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Abstract: Flooding caused or exacerbated by climate change has threatened plant growth and
food production worldwide. The lack of knowledge on how crops respond and adapt to flooding
stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-
responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties.
Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for
1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their
molecular and biochemical changes. We found that waterlogging treatment induced the formation
of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant
activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in
response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress,
we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially
expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related
transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant
signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into
the complex molecular events of bananas in response to waterlogging stress, which could later help
develop waterlogging resilient crops for the future climate.

Keywords: abiotic stress; banana; crop improvement; waterlogging; transcriptomics

1. Introduction

Flooding is one of the most significant threats to food production and economic growth
worldwide. It affects 17 million km2 of land surface annually [1], causing severe damage
to agricultural crop production. The frequency of flooding events is expected to increase
in the near future, especially in Southern Asia countries [2], due to increasingly erratic
rainfall patterns exacerbated by climate change [3]. For example, in Malaysia, the flooding
event in December 2006 amounted to 18.9 million USD of agriculture loss and damage,
affecting the arable lands and farmers [4]. Similarly, the flooding event in the Mississippi
River and Midwest in 2019 resulted in a cumulative loss of USD 6.9 billion, mainly affecting
agriculture [5]. These occurrences encourage scientific initiatives to develop flood-tolerant
varieties to mitigate agricultural losses and improve global crop production.

Waterlogging is part of the flooding stress, where the soil is oversaturated with water,
and only plant roots are surrounded by water. Oxygen partial pressure and gas diffusion
in waterlogged soil gradually decline, disrupting plant root function and normal cellular
processes and metabolisms [6]. Consequently, the nutrient uptake by plants dramatically
decreases, leading to plant starvation [7]. Several studies have shown that waterlogging is a
significant yield-limiting factor for crop yield and growth [8,9]. For instance, waterlogging
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reduced the yield of corn by about 4.7% each day for up to seven days compared to well-
watered corn [10]. Therefore, it is crucial to understand the plant molecular mechanisms in
response to flooding stress to mitigate its effects on plants.

Plants have developed multiple and interrelated signaling pathways to modulate
stress-responsive genes, leading to morphological, physiological, and metabolic changes [11].
At the morphological level, plant growth, biomass, and yield decreased under waterlogged
conditions [12]. In addition, the root architecture of plant species is usually altered in
response to waterlogging stress. For instance, adventitious roots and aerenchyma formation
were observed in waterlogged maize plants [13]. The changes in the root system could help
mitigate oxidative stress and promote oxygen movement to roots under hypoxic stress [14].
At the physiological and biochemical levels, waterlogging stress induces stomatal closure,
osmolyte accumulation, and reactive oxygen species (ROS) production while reducing
the plant’s photosynthetic capacity [15,16]. In the presence of ethylene, waterlogging
stress enhances respiratory burst oxidase homolog (RBOH) expression, leading to the
increase of ROS and hydrogen peroxide (H2O2) levels [17]. Consequently, plants activate
their antioxidant defense machinery to scavenge excessive ROS. At the molecular level,
genes and proteins involved in hormonal signal pathways and carbohydrate and energy
metabolisms have been reported to play significant roles in waterlogging stress responses
through the N-end rule pathway [18]. These findings show that plants adopt different
strategies to defend themselves from waterlogging stress.

Recently, much progress has been made to decipher the plant-responsive mechanisms
against flooding stress [17,19]. However, although the previous findings contribute to
our understanding of the adverse effects of flooding stress on plants, how crops respond
and adapt to it remains largely unknown. Hence, understanding the flooding-responsive
mechanisms of crops is indispensable for developing new flooding-tolerance varieties.

The banana is a commercially important cash crop as its nutritional value is higher
than other tropical fruits [20]. It ranked among the top ten crops in terms of yield and
calories produced, with about 119 million tons produced globally in 2020 [21]. In Malaysia,
the banana cultivar Berangan is one of the most popular cultivars and has the highest
commercial value in the Southeast region [22]. However, global extreme precipitation
events are a major constraint for banana yield and negatively affect its productivity [23].
Furthermore, the predicted rise in the earth’s global temperature is likely to aggravate
flooding effects [24,25], fostering a global decline in banana yield. Therefore, improving
banana production and the quality of this economically valuable fruit is vital.

We used bananas (Musa acuminata cv. Berangan) as a model to elucidate waterlogging
stress responses. The main objective of this study was to understand how waterlogging
stress causes changes at the morpho-biochemical and molecular levels to explore the
early stress-responsive mechanisms in bananas. We determined the morphological and
biochemical changes of banana plants at different time points of waterlogging treatment. In
addition, several genes involved in waterlogging signaling and regulation in the early stage
of waterlogging were also identified using transcriptomics and bioinformatics approaches.
The novelty of our study is that genes related to oxygen sensing and hormone signaling are
altered at the early stage of waterlogging stress. Such findings are critical and will serve as
a foundation for developing stress-tolerant bananas.

