ng/mL; Abcam, ab91116), 80 μL
0.75 mM H2O2 (EMD Millipore, Bayswater, VIC, Australia,
1.07298.0250) and 110 μL 3,3′,5,5′-Tetramethylbenzidine solution
(2.9 mM TMB in 14.5% DMSO, Sigma-Aldrich, T2885) as described
previously [35,36].

Plasma thiol levels were measured using 5,5′-dithiobis(2-ni-
trobenzoic acid) (DTNB; Sigma-Aldrich, D8130) as described previously
[37] with thiol concentration calculated by comparison to authentic
GSH standards. Of the different isoforms of GPx, GPx1 is the dominant
isotype, displaying positive effects in CVD through increased anti-
oxidant activity under inflammatory conditions [38]. GPx1 expression
was assessed within the kidney by immunohistochemistry staining as
previously described using a fluorescently-labelled anti- GPx1 primary
antibody (Abcam, ab22604) [33]. GPx1 protein expression within the
aorta and kidney was further assessed with Western blotting and den-
sitometry utilising ImageJ [32].

2.6. Stimulation of extracellular trap formation

Bone marrow cells were isolated from mice at time of sacrifice using
methods previously described by Zhang and co-workers [39], with
slight modifications. Briefly, mice femurs were flushed with 5 mL of
PBS until the bone cavity appeared clear. Eluted cells were then cen-
trifuged at 500 g at room temperature for 10 min, supernatant was
discarded and the cell pellet resuspended in DMEM media (Sigma-Al-
drich, D5030) containing 3% foetal bovine serum (FBS). Identification
of bone marrow cell types was achieved through Cytospin staining
using a commercial DiffQuik kit following manufacturer's instructions
(Polysciences Inc, Warrington, PA, USA, 24606). Neutrophils from
healthy controls or acute coronary syndrome (ACS) patients were iso-
lated from freshly collected blood as described previously [40]. All
studies were performed in compliance with protocols approved by the
Sydney Local Health District Human Research Ethics Committee,
(Protocol #X12-0241 & HREC/12/RPAH/377). All cells were seeded at
density of 1 × 106 cells per mL in DMEM with or without 25 nM PMA
for 3 h in order to stimulate extracellular trap (ET) formation. Visua-
lisation and quantification of ET formation was undertaken following
SYTOX Green (Life Technologies, Carlsbad, CA, USA, S7020) and qPCR
as described previously [41,42], using primer sequences outlined in
Suppl. Table 3.

2.7. Ex-vivo aortic vessel function analysis

Pressurised wire myography was used to evaluate the vascular re-
activity on mouse aortic ring segments as described previously with
minor modifications [43]. In brief, experiments were performed in
Krebs’ buffer (Sigma-Aldrich, K3753) supplemented with 3.4 μM CaCl2
and diffused with 95% O2, 5% CO2 at 37 °C. After mounting and sta-
bilisation, 2 mm vessel segments were constricted with 1 × 10−6 M
norepinephrine (NE, Sigma-Aldrich, 74480) and then assessment of
relaxation potential in response to increasing doses of acetylcholine
(Ach, Sigma-Aldrich, A6625) or sodium nitroprusside (SNP, Sigma-Al-
drich, PHR1423). Experiments were performed on n ≥ 4 aortas in
duplicate, from each of the respective feeding cohorts.

2.8. Statistical analyses

All statistical analyses were carried out using GraphPad Prism 7,
with significance determined by either one-way or two-way ANOVA
and appropriate post-hoc tests as detailed in the figure legends.
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3. Results

3.1. SeMet supplementation decreases atherosclerotic lesion burden
accompanied by increased plaque stability and restoration of vessel function

