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Abstract

For epidemic prevention and control, the identification of SARS-CoV-2 subpopulations sharing similar
micro-epidemiological patterns and evolutionary histories is necessary for a more targeted investigation into the links
among COVID-19 outbreaks caused by SARS-CoV-2 with similar genetic backgrounds. Genomic sequencing analysis has
demonstrated the ability to uncover viral genetic diversity. However, an objective analysis is necessary for the identification
of SARS-CoV-2 subpopulations. Herein, we detected all the mutations in 186 682 SARS-CoV-2 isolates. We found that the GC
content of the SARS-CoV-2 genome had evolved to be lower, which may be conducive to viral spread, and the frameshift
mutation was rare in the global population. Next, we encoded the genomic mutations in binary form and used an
unsupervised learning classifier, namely PhenoGraph, to classify this information. Consequently, PhenoGraph successfully
identified 303 SARS-CoV-2 subpopulations, and we found that the PhenoGraph classification was consistent with, but more
detailed and precise than the known GISAID clades (S, L, V, G, GH, GR, GV and O). By the change trend analysis, we found that
the growth rate of SARS-CoV-2 diversity has slowed down significantly. We also analyzed the temporal, spatial and
phylogenetic relationships among the subpopulations and revealed the evolutionary trajectory of SARS-CoV-2 to a certain
extent. Hence, our results provide a better understanding of the patterns and trends in the genomic evolution and
epidemiology of SARS-CoV-2.
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Introduction

Since late 2019, the sudden emergence of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-
nCoV), which caused the coronavirus disease 2019 (COVID-19)
pandemic, and its subsequent continuing spread have posed
serious threats to both global public health and economic pros-
perity [1]. SARS-CoV-2 is the third highly pathogenic coronavirus
introduced into the human population [2, 3], and it is more
infectious than the previous SARS-CoV at different temperatures
[4]. Due to its high transmissibility and pathogenicity, this novel
coronavirus has rapidly spread worldwide [5]. As of 12 January
2021, more than 88 million cases of COVID-19 and over 1.9
million associated deaths have been reported [6]. Evolutionary
analysis suggests that SARS-CoV-2 has adaptively evolved in
the process of human infection and human-to-human transmis-
sion, which explains its abundant genetic diversity [7, 8]. Hence,
extensive genomic data collection and prompt trend discovery
would play a vital role in global epidemic surveillance and pro-
vide important support for decision-making in the prevention
and control of COVID-19.

Currently, there are more than 235 038 publicly available
complete or near-complete genomic sequences of SARS-CoV-
2 (as of 7 December 2020), and the number continues to grow.
The full length of the SARS-CoV-2 genome is about 30 kb, and
the detailed protein-coding genes in the genome predicted by
ZCURVE_CoV 2.0 can be found at http://tubic.tju.edu.cn/CoVdb
[9]. Its large genome size and high evolutionary rate (a striking
feature of RNA viruses) facilitate easy accumulation of genomic
polymorphisms during epidemic outbreaks [10, 11]. Based on
the growing number of available sequences, genomic epidemi-
ology generates a wealth of information, which may answer
the evolutionary and epidemiological questions, ranging from
global transmission dynamics to genotype/phenotype relation-
ship. There is a need for an objective and robust classification
method to partition and describe the genetic diversity of SARS-
CoV-2, making it possible to capture the COVID-19 pandemic
dynamics and reveal the evolutionary change of its intermediate
stages [12, 13]. At present, there are two main types of clas-
sifications: single nucleotide polymorphism (SNP)-based and
phylogeny-based classifications. The SNP-based classification
is generally simple and straightforward, and it is suitable for
viruses with small-scale pandemic outbreaks (e.g., Ebola virus
[14]), slowly evolving viruses (e.g., John Cunningham virus [15]),
or rapidly evolving viruses with low lineage turnover rates (e.g.,
hepatitis C virus [16]). Chinese lineage [17] and Nextstrain clade
[18] typing are SNP-based classification methods, which pri-
marily depend on marker mutations or mutations with signif-
icant frequency and geographic spread. Hence, it is difficult to
completely resolve the complex genetic diversity of SARS-CoV-
2 [19]. As for the phylogeny-based classification, there are two
main methods, namely the Pangolin lineage [20] and GISAID
cluster [21] typing methods. The Pangolin lineage is defined
based on a set of predefined conditions from a phylogenetic
tree built from 27 767 SARS-CoV-2 genomes, and the GISAID
cluster is informed by the statistical distribution of the distance
calculated from a phylogenetic tree [22], avoiding the arbitrari-
ness of determining the intra/inter-cluster diversity thresholds.
Although the phylogeny-based method provides more detailed
clusters, it has some limitations [23]. For example, the align-
ment used for constructing a phylogenetic tree demands all the
sequences to be continuously homologous, which may lead to
the loss of useful information [23]. However, this is not always
the case, as it is almost impossible to simultaneously align