2. Results
2.1. Waterlogging Stress Influences Banana Growth

The growth of well-watered and waterlogged banana plants was measured at 1, 3, 5, 7,
14, and 24 days (Figure 1). Waterlogging stress impacted the banana root length, producing
the highest root length of 272.4 cm after 24 days of waterlogging (Figure 1A). The root-
to-shoot (R/S) dry weight (DW) for well-watered samples increased from 0.18 g g−1 on
day 1 to 0.26 g g−1 on day 24 (Figure 1B; Table S1). In contrast, a significant increase in the
R/S DW ratio for waterlogged samples was observed between days 7 (0.15 g g−1) and 24
(0.26 g g−1) (Figure 1B). The waterlogged plants generally had a larger leaf area than well-
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watered plants. The leaf area differences were highest on day 14 for well-watered plants
(339.90 cm2) and on day 3 for waterlogged bananas (459.3 cm2) (Figure 1C). However, the
differences between well-watered and waterlogged samples were not significant. Although
we did not notice any visible damage to plants, the leaves of the waterlogged banana
showed yellowing after 24 days of waterlogging (Figure S1). The relative water content
(RWC) for both treatments was similar throughout the experiments, ranging between 82%
and 95% (Figure 1D).
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Figure 1. The growth of well-watered and waterlogged banana plants was measured in terms of
(A) total root length, (B) root-to-shoot (R/S) dry weight (DW) ratio, and (C) leaf area differences.
(D) The effect of waterlogging on relative water content (RWC) was assessed between well-watered
and waterlogged leaf samples. Data are presented as means ± standard error from nine indepen-
dent biological replicates. Different capital letters indicate a significant difference between time
points within well-watered samples, while different lowercase letters indicate a significant difference
between time points within waterlogged samples (p < 0.05).

2.2. Waterlogging Induces Adventitious Roots and Aerenchyma Formation

The waterlogged banana plants started to produce adventitious roots after three days
of waterlogging, with the highest number of adventitious roots (10 roots) recorded after
24 days of waterlogging (Figure 2A). In contrast, the well-watered plants did not grow
adventitious roots throughout the experiment.
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2.3. Malondialdehyde, Proline and Hydrogen Peroxide Contents Changed under Waterlogging 
Stress 

Malondialdehyde (MDA) and proline contents were determined on banana root sam-
ples (Figure 3A,B). MDA and proline contents remained relatively like well-watered sam-
ples throughout the first five days of the waterlogging treatment. However, significant 
changes in MDA content were observed after 14 days of waterlogging treatment. Simi-
larly, the H2O2 content of waterlogged samples was significantly higher than well-watered 
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Figure 2. Adventitious root and aerenchyma formation. (A) The number of adventitious roots in
well-watered and waterlogged banana plants. The mean aerenchyma score of (B) 5 cm from the
root tip and (C) 5 cm from the root base. The results represent the mean ± standard error of the
mean of nine independent biological replicates with three technical replicates each. Different capital
letters indicate a significant difference between time points within well-watered samples. Different
lowercase letters indicate a significant difference between time points within waterlogged samples.
Asterisk (*) indicates a significant difference between well-watered and waterlogged samples at the
same time point (p < 0.05).

The well-watered bananas recorded an average aerenchyma score of 1.17 to 1.75
throughout the experiment (Figure 2B,C). The aerenchyma size of the root tip did not
show a significant difference between well-watered and waterlogged samples (Figure 2B).
However, the aerenchyma score of the root base of waterlogged samples was significantly
higher than well-watered samples on days 14 and 24 (Figure 2C).

2.3. Malondialdehyde, Proline and Hydrogen Peroxide Contents Changed under
Waterlogging Stress

Malondialdehyde (MDA) and proline contents were determined on banana root
samples (Figure 3A,B). MDA and proline contents remained relatively like well-watered
samples throughout the first five days of the waterlogging treatment. However, significant
changes in MDA content were observed after 14 days of waterlogging treatment. Similarly,
the H2O2 content of waterlogged samples was significantly higher than well-watered
samples on day 14 and day 24 of waterlogging (Figure 3C).
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roots. Error bars indicate the standard error of nine independent replications with three technical
replicates each. Different capital letters indicate a significant difference between time points within
well-watered samples. Different lowercase letters indicate a significant difference between time points
within waterlogged samples. Asterisks (*) indicate a significant difference between well-watered and
waterlogged samples at the same time point (p < 0.05).