ApoE−/- mice are genetically susceptible to atherosclerotic lesion
development and are a well characterised model for human athero-
sclerosis [44]. Total atherosclerotic lesion burden within mice aortae
was examined following Oil red O staining for lipids (Fig. 1A). On a
normal chow diet ApoE−/- mice develop plaques both within the aortic
root and along the length of the aorta, which are reduced by ~50% in
mice cohorts fed 2 mg/kg SeMet over a period of 12 weeks, although
this did not reach statistical significance. In mice fed a HFD supple-
mented with SeMet for 12 weeks, along with the shorter duration of 6
weeks SeMet supplementation, following 6 weeks of HFD, there re-
sulted a detectable level of SeMet within the mouse kidney of between 6
and 10-fold over controls, as assessed by ICP-MS (Suppl. Fig. 1). In the
control cohort, a HFD caused a significant increase in lesion burden
compared to a normal chow diet, equating to up to ~10% of the total
aorta area when assessed at either 12 weeks or 6 weeks. Similar to the
normal chow diet, supplementation of the HFD with 2 mg/kg SeMet
resulted in a significant decrease in lesion burden, equating to a re-
duction of ~45% following 12 weeks on the HFD and ~42% in mice on
supplementation with SeMet only in the last 6 weeks of the study
(Fig. 1A). Measurement of lesion size within the aortic sinus of ApoE−/-

mice demonstrated that with a 12 week normal chow diet the lesion
size equated to ~10% of the vessel diameter, increasing to ~18% in the
HFD cohorts, with slight, but not significant decreases evident within
mice supplemented with SeMet (Fig. 1B).

We next determined the vulnerability of lesions in our model, by
assessing the extent of tissue fibrosis within the lesion, which is an
important determinant of plaque stability [45]. Here we evaluated the
extent of expression of two fibrotic markers, periostin (POSTN) and
alpha smooth muscle cell (αSMC) actin, within aortic sinus sections by
immunofluorescence staining. Mice fed a HFD supplemented with
SeMet for 12 weeks demonstrated an approximate 8-fold increase in
POSTN staining within the aortic sinus, equating to an increase from
~2% of the lesion area in the control cohort to ~16% of the lesion area

in the SeMet fed cohort (Fig. 2A). Similarly, the extent of αSMC actin
expression within lesions of the aortic sinus was increased approxi-
mately 4-fold in mice supplemented with SeMet for 12 weeks, equating
to an increase from ~2% of the lesion area in the control group to ~9%
of the lesion area within the SeMet fed group (Fig. 2B).

Further analysis of the extent of fibrosis within aortic sinus tissue
sections was undertaken using picrosirus red staining. Here, measure-
ment of lesion cap thickness demonstrated that dietary supplementa-
tion with SeMet over the 12-week study period resulted in a doubling in
lesion cap thickness from ~11 μm in the control cohort to ~22 μm in
the SeMet mice, although this was not statistically significant (Fig. 2C).
Interestingly, supplementation with SeMet for the final 6 weeks of the
feeding regime, resulted in the lesions within the aortic sinus exhibiting
a greater extent of fibrosis than their 12 week counterparts, with an
approximate 50% increase in both POSTN (Fig. 2A) and αSMC actin
(Fig. 2B) expression, up from ~16% to ~33% of the total lesion size in
the former and from ~9% to ~22% in the latter SeMet supplemented
cohorts. These fibrotic changes were accompanied by an approximate
3-fold statistically significant increase in lesion cap thickness, from
~11 μm in the control group to ~32 μm in the SeMet cohort (Fig. 2C).

Detrimental vessel changes involving both endothelial dysfunction
as well as fibrotic events that result in arterial wall thickening and re-
duced vessel lumen diameter, are a recognised hallmark of athero-
sclerosis [1,2]. Given that we had demonstrated that SeMet dietary
supplementation resulted in an overall increase in the extent of fibrosis
within atherosclerotic lesions, we next sought to establish the effect of
SeMet on vessel function. Assessment of both endothelial-dependent
(Fig. 3A) and -independent (Fig. 3B) relaxation of mouse aortic seg-
ments demonstrated a greater propensity for relaxation in vessels iso-
lated from mice on a HFD supplemented with SeMet in the final 6 weeks
of the study, compared to controls. Here, aortic segments from both
cohorts responded identically to norepinephrine (NE)-induced con-
striction (data not shown), but vessels from the SeMet dietary supple-
mented cohort demonstrated significantly improved relaxation in re-
sponse to acetylcholine (ACh) stimulation compared to controls,
demonstrated by the left shift in the ACh dose-response curve (Fig. 3A).
Conversely, despite a trend towards increased relaxation of vessels from
the SeMet fed cohort in response to sodium nitroprusside (SNP)