thousands of complete genomes due to huge computation time
and memory consumption, and a similar problem is also associ-
ated with the construction of a phylogenetic tree. Furthermore,
the phylogeny-based classification relies heavily on the genetic
distance thresholds to define the maximum genetic divergence
among closely related viruses [22]. Even though Han et al. defined
genetic distance thresholds based on statistical criteria [22],
it is important to recognize that this approach has statistical
uncertainty [20].

As previously reported, coronaviruses frequently recombine
[24]. So, there are concerns that the classification of SARS-CoV-2
may be affected by recombination events, and the phylogeny-
based classification may not accurately reflect the evolutionary
relationships among clades and/or lineages. It was found that
there was a strong linkage disequilibrium among the polymor-
phic sites, and the clonal pattern of inheritance was not dis-
rupted, which indicated that the recombinant strains of SARS-
CoV-2 were not widespread [25]. Varabyou et al. carried out
a recombination analysis of SARS-CoV-2 sequences collected
before October 2020 (available in the GISAID database), and
identified 225 anomalous genomes of likely recombinant origins
from 87 695 high-quality SARS-CoV-2 genomes with a recom-
binant frequency of only 0.26% [26]. A more recent research
(15 March 2021) has come to a similar conclusion the recom-
bination frequency of SARS-CoV-2 is only about 0.21% based
on 537 000 strains, and the number of circulating recombinant
viruses is much lower, accounting for only <5% of recombinants
[27]. Therefore, the recombination of SARS-CoV-2 is very rare,
which may be mainly caused by the following factors. First, co-
infections rarely occur. Second, recombinant viruses are more
likely to appear in the late stage of infection, hence less likely
to spread after the infection is confirmed. Third, local genetic
diversity remains limited, and the recombination is undetectable
since the genetic material exchanged at the time of recombina-
tion is identical. Considering these facts, even if recombination
may affect the classification of SARS-CoV-2, its effect could be
basically negligible.

In recent years, a wide variety of clustering methods, includ-
ing the supervised and unsupervised methods, have been suc-
cessfully developed for classification. The supervised method
requires training data with associated labels, whereas the unsu-
pervised method does not require the user-assigned training
labels and only uses the inherent structure of data, providing
more objectivity in the classification of species, subspecies, or
quasispecies [28, 29]. PhenoGraph is a top-performing unsu-
pervised tool, which can run efficiently on high-dimensional
data with substantially scaling and process millions of samples
only with modest computational resources [30]. By comparing
PhenoGraph with other cluster methods including the FLOCK
[31], flowMeans [32], SamSPECTRAL [33], Gaussian mixture mod-
eling (GMM) and hierarchical linkage clustering, Levine et al.
found that PhenoGraph displayed superior precision, recall, and
robustness based on benchmark datasets [30]. Liu et al. compared
nine methods based on six independent benchmark datasets,
and found that PhenoGraph performed better than other unsu-
pervised tools in precision, coherence, and stability. In addition,
PhenoGraph is more robust when detecting refined sub-clusters
[34]. Hence, PhenoGraph may be one of the best choices for the
classification of SARS-CoV-2.