2.4. Waterlogging Stress Enhances Antioxidant Defense Systems

The antioxidant enzyme activities in well-watered and waterlogged banana plants
were measured at 1, 3, 5, 7, 14, and 24 days to determine the ROS scavenging mechanism of
bananas towards waterlogging stress (Figure 4). Waterlogging stress significantly increased
the superoxide dismutase (SOD) activity, producing the highest level of 0.112 U g−1 after
one day of waterlogging (Figure 4A). However, the SOD activity decreased to its lowest
level (0.0136 U g−1) after 24 days of waterlogging. The ascorbate peroxidase (APX) level of
the waterlogged samples was significantly higher than well-watered samples after seven
days of waterlogging (Figure 4B). The glutathione reductase (GR) enzyme activity for well-
watered samples increased from 0.148 U g−1 on day 1 to 0.676 U g−1 on day 24. In contrast,
a significant increase in the GR enzyme activity for waterlogged samples was observed
on days 1, 5, and 7 (Figure 4C). The glutathione peroxidase (GPX) levels in waterlogged
bananas were significantly higher than in well-watered plants on days 3, 14, and 24 of wa-
terlogging, where the GPX level was highest on day 3 (0.287 µmol min−1 g−1) (Figure 4D).
On the other hand, the catalase (CAT) activity was found to be like well-watered plants,
with the highest recorded on day 7 for waterlogged bananas (0.120 nM cm−1 min−1 g−1)
(Figure 4E).
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Figure 4. Activities of (A) superoxide dismutase (SOD), (B) ascorbate peroxidase (APX), (C) glu-
tathione reductase (GR), (D) glutathione peroxidase (GPX), and (E) catalase (CAT) in banana plants
in response to waterlogging. Error bars indicate the standard error of nine independent replications
with three technical replicates each. Different capital letters indicate a significant difference between
time points within well-watered samples. Different lowercase letters indicate a significant difference
between time points within waterlogged samples. Asterisks (*) indicate a significant difference
between well-watered and waterlogged samples at the same time point (p < 0.05).

2.5. Waterlogging Stress Altered Gene Transcription in Roots

We selected three ERFVII, namely MaERFVII-1 (Macma4_09_g14450), MaERFVII-2
(Macma4_08_g23860), and MaERFVII-3 (Macma4_02_g02290), and ADH1 (Macma4_02_g11450)
genes for qPCR analysis to determine the early response of bananas toward waterlogging
stress. These genes were selected as they are waterlogging-responsive genes and play a
critical role in flooding tolerance. When banana plants were exposed to different waterlog-
ging durations, we found that two out of three ERFVII genes were significantly (p < 0.05)
upregulated on day 1 (Figure 5). The ADH1 expression in waterlogged bananas was upreg-
ulated by 2.93- and 5.4- fold on day 1 and day 3, respectively, compared to well-watered
bananas. We selected a 1-day waterlogging treatment for the subsequent RNA sequencing.
The RNA samples with a RIN value of more than seven were sequenced (Table S2).

The gene expression profiles of well-watered and waterlogged samples were analyzed
using RNA-sequencing. Of the 407 million raw reads generated from the six cDNA libraries,
approximately 406 million clean reads were obtained, ranging from 66.2 to 70.7 million
reads per library (Table S3). The clean reads were then mapped to the banana genome
retrieved from the banana genome hub DH Pahang (version 4.3) using Hisat2 (v2.0.1). The
mapping rates of each library ranged from 80.37% to 83.54% (Table S4). Of the 3508 differ-
entially expressed genes (DEGs), 1470 were upregulated, and 2038 were downregulated
(Table S5). The identified unigenes were classified according to their gene ontology (GO)
(Figure 6A). Most DEGs in the biological process category were involved in response to
abscisic acid and salt stress and positive regulation of transcription. The cellular component
category contained terms such as ‘nucleus’, ‘extracellular region’, and ‘cell wall’. The
most dominant terms in the molecular function category were ‘sequence-specific DNA
binding transcription factor activity’, ‘transcription regulatory region DNA binding’, and
‘heme binding’. Interestingly, both GO terms ‘positive regulation of transcription, DNA-
templated’ and ‘cell wall organization’ had the highest number of upregulated DEGs,
whereas ‘response to abscisic acid’ and ‘cell differentiation’ had the highest number of
downregulated DEGs (Table 1).
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Figure 5. Gene expression of (A) MaERFVII-1, (B) MaERFVII-2, (C) MaERFVII-3, and (D) ADH1 of
banana for 1, 3, and 5 days of waterlogging. Error bars indicate standard error between biological
replicates. Different capital letters indicate a significant difference between time points within well-
watered samples. Different lowercase letters indicate a significant difference between time points
within waterlogged samples. Asterisks (*) indicate a significant difference between well-watered and
waterlogged samples at the same time point (p < 0.05).

There were 795 unigenes annotated according to the Kyoto Encyclopedia of Genes and
Genome (KEGG) database [26], with 125 pathways significantly enriched. These include
plant hormone signal transduction (ko04075), phenylpropanoid biosynthesis (ko00940),
amino acid biosynthesis (ko01230), carbon metabolism (ko01200), and glycolysis (ko00010)
(Figure 6B).
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Table 1. The GO terms of banana 24 h after waterlogging stress.