Fig. 1. SeMet supplementation reduces
atherosclerotic lesion burden in mouse
aortas. (A) Representative images of Oil
Red O staining of lipids as a measure of le-
sion burden in aorta of mice receiving either
normal chow or a high fat diet (HFD)
without (open bars) or with (closed bars)
2 mg/kg SeMet (SeMet) supplementation
for either 12 w or 6 w normal chow/HFD,
followed by 6 w SeMet supplementation.
(B) Representative images of H&E stained
aortic root sections and quantification of
lesion size from mice receiving either
normal chow or a high fat diet (HFD)
without (open bars) or with (closed bars)
2 mg/kg SeMet (SeMet) supplementation
for either 12 w or 6 w normal chow/HFD,
followed by 6 w SeMet supplementation.
Data represent mean ± S.E.M from n ≥ 5
individual mice per group. **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001 indicates
significant difference compared to re-
spective normal chow cohorts, #p ≤ 0.05,
##p ≤ 0.01 indicates significant difference
compared to respective control group by
two-way ANOVA with Fisher's LSD test.
(For interpretation of the references to
colour in this figure legend, the reader is
referred to the Web version of this article.)
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stimulation, these data did not reach statistical significance over the
controls (Fig. 3B). Together, these data indicate an improvement in
endothelial cell function upon SeMet supplementation.

3.2. SeMet supplementation favours macrophage polarisation towards the
alternatively activated phenotype

Macrophage infiltration, differentiation and activation all play
contributing roles in atherosclerotic lesion development. As assessed by
immunohistochemistry staining for macrophage-specific (F4/80) iNOS
expression within mice atherosclerotic lesions, dietary SeMet supple-
mentation over a 12 week period resulted in a significant decrease
(65%) in pro-inflammatory M1 macrophages in lesions compared to
controls, whilst lesion iNOS expression in mice supplemented with
SeMet in the final 6 weeks of the study remained at the same level as
controls (Fig. 4A–C). Conversely, macrophages within lesions from the
SeMet cohort did not demonstrate any comparative difference in ex-
pression of the mouse-specific alternatively-activated M2 phenotype
marker Egr2, regardless of feeding regime (Fig. 4D–F).

Further analysis of macrophage phenotype markers across the en-
tirety of the aorta by qPCR analysis revealed both a significant 2-fold
increase in M1 TNFα mRNA expression and a significant 3-fold increase
in M2 Egr2 expression within aortae isolated from the 12 week SeMet
fed cohort compared to controls (Fig. 4G). Erg2 mRNA was also sig-
nificantly increased following SeMet supplementation only in the final
6 weeks of the study period. Conversely, there was no difference in
aortic mRNA expression observed across all cohorts of the M1 markers
IL6, iNOS and SOD2 or the M2 marker TGFβ (Fig. 4G/H).