As discussed above, PhenoGraph was originally developed
to algorithmically dissect functionally distinct subpopulations
from high-dimensional single-cell data with an accurate classi-
fication rate of up to 99.85% [30]. Although it is frequently used in
data-intensive biological fields, PhenoGraph has not been used
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for genetic data. In this study, we applied the PhenoGraph classi-
fier for the classification of SARS-CoV-2 based on a matrix coded
by the probability of every component in every position of the
genomic sequence, and this binary-coded genomic data would
not result in the loss of useful information. The computational
power of this machine learning-based unsupervised tool makes
it possible to achieve a detailed classification of hundreds of
thousands of SARS-CoV-2 genomes. Further, we integrated the
subpopulations of SARS-CoV-2 with its temporal and spatial dis-
tributions in a genomic epidemiology framework to enhance the
inference of origin and transmission of COVID-19 outbreak. This
provides invaluable information on the evolution and molecular
epidemiology of SARS-CoV-2 in the ongoing pandemic and will
probably play an important role in the surveillance, prediction,
control, and mitigation of COVID-19.

Materials and methods
Data collection and filtering

As of 7 December 2020, 5:00 CST (sequence submission date), 240
781 genomic sequences of SARS-CoV-2 were retrieved from the
Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV
repository (https://www.epicov.org) [35]. A comprehensive table
(Supplementary Table 1) that acknowledges data contributors
was prepared by using the EpiCoV browser of the GISAID. The
genomic sequences of <29 000 bp length, with more than 1%
unknown bases, lacking geographic information, or belonging to
non-human or unknown hosts were excluded, leaving a total of
186 682 sequences for the downstream analysis.

Detection of genetic variation

A custom PERL script was implemented to perform the
alignment of every genome against the Wuhan-Hu-1 reference
genome (EPI_ISL_402125, NC_045512.2) [36] using MAFFT v7.475
[37, 38] and to identify the mutations (SNP, INS/DEL). The deletion
and insertion events located at both ends of the sequence, which
may be caused by incomplete assembly, were excluded.

Dissection of population structure

PhenoGraph is a data-driven approach developed for classifying
subpopulations by Levine et al. in 2015 [30]. It is considered one
of the most popular and best methods for the classification
of high-dimensional single-cell RNA-seq data into distinct
subpopulations [34]. Herein, we applied this method to genomic
data to dissect the global population structure of SARS-CoV-2.
To make genomic data suitable for the PhenoGraph method
and make the classification more accurate and reliable, we
encoded the genomic data in a specific manner. To be specific,
we integrated the genetic variations of all the isolates into a large
dimensionality of the resulting data, in which each component
(there were six components, the base A, T, C, G, and the +(INS)
and -(DEL) variations, respectively) of every sample was coded
using a vector (Supplementary Figure 1), and the binary values
0 or 1 stored at each component in every site represented
the absence or presence of this component. Furthermore, to
obtain the final high-dimensional genomic data, we filtered
these vectors with a mutation frequency of less than 0.01%
in the global population because such ultra-low-frequency
variations were very likely to be caused by sequencing errors
or mutations blocking virus propagation. Finally, we used the
t-SNE [39] implemented in R package (Rtsne, version 0.15)

with non-default parameters (pca = FALSE, theta = 0.0) to reduce
the high-dimensional genomic data to a two-dimensional
representation, and the distribution of SARS-CoV-2 population
structure was also plotted. We further compared GISAID and
PhenoGraph classifications to estimate the effect of PhenoGraph
classification and reveal their internal relationships.

Phylogenetic and network analyses

To estimate the phylogenetic relationships among subpopula-
tions, we randomly sampled every subpopulation and obtained
100 sample sets representing these subpopulations. For every
sample set, multiple genome alignments were performed using
MAFFT v7.475 [37], and only the SNPs in multiple alignments
were concatenated using a custom Perl script and analyzed
using FastTree v2.1.11 [40] with default settings to construct the
maximum likelihood tree. To fully represent the phylogenetic
relationship of subpopulations, the resulting trees constructed
from 100 sample sets were integrated into a coalescent phyloge-
netic tree using the ASTRAL program [41], which was displayed
along with the relevant information through the Interactive Tree
Of Life (iTOL) v4 [42]. The median-joining networks of Network 10
(https://www.fluxus-engineering.com/sharenet.htm) were used
to further estimate the phylogenetic network relationships of
the subpopulations [43, 44], where only the genomic sites with
SNP occurrence frequency ≥ 80% in one or more subpopula-
tions were used to construct the haplotype network between
subpopulations.