GO ID GO Term p-Value False Discovery
Rate

Upregulated
DEG

GO:0045893 Positive regulation of transcription, DNA-templated 5.40 × 10−8 2.80 × 10−5 38
GO:0071555 Cell wall organization 3.37 × 10−5 6.16 × 10−3 38
GO:0009737 Response to abscisic acid 7.20 × 10−9 4.07 × 10−6 31
GO:0009873 Ethylene-activated signaling pathway 5.98 × 10−8 2.86 × 10−5 29
GO:0009651 Response to salt stress 4.82 × 10−4 4.83 × 10−2 26
GO:0006979 Response to oxidative stress 4.18 × 10−6 1.24 × 10−3 21
GO:0009409 Response to cold 2.61 × 10−4 3.12 × 10−2 17
GO:0010200 Response to chitin 4.45 × 10−5 7.28 × 10−3 16
GO:0010411 Xyloglucan metabolic process 9.77 × 10−6 2.43 × 10−3 16
GO:0042546 Cell wall biogenesis 4.29 × 10−5 7.21 × 10−3 16
GO:0009751 Response to salicylic acid 1.17 × 10−13 1.45 × 10−10 15
GO:0042744 Hydrogen peroxide catabolic process 1.22 × 10−6 3.98 × 10−4 14
GO:0030154 Cell differentiation 9.60 × 10−7 3.31 × 10−4 12
GO:0042545 Cell wall modification 2.81 × 10−4 3.29 × 10−2 12
GO:0009611 Response to wounding 2.00 × 10−6 6.22 × 10−4 11
GO:0055114 Oxidation-reduction process 4.77 × 10−5 7.61 × 10−3 11
GO:0009753 Response to jasmonic acid 6.59 × 10−6 1.86 × 10−3 9
GO:0009693 Ethylene biosynthetic process 2.65 × 10−5 5.14 × 10−3 9
GO:0009835 Fruit ripening 1.59 × 10−4 2.30 × 10−2 9
GO:0009741 Response to brassinosteroid 2.09 × 10−4 2.74 × 10−2 9

GO ID GO Term p-Value False Discovery
rate

Downregulated
DEG

GO:0009737 Response to abscisic acid 7.20 × 10−9 4.07 × 10−6 51
GO:0030154 Cell differentiation 9.60 × 10−7 3.31 × 10−4 51
GO:0009651 Response to salt stress 4.82 × 10−4 4.83 × 10−2 46
GO:0009751 Response to salicylic acid 1.17 × 10−13 1.45 × 10−10 43
GO:0045893 Positive regulation of transcription, DNA-templated 5.40 × 10−8 2.80 × 10−5 42
GO:0009409 Response to cold 2.61 × 10−4 3.12 × 10−2 36
GO:0071555 Cell wall organization 3.37 × 10−5 6.16 × 10−3 34
GO:0009733 Response to auxin 3.92 × 10−4 4.06 × 10−2 31
GO:0009873 Ethylene-activated signaling pathway 5.98 × 10−8 2.86 × 10−5 26
GO:0006979 Response to oxidative stress 4.18 × 10−6 1.24 × 10−3 25
GO:0009753 Response to jasmonic acid 6.59 × 10−6 1.86 × 10−3 25
GO:0009611 Response to wounding 2.00 × 10−6 6.22 × 10−4 24
GO:0009813 Flavonoid biosynthetic process 1.47 × 10−5 3.20 × 10−3 20
GO:0055114 Oxidation-reduction process 4.77 × 10−5 7.61 × 10−3 18
GO:0042744 Hydrogen peroxide catabolic process 1.22 × 10−6 3.98 × 10−4 17
GO:0071365 Cellular response to auxin stimulus 2.58 × 10−7 1.07 × 10−4 15
GO:0031408 Oxylipin biosynthetic process 3.68 × 10−5 6.53 × 10−3 15
GO:0010200 Response to chitin 4.45 × 10−5 7.28 × 10−3 14
GO:1901332 Negative regulation of lateral root development 2.33 × 10−9 1.45 × 10−6 12
GO:0010345 Suberin biosynthetic process 1.34 × 10−5 3.20 × 10−3 11