3.3. SeMet supplementation increases peroxidase expression and activity

SeMet supplementation is reported to increase the expression and
activity selenium-dependent endogenous peroxidase systems [46]. In
confirmation of this, we demonstrated that compared to controls,
dietary supplementation with SeMet significantly increased the overall

peroxidase activity within whole mouse blood, as determined by lu-
minol luminescence following PMA stimulation. Here, in the presence
of PMA, the luminol reaction rate was increased up to ~ 4-fold in the
SeMet supplemented cohorts (Fig. 5A). Further investigation revealed
that this increase in peroxidase activity within the blood was not due to
an increase in circulating MPO release from activated inflammatory
cells, with no difference in the mouse plasma MPO levels between co-
horts (Suppl. Fig. 2A). In support of this, in vitro studies showed that
SeMet supplementation of up to 25 μM had no effect on purified human
MPO activity, assayed in the presence of H2O2 and TMB substrate
(Suppl. Fig. 2B). In addition, no alternation of mouse plasma thiol levels
was found in SeMet supplemented mice (Suppl. Fig. 2C). To identify a
potential source of this increase relevant to our study, we next assessed
the extent of GPx1 protein expression within the aorta of mice. Com-
pared to other isoforms of GPx, GPx1 is the dominant isoform in
mammalian tissues and its expression is highly sensitive to the avail-
ability of Se [38]. Here, using Western blotting to probe for GPx1
within homogenised aortic tissue, we demonstrate that cohorts of mice
fed a diet supplemented with SeMet exhibited an approximate 2-fold
increase in GPx1 expression, compared to the control-fed cohort
(Fig. 5B). Similarly, evidence for whole-body increases in GPx1 was
established by immunohistochemical analysis of kidney tissue. Com-
pared to control mice, supplementation with SeMet resulted in a dra-
matic increase in the expression of GPx1 in the kidney, equating to
~10-fold increase in GPx1 expression, ranging from ~0.003 to 0.013%
of overall kidney cells in control mice and increasing in range from 0.14
to 0.19% of the kidney cells in the SeMet supplemented cohorts
(Fig. 5C).

3.4. SeMet supplementation decreases extracellular trap formation

As a part of their inflammatory repertoire, neutrophils undergo a
form of cell death known as NETosis, in which they produce an extra-
cellular trap (NETs) consisting of extruded DNA and chromatin, deco-
rated with enzymes, including neutrophil elastase and MPO [41,47].

Fig. 2. SeMet supplementation increases plaque stabilisation. Representative images of aortic root sections from mice receiving a HFD (Control; open bars)
compared to 2 mg/kg SeMet (SeMet; closed bars) supplemented chow for either 12 w or 6 w normal chow, followed by 6 w SeMet supplementation stained for
fibrosis markers (A) periostin (POSTN; green staining) or (B) alpha-smooth muscle cell actin (α-SMC; red staining) with DAPI (blue) counter-staining of nuclei.
Dashed lines within the representative images indicate the plaque area within the aortic root. (C) Representative images of picrosirius red stained aortic root sections
and quantification of lesion cap thickness from mice receiving a high fat diet (Control; open bars) compared to 2 mg/kg SeMet (SeMet; closed bars) supplemented
chow for either 12 w or 6 w normal chow, followed by 6 w SeMet supplementation, with arrows indicating the lesion cap of representative atherosclerotic plaques.
Data represent mean ± S.E.M from n ≥ 5 individual mice per group. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 indicates significant difference compared to respective
control group by two-way ANOVA with Fisher's LSD test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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Increasing evidence has implicated NETs in atherosclerotic lesion pro-
gression [48] and thrombosis [49]. Therefore, the extent of NET release
was assessed in neutrophils isolated from bone marrow cells from mice
fed a HFD with and without supplementation with SeMet for 12 weeks.
In each case, the mouse bone marrow-derived cells contained a com-
parative abundance of neutrophils as assessed by DiffQuik staining
(Fig. 6A). These cell cultures were then stimulated with 25 nM PMA for
3 h to invoke NET formation, as evidenced by increased SYTOX green
staining of extracellular DNA (Fig. 6A). Cells isolated from mice re-
ceiving a diet supplemented with SeMet demonstrated a comparative
decrease in the extent of NET formation, as indicated both from the live
cell images (white arrows) and on quantification by qPCR analysis of
genomic DNA present within the cell culture medium following sti-
mulation. Here, the culture media of cells from control mice exhibited
an approximately 2-fold increase in nuclear-derived β-actin DNA ex-
pression, whilst media from cells derived from the SeMet cohort re-
mained at basal levels following PMA stimulation. This was distinct
from qPCR analysis of the extent of mitochondria-derived CYTB
genomic DNA within the culture media following PMA stimulation,