Results
Geographical distribution of SARS-CoV-2

We screened 186 682 genomic sequences of the SARS-CoV-2
isolates with definite sources and high integrity from the GISAID
database. We analyzed the distribution of these isolates in differ-
ent countries and regions. As shown in Figure 1, the countries
with the most SARS-CoV-2 isolates in Europe, North America,
Oceania, Asia, South America and Africa were the UK, USA, Aus-
tralia, India, Brazil and South Africa, respectively. In particular,
the number of sequenced SARS-CoV-2 isolates in the United
Kingdom far exceeds that in other countries. In general, this
distribution reflects both the sequencing capacity of the country
and, indirectly, the prevalence of the virus.

Variant statistics

We totally detected 2 451 596 SNPs, 16 997 DELs and 933 INSs in
186 682 SARS-CoV-2 isolates. Then, we investigated the change
in SARS-CoV-2 mutations over time. As shown in Figure 2, the
number of newly emerged mutations and isolates with muta-
tions increased considerably from February to May 2020 (the
first wave of the COVID-19 epidemic). Until October 2020, the
newly emerged mutations became increasingly scarce, but the
number of mutated isolates seemed to grow at an increasing
rate. This indicated that a large number of dominant mutations
occurred, which might make the isolates carrying these muta-
tions more accommodating and diffusible because the number
of isolates carrying those mutations continue to rise sharply.
We also estimated the distribution of mutations over different
genomic regions, finding that the T- > C and T- > G changes
were far lower than those of C- > T and G- > T, respectively,
whereas the A- > C change was also far lower than that of C- > A,
and the difference between A- > G and G- > A changes was not
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Figure 1. Global distribution of SARS-CoV-2. The number of SARS-CoV-2 isolates present in every country is indicated by color depth.

significant (Supplementary Figure 2a). These changes indicate
that the GC content of the SARS-CoV-2 genome became lower,
and this may be beneficial to its replication because the A-T
and C-G pairs were able to form double and triple hydrogen
bonds, respectively, with the double hydrogen bond being more
easily unwound using less energy than triple hydrogen bonds.
The length of DEL/INS (especially the DEL) that emerged in
the CDS region was primarily concentrated in the multiple of
three (Supplementary Figure 2b) because such mutations did
not cause the frameshift mutation that completely altered the
coding of functional genes, which usually does not have a fatal
effect on SARS-CoV-2. In contrast, the length of DEL/INS in the
non-CDS regions was primarily concentrated in one and two
bases (Supplementary Figure 2b). All the results suggested that
SARS-CoV-2 had selectively evolved under the heredity laws and
the rules of survival of the fittest.

Subpopulations of SARS-CoV-2

Over the course of a few months, SARS-CoV-2 has already
mutated and evolved in a way that facilitates its spread [45].
However, there is currently a lack of objective and robust classifi-
cation methods for viral genetic diversity below the species level
[20]. Herein, we determined the subpopulations of SARS-CoV-2
using an unsupervised machine learning approach and then
estimated the variation in the number of its subpopulations.
SARS-CoV-2 was classified into 303 subpopulations (Figure 3b).
It can be observed clearly that there is a predominant decreasing
tendency for the increase of the number of subpopulations
as the number of SARS-CoV-2 isolates increased, indicating
that growth rate of SARS-CoV-2 genetic diversity has slowed
down significantly, consistent with the trend of newly emerged
mutations (Figure 2a).

To determine the origin of the subpopulations, we per-
formed statistical analysis on the distribution of SARS-CoV-
2 isolates in every subpopulation across different countries
and assessed the country where each subpopulation first
appeared (Supplementary Figure 3). We found that the first
five subpopulations (S1, S2, S3, S4 and S5, consecutively) with
the largest number of isolates were first found in the UK,
France, China, Australia and the UK, respectively. As shown in
Supplementary Figure 3 and Supplementary Table 2, five coun-
tries with the largest number of newly emerged subpopulation
were the UK, USA, Denmark, Australia, and China, and the
corresponding number was 121, 55, 19, 12 and 12, respectively.
Furthermore, we analyzed the monthly changes in the number
of isolates in each subpopulation in the first 10 months of 2020
and preliminarily determined the monthly changing trend of
isolates in each subpopulation (Supplementary Figure 4). Of
the top 10 subpopulations, S10 was the last to appear. In the
last month (October 2020), S5, S8, S13, S14, S10 and S23 were
the top six subpopulations (Supplementary Figure 4). We also
observed that some subpopulations appeared or disappeared in
the last 2 months. We further estimated the average difference
in mutation frequency between these subpopulations based on
SNPs. As shown in Supplementary Figure 5, there are different
degrees of differences between subpopulations, most of which
are obvious, which reflects their relatedness to a certain extent.
To understand the homogeneity of each subpopulation, the
mutation frequency of each genomic site in these subpop-
ulations is shown in Supplementary Figure 6, from which it
can be observed that there are specific patterns of marker
variants with higher homogeneity for each subpopulation. As
shown in Supplementary Tables 3 and 4, some mutations are
heavily weighted in defining a subpopulation, but there are
also a few mutations present in most of subpopulations such
as C241, C3037, C14408 and A23403 (Supplementary Table 3).
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Figure 2. Time series of SARS-CoV-2 mutation. Changing tendency of all mutations (namely, SNPs, INSs and DELs) (a), SNPs (b), INSs (c) and DELs (d) in the first 10 months