2.6. Hormone Signaling Pathways Are Differentially Regulated in Waterlogged Bananas

A total of 275 DEGs involved in plant hormone signaling transduction pathways
were altered in waterlogged plants (Figure 7A). Specifically, 34.9% were associated with
ABA signaling, 24.6% with ethylene signaling, 18.5% with auxin signaling, 15.5% with
jasmonic acid, and 1.7% with brassinosteroid (Figure 7A). Genes enriched in the ABA
pathway include bZIP domain-containing protein, abscisic acid-insensitive 5-like pro-
tein, abscisic receptor PYL, and protein phosphatase 2C. Of the 96 genes involved in this
pathway, 39 were upregulated, and 57 were downregulated (Table S5). In the ethylene
signaling pathway, upregulated genes include ethylene biosynthetic genes (ACCO and
ACCS), ethylene transport receptors, and ethylene-responsive transcription factors (TFs)
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(Figure 7B). Enrichment analysis revealed that auxin-responsive genes, such as SAUR32
(Macma4_02_g06820, Macma4_07_g20980), IAA30, and IAA4, were down-regulated. How-
ever, the auxin biosynthesis gene, namely IAA-amino synthetase GH3.8 (Macma4_02_g16920
and Macma4_05_g01480), was upregulated by 2.4- and 3.4- log2 fold change. These results
indicated that waterlogging could lead to a different hormone signaling regulation, which
might play an important role in the waterlogging response and adaptation in bananas.
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Figure 7. Plant hormone signal transduction pathway after 1 day of waterlogging stress. (A) The
number of hormone-signal-related DEGs changes in bananas under waterlogging stress. The DEGs
were involved in (B) the ethylene biosynthetic pathway and (C) carbon metabolism. The yellow
box highlights the glycolysis pathway, leading to the ethanol fermentation in the purple box, and
lastly, the blue box contains genes involved in the tricarboxylic acid (TCA) cycle. The arrows indicate
activation of the gene, while the blunt end represents inhibition of the gene. The red cross indicates
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the inactivity of the EIN3 pathway that leads to the activation of ERF TFs. The numbers in parentheses
correspond to the number of upregulated (red) and downregulated genes (blue). [ABA, abscisic acid;
ACCO, 1-aminocyclopropane-1-carboxylic acid oxidase; ACCS, 1-aminocyclopropane-1-carboxylic
acid synthase; ACLY, ATP citrate (pro-S)-lyase; ACO, aconitate hydratase; ADH, alcohol dehydro-
genase; ALDH, aldehyde dehydrogenase; Aldo, aldolase; BR, brassinosteroid; CTR1, constitutive
triple response 1; EBF, ethylene binding factor; ET, ethylene; EIN2/3, ethylene insensitive 2/3; Enol,
enolase; IAA, auxin; FH, fumarate dehydrogenase; G3PDH, glyceraldehyde-3-phosphate dehydro-
genase; HK, hexokinase; IDH, isocitrate dehydrogenase; JA, jasmonic acid; LSC1/2, succinate-CoA
ligase; ME, malate dehydrogenase; PDC, pyruvate decarboxylase; PDH, pyruvate dehydrogenase;
PEPC, phosphoenolpyruvate carboxykinase; PFK, phosphofructokinase; PGK, phosphoglycerate
kinase; PGM, phosphoglycerate mutase; PK, pyruvate kinase; SAM, S-adenosyl-L-methionine; SDHB,
succinate dehydrogenase; ST, succinyl transferase; sucB, 2-oxoglutarate dehydrogenase].

2.7. Hypoxia-Related Genes Showed Transcriptional Responses in Waterlogged Bananas

Pathways related to hypoxia and carbon metabolism were assessed to understand the
changes in the waterlogging response in banana plants. All eight genes related to oxygen
sensing, the plant cysteine oxidase (PCO) gene, were significantly upregulated by 1.45- to
5.0- fold in waterlogged samples (Table S5).

For carbohydrate metabolism, most genes related to glycolysis, including hexokinase,
phosphofructokinase, aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase,
were upregulated (Figure 7C). The genes related to ethanol fermentation were upregulated
in response to waterlogging, i.e., five pyruvate decarboxylase (PDC) genes and three alcohol
dehydrogenase (ADH) genes. In contrast, most TCA cycle genes, namely citric synthase,
aconitate hydratase, 2-oxoglutarate dehydrogenase, succinate dehydrogenase, fumarate
dehydrogenase, and malate dehydrogenase, were down-regulated. These results indicate
that fermentation is critical for bananas to respond to early waterlogging stress.

2.8. Expression of Transcription Factors (TF) Affected in Waterlogged Bananas

Among 3508 DEGs, a total of 267 were TFs, with 113 TFs being upregulated and 154
TFs being downregulated (p adjust < 0.01) (Figure 8). These TF families include AP2/ERF,
bHLH, MYB, NAC, bZIP, and WRKY. Among ERF TFs, 38 were upregulated, whereas
29 TFs were downregulated (Figure 8). ERFVII gene (Macma4_11_g05400) was the most
upregulated gene with a log2 fold change of 4.4, indicating that this TF might be critical in
waterlogging responses (Table S5).
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Figure 8. The number of waterlogging-related transcription factors that are classified according to
their protein families. [ARF, auxin response factor; bHLH, basic helix-loop-helix; bZIP, basic zinc
leucine zipper domain; DREB, dehydration-responsive element binding; ERF, ethylene response
factor; MYB, myeloblastosis; NAC-NAM, ATAF, and CUC; ZF-TF, zinc finger transcription factor].
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2.9. qPCR Validation of DEGs from the RNA-Sequencing

Nine genes involved in the abscisic acid (ABA) biosynthetic pathway, ethylene signal-
ing pathway, and a hypoxia-responsive gene were selected for qPCR analysis to validate
the transcriptomic data (Figure 9A). The expression of the selected genes between RNA-
sequencing and qPCR were highly correlated, with a correlation coefficient of 0.9408
(Figure 9B).
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Figure 9. Comparison of RNA-sequencing and qPCR analyses. (A) The qPCR validation of up-
and downregulated differentially expressed genes in waterlogged bananas relative to the well-
watered bananas. Values are means ± SE of three biological replicates in qPCR. The expression
levels of each gene are expressed relative to the mean values of the control samples. (B) The
correlation between qPCR and RNA-sequencing data. [ABA8OH, abscisic acid 8′ hydroxylase;
ACCO, 1-aminocyclopropane-1-carboxylic acid oxidase; ACCS, 1-aminocyclopropane-1-carboxylic
acid synthase; ADH1, alcohol dehydrogenase 1; NCED, 9-cis-epoxycarotenoid dioxygenase; PYL,
PYR-like proteins; PP2C, type 2C protein phosphatase].