which was comparative between both cohorts (Fig. 6A).
Translating the results from our mouse atherosclerosis study into a

clinically-relevant scenario, we next isolated neutrophils from acute
coronary syndrome (ACS) patients and determined the extent of NET
formation from these cells and healthy donor neutrophils, in response
to PMA stimulation both in the absence and presence of 1 μM SeMet
added after neutrophil isolation. Both healthy donor and ACS patient
neutrophils responded to PMA stimulation with NET production, as
indicated by positive SYTOX green staining of extracellular DNA
(Fig. 6B). Quantification of extracellular genomic DNA from healthy
control stimulated neutrophils demonstrated an approximate 4-fold
increase in media concentration of the nuclear genes β-actin and
GAPDH, and an approximate 8-fold increase in media concentration of
the mitochondrial genes ATP6, Nds1 and CYTB, compared to un-
stimulated controls (Fig. 6C). Similarly, PMA-stimulated neutrophils
isolated form ACS patients exhibited a 4-fold increase in media ex-
pression of β-actin, a 3-fold increase in GAPDH, a 7-fold increase in
ATP6, whilst extracellular expression of Nds1 and CYTB was sig-
nificantly increased to ~14-fold over unstimulated controls (Fig. 6C).
Interestingly, supplementation of the culture media with 1 μM SeMet
had no effect on the extent of NET production from healthy donor
neutrophils, as assessed through qPCR analysis of extracellular genomic
DNA, but did reduce the expression of genomic DNA within the media
from neutrophils isolated from ACS patients. Here, there was a sig-
nificant decrease in the extracellular expression of nuclear genes β-actin
and GAPDH as well as the mitochondria-derived gene CYTB from
neutrophils assayed in the presence of SeMet, compared to control
neutrophils stimulated without SeMet present (Fig. 6D).

4. Discussion

The aim of the present study was to investigate the effects of SeMet
supplementation on the development of atherosclerosis in ApoE−/-

mice. Mice were raised on a HFD supplemented with 2 mg/kg SeMet for
either 12 weeks or a HFD for a period of 6 weeks, followed by a further
6 weeks with SeMet supplementation. These time points were chosen to
reflect different stages of lesion development in ApoE−/- mice [44],
with the latter cohort enabling the ability of SeMet to regress already
established atherosclerotic plaques. We have demonstrated that SeMet
supplementation reduces atherosclerotic lesion burden and plaque
vulnerability, whilst improving vascular tone. Evidence was also ob-
tained for an increase in the expression and activity of endogenous GPx
antioxidant mechanisms. Furthermore, supplementation with SeMet
decreased inflammatory M1 macrophages within the plaque and re-
duced the extent of NET release from bone marrow-derived cells iso-
lated from mice following SeMet dietary intervention. Similarly, sup-
plementation of neutrophils with SeMet ex vivo reduced NET release in
cells isolated from ACS patients. Combined, these data indicate that
SeMet supplementation can prevent atherosclerosis progression and
potentially modulate the inflammatory response.

Previous studies have identified a crucial role for selenium in the
regulation of endogenous antioxidant defence systems via alteration of
GPx activity [20,50]. Dietary supplementation with selenium-enriched
yeast sources or sodium selenite, an inorganic form of selenium, in-
creases antioxidant activity, specifically GPx [51,52], with SeMet able
to regulate the GPx pathway in tissue microenvironments in response to
oxidative stress [27,53]. In the present study, we identified an increase
in whole-blood peroxidase activity within SeMet supplemented mice.
As with the earlier studies, our study specifies an increase in GPx1
expression, present in both the aorta and kidney of SeMet supplemented
mice, indicating that this selenium-dependent antioxidant enzyme is
the most likely source of the increased peroxidase activity evident and
providing further evidence that selenium can increase antioxidant ca-
pacity via the GPx1 pathway [20,50]. To further support this, we also
showed that SeMet supplementation had no effect on MPO expression
or activity, which supports the conclusion that the increased peroxidase