of 2020. Dotted lines with circles and triangles indicate the cumulative number of newly emerged mutations and isolates with these mutations, respectively.

Figure 3. SARS-CoV-2 subpopulations classified by the PhenoGraph classifier. (a) Change trend of the number of subpopulations with increasing isolates. (b) t-SNE plot

based on the genetic data from mutations. Top 10 subpopulations with the highest number of isolates are marked in red circle.

Therefore, we preliminarily determined the population structure
of SARS-CoV-2 and the changing trend in each subpopulation.

Phylogenetic relationship of subpopulations

By random sampling, phylogenetic analysis, and reconstruc-
tion of the coalescent tree, we determined the evolutionary

relationship among different SARS-CoV-2 subpopulations
(Figure 4), which uncovered a well-structured classification of
the SARS-CoV-2 global population. GISAID has developed a well-
known nomenclature system that defines the clades of SARS-
CoV-2 based on the statistical criteria of PhyCLIP [22]. Hence,
we established a connection between the subpopulations and
GISAID clades based on the classified isolates; we found that the
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PhenoGraph classification was almost consistent with GISAID
classification, except for six subpopulations obviously mixed by
different GISAID clades (Supplementary Figure 7). We further
investigated this inconsistency via hierarchical clustering
analysis and found that the clustering result supported the
PhenoGraph classification (Supplementary Figure 8), indicating
that we obtained a reliable classification of SARS-CoV-2 through
the PhenoGraph classifier.

Next, we directly matched the subpopulations with the major
GISAID clades, and when a subpopulation corresponded to mul-
tiple GISAID clades, the clade with the highest number of isolates
was matched with such subpopulation. As shown in Figure 4, all
the GISAID clades almost matched the phylogenetic clusters of
SARS-CoV-2 subpopulations, except the G and L clades, which
were split into two different clusters. In fact, GISAID classifi-
cation is not strictly based on phylogenetic relationships, but
relies more on several marker variants, which could be observed
in NextStrain website (https://www.gisaid.org/phylodynamics/
global/nextstrain/) [18]. Furthermore, we found that the division
of major GISAID clades appeared to be challenging, as some
clades (GR, GV and GH) corresponded to the big phylogenetic
clusters but others (G, L, O, S and V) only matched the small
clusters (Figure 4), indicating the limitation of statistical classifi-
cation. We found that the subpopulations with a high number of
isolates were fairly evenly distributed in different phylogenetic
clusters (Figure 4), and the recently emerged subpopulations
were primarily concentrated in the GV clade of GISAID. When
a SARS-CoV-2 subpopulation existed in more than one country,
we considered the country with the most virus isolates in this
subpopulation as its primary country and associated each tree
node to these countries. We found that the UK, USA, Denmark,
Australia, India, and China had the largest number of subpopu-
lations: 173 (GH, 17; G, 23; L, 4; GV, 54; V, 5; GR, 70), 55 (G, 12; L, 1;
GH, 33; GR, 3; S, 6), 20 (GV, 4; G, 5; GH, 5; GR, 6), 11 (O, 1; S, 1; GR, 9),
7 (G, 1; GH, 1; O, 2; GR, 3) and 5 (S, 1;V, 1;L, 2;GR, 1) subpopulations,
respectively.