3. Discussion
3.1. Morphological Responses of Bananas Subjected to Waterlogging

As sessile organisms, plants are unable to escape when challenged by unfavorable
environmental conditions. However, they can deploy complex morpho-physiological and
molecular mechanisms to cope and adapt to these adverse environmental stresses [11].
In this study, the banana plants elicited morphological responses to combat the imposed
waterlogging stress to increase their chances of survival. Waterlogged soils progressively
exert a detrimental effect on plant root respiration and nutrient uptake. This phenomenon
resulted in leaf wilting, which was observed at the latter stages of waterlogging. However,
we did not observe significant changes in leaf area and RWC. One of the possible explana-
tions is that the experimental periods might be too short to evaluate the changes in leaf area.
In contrast, no significant changes in RWC might be because of the driving force generated
by banana plants for water charging of cellular water storage capacities [27]. Although the
mechanism is unclear, this process might improve the water uptake by plants and the water
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status of leaves. On the other hand, we found that waterlogging induced adventitious roots
and aerenchyma formation. These results concurred with previous studies, which showed
that waterlogging significantly increases the number of adventitious roots and aerenchyma
formation [28,29]. The formation of aerenchyma is essential in plant waterlogging tolerance
as it can provide oxygen to the submerged organs of a plant [30]. On the other hand,
adventitious root formation might be the result of ethylene entrapment due to waterlogged
soils, causing auxin accumulation in the stem [31].

3.2. Oxidative Stress and Antioxidant Changes in Roots of Waterlogged Bananas

Waterlogging stress generally leads to the accumulation of MDA and H2O2. Our
findings agree with previous studies, where MDA and H2O2 were elevated under wa-
terlogging or hypoxia stress in various plants [32,33]. MDA is the end product of lipid
peroxidation, frequently used to determine ROS-induced oxidative injury [34]. The sig-
nificant differences in MDA levels at various treatment times indicate that MDA levels in
bananas are time-specific. The waterlogged bananas generally produced higher MDA than
their well-watered counterparts over time, despite having increased antioxidant activities.
One of the possible explanations for this is that the antioxidant enzymes might provide
a short-term defense response against stress, and prolonged waterlogging stress might
cause mitochondria dysfunction and cell membrane damage, as observed in the MDA
assay [35]. In contrast, another ROS scavenger, proline, showed no significant changes
between treatments and time points. Its production is widely observed when plants are
exposed to waterlogging stress to maintain protein structural stability [36], as shown in
various plants, such as peach and cucumber [37,38].

The excessive accumulation of ROS accompanied by increasing antioxidant enzyme
activities. In the present study, the increased antioxidant enzyme activities in the banana
roots under waterlogging indicated that they possess efficient ROS scavenging systems. For
example, the SOD activity remained high since day 1 of waterlogging, reaffirming the role
of SOD as the first line of defense against ROS. In plants, APX and CAT are predominant
enzymes in alleviating the damage caused by stresses [32]. This study recorded a remark-
able increase in APX activity in waterlogged banana roots. Similar findings were also
reported by Xie et al. [39] and Da-Silva et al. [40], where the waterlogging stress increased
APX activity. In contrast, the CAT activity for well-watered and waterlogged samples was
not significantly different. We speculate that no significant difference in CAT activity is
partly the result of the increased APX activity, as APX has a higher affinity for H2O2 than
CAT [41]. In addition, the increasing trend in H2O2 accumulation consequent to increased
stress duration might also contribute to this observation [42].

GPX is an oxygen radical scavenger, catalyzing the reduction of H2O2 via glutathione
to generate water and glutathione disulphide. Consequently, GR reduces glutathione
disulphide to glutathione, supplying electron donors for the subsequent detoxification
of H2O2 [43]. Our results showed that GPX and GR activities in waterlogged banana
roots were generally higher than in well-watered roots, which is supported by other
studies [42,44]. Taken together, the enhanced antioxidant enzyme system, especially SOD,
helps banana plants cope with accumulated ROS under waterlogging conditions.

3.3. Oxygen Sensing of Banana under Waterlogging Stress

Waterlogging stress affects oxygen-sensing in plants. We found that the expression
of PCOs and ERFVIIs, which represent the oxygen-sensing machinery for plant survival
under flooding, was significantly altered. Under normal conditions, ERFVII TF N-terminal
cysteine residue is subjected to O2-dependent degradation through the N-end rule pathway
by PCO [45]. However, in the absence of oxygen, PCO cannot destabilize ERFVII TFs,
leading to the activation of hypoxia-responsive genes [46]. Surprisingly, six PCO genes in
banana roots were upregulated under waterlogging stress. We speculate that this might
be due to the residual oxygen molecules present in the plants or water. Loreti et al. [47]
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showed that the PCO2 expression in A. thaliana was upregulated under anoxia stress but
reduced to a minimum level after 24 h of treatment.