Fig. 3. SeMet supplementation improves aortic endothelial function
through increased nitric oxide bioavailability. Examination of (A) en-
dothelial-dependent relaxation to acetylcholine (Ach) and (B) endothelial-in-
dependent relaxation to sodium nitroprusside (SNP) in thoracic aorta segments
from mice receiving a HFD for 12 w (Con; open circles) compared to mice
receiving a HFD for 6 w, followed by 2 mg/kg SeMet (SeMet; closed circles)
supplemented chow for 6 w. Data represent mean ± S.E.M from n ≥ 5 in-
dividual mice per group. *p≤ 0.05 indicates significant difference compared to
respective controls by unpaired Student's t-test.
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activity in whole-blood from SeMet supplemented mice is independent
of MPO.

It has been previously shown that Se supplementation effectively
reduced mortality in patients with severe systemic inflammatory re-
sponse syndrome, suggesting a regulatory role for Se in inflammatory
settings [54]. Despite these positive findings, the use of Se compounds
as dietary supplements for the improvement of general health in hu-
mans remains controversial, as excess consumption may cause symp-
toms of toxicity, such as diarrhea and joint pain [55]. Similarly, in
animal models an overdose of Se can exacerbate inflammatory re-
sponses, resulting in further damage to tissue [53]. However, compared
to sodium selenite, SeMet supplementation at a comparable con-
centration to that used in the present study, did not enhance the extent
of proinflammatory cytokine release from inflammatory cells [56].

Macrophages play an important role in chronic inflammatory dis-
eases and its presence provides an indication of disease progression
during atherogenesis [11,57,58]. In order to delineate the mechanisms
attributable to the SeMet modulation of atherosclerosis we examined
macrophage phenotypes within developed lesions. We showed reduced

M1 proinflammatory macrophages within lesions that was accom-
panied by increased mRNA expression of the mouse-specific anti-in-
flammatory M2 marker Egr2 [59] throughout the aorta, indicating the
modification of macrophage phenotypic differentiation as a potential
mechanism by which SeMet supplementation can limit tissue damage
and accompanying lesion development. This apparent accumulation of
M2 polarised macrophages in the SeMet supplemented cohort may re-
flect the ROS-scavenging ability of the compound [60], favouring a less
inflammatory environment. Additionally, the overall increase in M2
polarised macrophages in atherosclerosis function to remove tissue
debris and are more resistant to foam cell formation, with their pre-
sence enhanced in the regression stage of the disease and particularly
associated with stable plaques [14,61]. In support of this, our data
further suggests that SeMet may promote tissue recovery by increasing
atherosclerotic plaque stability, with notable increases in lesion cap
thickness in mice supplemented with SeMet.

Alongside macrophages, neutrophils play a contributory role in
atherosclerotic lesion development [3,8]. This is attributed in part to
their ability to form NETs, which serve to exacerbate local