Phylogenetic network of subpopulations

As reported by Forster et al., the global SARS-CoV-2 population
has formed a clear phylogenetic network as the epidemic
continues to spread on a massive scale [43]. Herein, we
constructed the genealogical relationship of SARS-CoV-2 using
a median-joining network analysis based on 785 SNP sites with
occurrence frequency ≥ 80% in one or more subpopulations
(Supplementary Table 3). The network relationship of 303
subpopulations is illustrated in Figure 5, through which we
can track the spread of pandemics and the evolution of SARS-
CoV-2. From this haplotype network (Figure 5), we observed
many nodes, each of which was a subpopulation, also known
as an outbreak cluster or infection cluster [11]. Overall, these
subpopulations showed a relationship between intra-clade
aggregation and inter-clade association. Consistent with what
the GISAID team had described but with slight differences
(https://www.gisaid.org/references/statements-clarifications/
clade-and-lineage-nomenclature-aids-in-genomic-epidemiolo
gy-of-active-hcov-19-viruses/), our results showed that the S
clade is actually a branch of the L clade (Figure 5a) because the
L clade is located on the torso of median-joining network, but
the S clade is extended from the L clade instead of on the torso
of this network. Along the torso of this haplotype network, the
L clade was divided into two major clades, namely the G and
V clades, and the O clade was actually a branch of the median
vector located between the L and V clades. The G clade was split

into the GR and GH clades, and the GV clade evolved from the GH
clade with a large evolutionary distance. By comparison, we also
found that this haplotype network was highly consistent with
the phylogenetic relationships (Figure 4). Consistent with the
evolutionary sequence reported by the GISAID team (Figure 5a),
the SARS-CoV-2 isolate sampled on 24 December 2019 belonged
to the L clade, and all the subpopulations corresponding to the
GV clade were the latest to appear (Figure 5b). Overall, most of
the surrounding subpopulations in the network are relatively
recent. Figure 5c shows the association of subpopulations with
country in the haplotype network. Therefore, we identified the
temporal, spatial, and phylogenetic relationships among dif-
ferent subpopulations, which would be useful for investigating
the evolutionary and epidemiological dynamics of the global
SARS-CoV-2 population.

Discussion
In the early outbreak, the Global Initiative on Sharing All
Influenza Data (GISAID) followed the definition of SARS-CoV-
2 lineages made by Tang et al. [17] and divided SARS-CoV-2
into two major clades ‘L’ and ‘S’ based on the mutation L84S
in ORF8 protein [21]. For the purpose of consistent reporting,
GISAID further defined the other six major clades (the V, O, G,
GH, GR, and GV) based on marker mutations within the high-
level phylogenetic groupings [46]. In these clades, S and L are
the earliest known clades, and L is the characteristic of the
Wuhan outbreak. V and G clades are descendants of L clade,
and V clade is genetically closely related to L clade. O refers to
other clades designated for virus isolates that do not meet the
clade definition of GISAID [47]. G clade is further split into GH
and GR clade, and the GV clade is evolved from the GH clade.
These clades can split further when they meet the definition of
a new clade. The marker mutations for each clade are provided
in GISAID website, from which we can see that these mutations
used for defining clades are so limited that it is hard to fully
represent the genetic diversity of SARS-CoV-2.

Similar to SARS-CoV, SARS-CoV-2 is an RNA virus character-
ized by a high mutation rate [9]. SARS-CoV-2 frequently adapts
to environmental changes (such as the changes in temperature,
humidity, acidity, atmospheric pressure, UV irradiation, host
genetic background, ionic strength, drug, immunity, etc.) in real
time via random mutations that are subject to natural selection
[48, 49]. Evidence has suggested that one or more mutations are
needed for a virus to cope with a new environmental challenge
or create an adaptive advantage [50]. Previous studies have
shown that certain levels of variation exist between isolates from
different patients and between isolates from different tissues of
the same patient [51–54]. In a genome-wide analysis of 24 strains,
Xiong et al. found that the virus mutated at a rate similar to those
of other coronaviruses [55]. As this virus is highly infectious [5], it
produces a large number of mutations in the process of human-
to-human infection and transmission [11]. In most cases, the
fate of the emerging mutants is determined by natural selection,
and those that have a competitive advantage in viral replication,
transmission, or immune evasion will spread widely, whereas
unfavorable mutants slowly disappear from the viral population
[56]. In this study, we found that a large number of SARS-CoV-
2 mutants have emerged, and some have circulated widely in
the human population. These widespread mutants usually have
different adaptive advantages, such as immune evasion [57–59],
enhanced replication and transmission [60, 61], and increased
viral entry efficiency [62]. We also found that the genetic
diversity of SARS-CoV-2 is approaching saturation (Figure 2), and
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Figure 4. Maximum-likelihood phylogeny of SARS-CoV-2 subpopulations. Clade refers to eight major clades defined in GISAID; Number is reflected by the log10 value