Ethylene response factor (ERFs) are a critical flooding-responsive mechanism in plants.
They are constitutively expressed but are degraded in the presence of oxygen [48]. Our
results showed that among 67 ERF TFs, those in the IIa, IIIb, Va, VII, VIIIa, IX, and X
subgroups were upregulated, while ERF TFs in IIb, Vb IXc, and Xa subgroups were
downregulated. In addition, both IIb and IIId subgroups contained upregulated and
downregulated transcripts. It is noteworthy that six out of 18 genes of the ERFVII family
were upregulated. Members of the ERFVII are well-known as the main regulator of plant
responses to low oxygen conditions [49]. For instance, the knockout of erfVII in A. thaliana
decreased its tolerance to hypoxia [50]. In wheat, the overexpression of ERFVII improved
the waterlogging tolerance without grain yield penalty [51].

It has been well documented that ethylene accumulation is a key signal for flooding.
Our transcriptome data show that several ethylene biosynthesis genes, such as S-adenosyl-
L-methionine (SAM) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO), were
upregulated in the submerged roots. These results agree with previous studies showing
that waterlogging stress promotes ethylene biosynthesis [52]. However, although ethylene
biosynthesis genes were upregulated, waterlogging stress did not affect the downstream
genes in the ethylene pathway, such as ETR, CTR1, and EIN3. Furthermore, although the
increased EBF transcription could lead to EIN3 inhibition, this inhibition did not decrease
the transcription of ERF TFs. Hence, we speculate that an EIN3-independent pathway
might be involved in activating ERF TF transcription since there is growing evidence of
the EIN3/EIL1-independent mediated pathway in the ethylene pathway. For example, the
double knockout ein3ein1 Arabidopsis mutants were able to respond to ethylene under
stress [53]. However, further studies are required to verify this.

3.4. Expression in Genes Involved in ABA Pathways of Bananas under Waterlogging Stress

Several genes associated with the ABA pathway were found to have a significant
transcriptional response to the waterlogging stress. For instance, the gene encoding the
rate-limiting enzyme in ABA biosynthesis, 9-cis-epoxycarotenoid dioxygenase 1 (NCED1),
was downregulated, while the ABA degradation enzyme, ABA 8′-hydroxylase gene, was
upregulated. ABA is a phytohormone known to respond to drought, salinity, and cold
stress, and the reduced ABA content is a common response to waterlogging. A decrease in
ABA would trigger ethylene accumulation and subsequently stimulate adventitious root
and aerenchyma development in submerged plants [54,55]. The exogenous ABA treatment
has been demonstrated to inhibit adventitious root primordia formation in tomatoes [54]
and aerenchyma formation in soybean roots [56]. Besides, a decrease in ABA is essential
for waterlogged-induced gibberellic acid to promote shoot elongation [45]. These results
indicate that ABA acts as a negative regulator in waterlogging tolerance in plants.

3.5. Carbon Metabolism Is Essential for Energy Supply during Waterlogging

When plants are exposed to hypoxic conditions, they immediately alter their gene
transcription to synthesize anaerobic polypeptides, deriving from glycolysis and ethanol
fermentation [57]. This study found that glycolysis-related genes were significantly ex-
pressed on one day of waterlogging. These include hexokinase, phosphoglycerate kinase,
and pyruvate kinase. Given the need to maintain sufficient energy for plant survival since
nutrient uptake is inhibited in hypoxic roots, it is not surprising that carbon metabolism
was differentially altered under waterlogging stress. Similarly, increased transcription of
genes related to starch metabolism and the glycolysis/gluconeogenesis pathways has been
reported in the waterlogged roots of Cerasus sachalinensis [58] and barley [59].

Aerobic respiration in roots is limited under low oxygen conditions, resulting in
glycolysis being channeled to fermentative pathways. These changes are necessary to
produce energy for cell survival. Indeed, PDC and ADH were upregulated in waterlogged
bananas. Pyruvate generated from glycolysis is metabolized to ethanol via PDC and ADH.
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This process releases energy in the form of adenosine triphosphate (ATP) to increase the
chances of plant survival in the absence of aerobic respiration.

Genes associated with the TCA, such as glutamate synthase (GS), glutamate dehydro-
genase (GDH), and glutamate carboxylase, were downregulated in the roots of waterlogged
banana plants. This finding concurred with the study by Ren et al. [60], where the authors
showed that the activity of GS and GDH was reduced in the stems and leaves of water-
logged maize. The changes in carbon metabolism are often accompanied by changes in
nitrogen metabolism to maintain the carbon-nitrogen balance. The increase of amino acid
catabolism is required to compensate for the insufficient energy supply during stress. This
can be seen in the waterlogged banana roots, where the alanine biosynthesis gene (alanine
aminotransferase; AlaAT) was upregulated. Alanine is a carbon and nitrogen source, and
its biosynthesis is crucial for plants to survive waterlogging [61]. These results suggest
that activation of amino acid catabolism and alcohol fermentation are vital to fulfilling the
energy demand in plants under waterlogging stress.