Fig. 4. SeMet supplementation alters macrophage phenotype. (A) Representative aortic root images of immuno-histochemical staining for macrophages (red)
with the M1 phenotype marker iNOS (green) with DAPI counter-staining of nuclei (blue) from mice on high fat diet (Control) compared to 2 mg/kg SeMet (SeMet)
supplemented chow for either 12 w or 6 w chow, followed by 6 w SeMet supplementation. Dashed lines within the representative images indicate the plaque area
within the aortic root with (B) high-power magnification image of white boxed area in (A) and (C) quantification of macrophage-specific iNOs staining from mice on
high fat diet (Control; open bars) compared to 2 mg/kg SeMet (SeMet; closed bars) supplemented chow for either 12 w or 6 w chow, followed by 6 w SeMet
supplementation. (D) Representative aortic root images of immuno-histochemical staining for macrophages (red) with the M2 phenotype marker Egr2 (green) with
DAPI counter-staining of nuclei (blue) from mice on high fat diet (Control) compared to 2 mg/kg SeMet (SeMet) supplemented chow for either 12 w or 6 w chow,
followed by 6 w SeMet supplementation. Dashed lines within the representative images indicate the plaque area within the aortic root, with (E) high-power
magnification image of white boxed area in (D) and (F) quantification of macrophage-specific Egr2 staining from mice on high fat diet (Control; open bars) compared
to 2 mg/kg SeMet (SeMet; closed bars) supplemented chow for either 12 w or 6 w chow, followed by 6 w SeMet supplementation. qPCR analysis of mRNA expression
of M1 phenotype markers TNFα, IL-6, iNOs and SOD2, or M2 phenotype markers Egr2 and TGFβ within the descending aorta from mice on high fat diet (Control;
open bars) compared to 2 mg/kg SeMet (SeMet; closed bars) supplemented chow for either (G) 12 w or (H) 6 w chow, followed by 6 w SeMet supplementation. Data
expressed as mean ± S.E.M from n≥ 5 individual mice per group. *p≤ 0.05, ****p≤ 0.001indicates significant difference compared to respective controls by two-
way ANOVA with Fisher's LSD test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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inflammation, arterial intimal injury and thrombosis [49], with pre-
vious studies in mice demonstrating that inhibition of NET production
results in a reduction in lesion burden [48]. We show that SeMet is able
to modulate the neutrophil acute inflammatory response, with a de-
crease in NET production evident within mice fed a SeMet supple-
mented diet, as wells as in neutrophils isolated from ACS patients.
NETosis occurs by two distinct forms: suicidal NETosis, as the name
suggests, involves extrusion of nuclear components that is accompanied
by cell death [62]. Vital NETosis, conversely involves the extracellular
extrusion of DNA primarily from the mitochondria and is independent
of cell death [3,63,64]. Our findings in mice suggest murine neutrophils
undergo primarily suicidal NETosis during ET formation, whilst ana-
lysis of the genomic DNA extruded by human neutrophils provides
evidence of both suicidal and vital NETosis occurring, with the latter
form heightened in ACS patients compared to healthy controls. Re-
gardless of species origin, we demonstrate that SeMet supplementation
significantly ameliorates NET production, which may pertain to the
compounds antioxidant and radical scavenging abilities [65] with NET
generation largely dependent on ROS production, particularly from
NADPH oxidase activity within the neutrophil [66].

The development of therapeutics promoting regression of athero-
sclerosis remain an important clinical objective particularly as humans

typically do not present for treatment until well after the disease has
substantially developed. In this study, cohorts of mice supplemented
with SeMet only in the final 6 weeks of the HFD feeding regime not only
demonstrated reduced lesion burden that was comparable to the 12
week SeMet study, but also had increased lesion expression of profi-
brotic markers and cap thickness. Furthermore, compared to controls,
aorta from these mice displayed improved endothelial-dependent re-
laxation. In support of this, similar functional vessel studies of aortae
isolated from rats fed a low Se diet demonstrated impaired relaxation
that was mediated by reduced eNOS activity [67]. Similarly, within a
rat model of homocysteine-induced endothelial dysfunction, Se sup-
plementation increased NO within the plasma and improved en-
dothelial-dependent vessel relaxation. Results that were confirmed
within in vitro studies using HUVECs, which demonstrated increased
eNOS expression and activity with accompanying NO production upon
Se supplementation [68]. Conflicting data does exist, however, with
studies utilising spontaneously hypertensive rats (SHR) demonstrating
that SeMet supplementation decreased eNOS expression within the
aortic wall [69]. A limitation of the current study is that eNOS activity
and the levels of NO were not assessed, which may have particular
relevance to the 12 w HFD cohort, given that SeMet supplementation
decreased iNOs expression under these conditions.