(number of isolates). Country refers to the country that has the largest number of isolates in corresponding subpopulation. Date corresponds to the earlist sampling

date for each subpopulation, ranging from 24 December 2019 to 05 October 2020.

the population structure has become more stable (Figure 3a).
We found that the GC content of the SARS-CoV-2 genome was
reduced. In fact, AT and GC base pairs in DNA contain two and
three hydrogen bonds respectively, hence less energy is required
to unwind the AT base pair compared to GC base pair [63]. In
addition, lower GC content may also reduce biochemical costs

of GC base synthesis [64]. Hence, the decrease of GC content
may be beneficial to virus replication. In addition, the number of
frameshift mutation is very low, indicating that a drastic change
in the function of any protein would be detrimental to this virus.

Genetic diversity of SARS-CoV-2 would continually grow
as SARS-CoV-2 continues to spread around the world and
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Figure 5. Haplotype network of SARS-CoV-2 inferred with the median-joining method. The torso of network is marked in bold lines, and the size of dots represents

the relative number of SARS-CoV-2 isolates in each subpopulation.

mutate to adopt various environments or hosts [65]. Due
to the continuously expanding diversity, the present GISAID
clades are not sufficient for us to understand the patterns
and determinants of the global COVID-19 pandemic spread.
Hence, it is needed to be improved with detailed lineages
assigned by other tools [21]. The identification of SARS-CoV-2
subpopulations is essential for better characterization of the
genetic diversity and evolutionary trajectory that accompany

its global expansion. Since the outbreak of COVID-19 pandemic,
different studies have classified SARS-CoV-2 population. Tang
et al. classified SARS-CoV-2 into L and S lineages based on two
closely linked SNPs. Forster et al. classified this virus into three
types (A, B and C) based on amino acid mutations. GISAID team
further divided SARS-CoV-2 into eight branches, namely S, L, V,
G, GV, GR, GH and O, based on a series of amino acid mutations in
each phylogenetic branch. Moreover, Nextstrain team classified
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virus isolates with mutations of more than 20% global frequency
as new branches and Rambaut et al. defined different levels
of pedigree according to a set of conditions based on a
phylogenetic framework. Owing to distinct algorithm and focus,
the aforementioned methods have different outcomes. Herein,
we used the PhenoGraph classifier to automatically segment the
genetic data of SARS-CoV-2 isolates into an optimum number
of subpopulations. We used PhenoGraph because it is a graph-
based partitioning method that takes a matrix composed of
genetic data of N viral isolates as input and partitions the
data into genotypically distinct subpopulations by clustering a
weighted graph constructed based on the k-nearest neighbors for
each isolate. PhenoGraph is an effective method for the spatial
organization of mass cytometry and single-cell RNA-sequencing
data [66]. We thought that the graph-based clustering nature
of PhenoGraph would facilitate the identification of genetic
differences among SARS-CoV-2 subpopulations.

Phylogeny-based classification primarily utilizes SNPs in
multiple sequence alignment. Because the deletion mutations
are often present in one or more sequences in sequence
alignment, SNPs in these regions will also be excluded, thus
reducing the available information for this classification. In
this study, we coded each sequence position using a probability
vector with as many numbers of components as possible to
capture more information, in which the component in each
position was composed of six characters, A, C, G, T, −(DEL),
+(INS), and the values stored at each component were 0 or 1
(0 represented the absence, and 1 represented the presence).
Considering that these ultra-low frequency mutations may be
caused by sequencing errors, we filtered out these mutations,
which helped to improve the accuracy of the classification. All
SARS-CoV-2 isolates were grouped into 303 subpopulations.
With the increase in the number of isolates, the number of
subpopulations increased more slowly. By comparison, the
PhenoGraph classification is highly consistent with the clade
of GISAID with little difference. Hierarchical clustering analysis
of obviously inconsistent subpopulations revealed that the
PhenoGraph classification was more reliable and meticulous
than GISAID. Phylogenetic analysis and phylogenetic network
analysis showed that the PhenoGraph classification was well
structured and could be used to improve the GISAID clades. We
also determined the evolutionary relationships of the SARS-CoV-
2 subpopulations and their spatial and temporal distributions.