Fig. 5. SeMet supplementation increases GPx
expression and activity. (A) Total peroxidase
activity in mouse whole blood determined by the
chemiluminescence reaction rate of luminol
without (Unstimulated; open bars) or with 25 nM
PMA (closed bars). (B) Representative Western
blots and analysis of GPx-1 expression in aorta
from mice on high fat diet (Control; open bars)
compared to 2 mg/kg SeMet (SeMet; closed bars)
supplemented chow for either 12 w or 6 w normal
chow, followed by 6 w SeMet supplementation. (C)
Representative immuno-histochemical staining of
kidney for GPx-1 (green) and DAPI staining of
nuclei (blue) and quantification of GPx-1 positive
cells from mice on high fat diet (Control; open
bars) compared to 2 mg/kg SeMet (SeMet; closed
bars) supplemented chow for either 12 w or 6 w
normal chow, followed by 6 w SeMet supple-
mentation. Data represent mean ± S.E.M from
n ≥ 3 individual mice per group. *p ≤ 0.05,
***p ≤ 0.001 indicates significant difference
compared to respective controls or ##p ≤ 0.01,
###p ≤ 0.001 between groups, by two-way
ANOVA with Fisher's LSD Test. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the Web version of this ar-
ticle.)
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Despite a recent study indicating an association between Se defi-
ciency and metabolomic remodelling which influences longevity path-
ways in mice [30], low Se status is associated with CVD in humans [70]
and evidence generated from a variety of animal studies consistently
show that Se supplementation is able to prevent atherosclerotic lesion
development and reduce the risk of CVD [71,72]. Much of these latter
data, however, have been limited to the use of inorganic Se compounds,
with underlying mechanisms of protection focused on the bolstering of
endogenous antioxidant systems, while other important events asso-
ciated with disease progression, such as the inflammatory response and
resultant vascular cell dysfunction, remain uncharacterised. This study
not only supports the inhibitory role of SeMet supplementation in
atherosclerotic lesion progression and burden, but further highlights

the anti-inflammatory aspects of the compound. Our data highlight the
benefit of SeMet dietary supplementation in both preventing progres-
sion and promoting regression of atherosclerosis, together with im-
proved vascular function, whilst providing new insights into the pro-
tective mechanisms of SeMet supplementation within the setting of
inflammation.
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Fig. 6. SeMet supplementation inhibits ET formation. (A) Bone marrow cells were isolated from mice on HFD (Control) or HFD supplemented with 2 mg/kg
SeMet for 12 w and incubated without (Unstimulated; open bars) or with 25 nM PMA (closed bars) for 3 h to induce ET formation, with quantification of genomic
DNA expression in the culture media of the nuclear encoded gene β-actin or the mitochondrial gene CYTB assessed by qPCR. Representative images of bone marrow
cells stained with either DiffQuik (black arrows indicating neutrophils) or SYTOX green for extracellular DNA (white arrows). (B) Representative images of SYTOX
green stained neutrophils isolated from either healthy donors (left panel) or acute coronary syndrome (ACS) patients (right panel) following stimulation with 25 nM
PMA without or with 1 μM SeMet for 3 h. (C) Quantification of genomic DNA expression in the culture media following PMA stimulation of the nuclear encoded genes
β-actin and GAPDH or the mitochondrial genes ATP6, MT- NDs1 and CYTB assessed by qPCR, from healthy donors (open bars) or ACS patients (closed bars). (D) same
as for (C), except in the presence of 1 μM SeMet, with data represented here as a fold expression relative to healthy control or ACS patient neutrophils assayed in the
absence of SeMet (dotted line). For the mice experiments, data represent mean ± S.E.M from n ≥ 4 individual mice per group assayed in triplicate. For human
neutrophil studies, data represent mean ± S.E.M from n ≥ 5 individual donors per group assayed in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001 and
****p < 0.0001 indicates significant difference compared to respective controls by two-way ANOVA with Fisher's LSD comparisons test. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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