As discussed above, SARS-CoV-2 already has rich genetic
diversity, in which mutations are its main source, and recom-
bination contributes very little though recombination event
caused by co-infection of a single patient with viral particles
of distinct clades may lead to the emergence of novel lineages
[26]. However, regardless of the origin of the genetic diver-
sity, our classification can accurately determine its refined
subpopulations because our method is designed to dissect
the inner structure of global SARS-CoV-2 population. Based
on our classification, it is possible to capture the local and
global patterns of SARS-CoV-2 genetic diversity in a timely and
coherent manner, and track newly emerging lineages as they
move between regions or human populations. It also involves
but is not limited to the following potential applications [67]:
(1) assist in developing the subpopulation-specific vaccines
according to the structural differences in antigens; (2) contribute
to develop specific tests to characterize whether a COVID-19
patient is caused by imported viruses or by viruses circulating in
the domestic community and (3) identify viral subpopulations
associated with different clinical outcomes in different regions
and patients.

Conclusion
In conclusion, genetic diversification is a key factor in the con-
tinuous global outbreak of COVID-19, affecting epidemic preven-
tion and control. SARS-CoV-2 subpopulations are almost clin-
ically indistinguishable, but they have a molecular genotype
that allows enhanced inference of the time origin and trans-
mission dynamics of disease outbreaks that influences disease
outcomes. The identification of SARS-CoV-2 subpopulations is
of utmost importance for understanding its ongoing evolution
and epidemiology during the pandemic and will possibly play
an important role in surveillance and its eventual mitigation
and control. Although researchers have established some rules
for the genotyping and naming of SARS-CoV-2, different classi-
fication rules have their respective limitations; hence, there are
needs for improvement [19]. In this study, we detected genetic
mutations in 186 682 SARS-CoV-2 isolates. Our results indicated
that the genome of SARS-CoV-2 evolved into a genome with
lower GC content, and its genetic diversity soon approached
saturation; therefore, it is necessary to perform objective clas-
sification. The PhenoGraph classification reported here adopted
an unsupervised learning algorithm to perform an unbiased
cluster analysis of the SARS-CoV-2 population, which has an
advantage over other classifications. In summary, this study
provides comprehensive information on the evolution of SARS-
CoV-2 and objectively distinguishes the subpopulations of global
SARS-CoV-2.

Key Points
• Mutational characteristics reflect the effects of

mutant selection. Our results suggest that the SARS-
CoV-2 genome has evolved into a genome with
lower GC content, which may facilitate rapid mass
reproduction. We also found that the frameshift
mutation was rare because such mutations may deter
SARS-CoV-2 from completing the entire replication
process or from evading natural immunity.

• One major challenge in classifying genetic diversity
below the species level is the inability to accurately
dissect the population structure from its population
divergence. PhenoGraph is a top-performing unsuper-
vised tool for partitioning high-dimensional data into
subpopulations according to the natural structure of
the data. Herein, we first applied this algorithm to the
classification of SARS-CoV-2 and successfully identi-
fied 303 subpopulations that were highly consistent
with GISAID classification, but more objective, reliable
and meticulous.

• SARS-CoV-2 has accumulated many mutations since
the outbreak. Herein, we analyzed the monthly
changes in the cumulative number of newly emerged
mutations and isolates carrying these mutations and
the change in the number of subpopulations with
increasing isolates. Our results suggest that growth
rate of SARS-CoV-2 diversity has slowed down signifi-
cantly.

• Using phylogenetic network and correlation analyses,
we determined the temporal, spatial and phylogenetic
relationships of subpopulations, which was useful
for investigating the evolutionary and epidemiological
dynamics of the global SARS-CoV-2 population.
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Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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