3.6. A Model for the Response of Banana Plants to Waterlogging

We propose a model for waterlogging responses in banana plants (Figure 10). Water-
logging affects changes in plant cells, such as limitation of gas diffusion, nutrient depletion,
and increased ROS production. To respond and adapt to waterlogging, banana plants
have evolved to rapidly elongate their adventitious roots and aerenchyma formation and
activate the antioxidant defense system. Our data revealed transcriptional changes in the
downstream components of hormone signaling and carbon and energy metabolisms during
waterlogging.
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inhibition of ERFVII TFs. The question mark indicates an unknown EIN3/EIL independent pathway
that activates ERF genes. [ABA, abscisic acid; ABA 8′OH, abscisic acid 8′ hydroxylase; ACCO,
1-aminocyclopropane-1-carboxylic acid oxidase; ACCS, 1-aminocyclopropane-1-carboxylic acid syn-
thase; Aldo, aldolase; ERF, ethylene response factor; GA, gibberellic acid; H2O2, hydrogen peroxide;
HK, hexokinase; NERP, N-end rule pathway; PDC, pyruvate decarboxylase; PFK, phosphofructoki-
nase; SOD, superoxide dismutase; TCA, tricarboxylic acid].

4. Materials and Methods
4.1. Plant Material and Waterlogging Treatment

Two-month-old banana (M. acuminata cv. Berangan) seedlings purchased from the
MB Tissue Culture Resources, Shah Alam, Selangor, Malaysia, were acclimatized in a
greenhouse at the Universiti Malaya. A total of 108 banana plantlets grown in flowerpots
containing soil with equal portions of coco peat, sand, organic matter, and black soil were
transferred to a 3 L plastic container with 18 cm diameter. The plants were maintained
under natural light (12 h photoperiod) at a controlled temperature (25 ± 2 ◦C) under a
relative humidity of 65 ± 5%. Waterlogging treatment was conducted by filling the plastic
containers with water 2 cm above the soil surface. The containers were refilled with tap
water to maintain a constant water level. The well-watered bananas were planted in well-
drained soil and watered once a day during treatment. The waterlogging treatments were
conducted for 1, 3, 5, 7, 14, and 24 days. Each time point consisted of nine plants (n = 9),
with three plants in a plastic container. After treatment, plants were carefully dug and
washed with tap water to remove dirt attached to the roots. The morphological changes
of the treated and non-treated banana plants were determined for each time point. After
waterlogging treatment, root samples were harvested, ground into a fine powder in the
presence of liquid nitrogen and stored at −80 ◦C until use. These samples were used for
the subsequent gene expression analysis and biochemical assays.

4.2. Morphological Analysis

Morphological changes, such as total root length, R/S DW ratio, leaf area, and leaf
relative water content (RWC), were measured. The total root length was determined based
on the sum of the length of each root. Each root was measured using a meter ruler. The
plants were divided into the shoot and root parts and oven-dried at 80 ◦C for two weeks
or until constant weight for dry mass. The R/S DW ratio was calculated based on the dry
matter of the root and shoot parts of the plants.

The leaf area differences were calculated based on the differences between leaf area
measurements before and after the waterlogging treatment. The RWC was measured
according to Turner [62]. For RWC, the first mature leaf was excised into 2 cm × 2 cm size
before measuring the total fresh weight. Next, leaves were submerged in distilled water,
and turgid weight was measured after 24 h. For DW, leaves were dried in a 60 ◦C oven
for 24 h or until a constant weight was achieved. RWC was calculated according to the
following equation:

RWC (%) = (FW − DW)/(TW − DW) × 100% (1)

FW = Fresh weight (g)
DW = Dry weight (g)
TW = Turgid weight (g)

4.3. Adventitious Root and Aerenchyma Formation

Adventitious roots were calculated based on the number of roots per plant protruding
from the banana stem. Aerenchyma formation was assessed according to Mano et al. [63].
A total of three lateral roots with a root length of more than 15 cm were randomly selected
from each banana plant in each treatment group to determine the presence of aerenchyma.
Cross-sections of roots about 1 cm thick were made using a handheld razor blade 5 cm
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beyond the root base and 5 cm beyond the root tip (Figure 11A). Aerenchyma in the
root cortex was visually scored under an inverted fluorescent microscope (Olympus Co.,
Tokyo, Japan) on a scale of 0 to 3, where 0 indicates no aerenchyma, 1 indicates radial
aerenchyma formation, 2 indicates radial formation extended to the epidermis, and 3
indicates well-formed aerenchyma (Figure 11B).
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and excised 5 cm from the root base, which is closer to the stem, and 5 cm at the root tip, which is
away from the plant. (B) The aerenchyma score was assessed according to the descriptions from
Mano and Omori [63].

4.4. Malondialdehyde, Proline, and Hydrogen Peroxide

H2O2 content was measured as described by Junglee et al. [64]. Frozen banana root
tissues (150 mg) were homogenized with 1 mL of buffer solution containing 0.025% (w/v)
TCA, 0.5 M potassium iodide, and 2.5 mM potassium phosphate buffer. The absorbance of
the supernatant was measured at 350 nm using a spectrophotometer. The H2O2 content
was determined using the standard curve prepared from the serial dilution of H2O2.
Malondialdehyde (MDA) content was determined as described by Amnan et al. [34].
The root tissues were homogenized and incubated with 0.5% (w/v) thiobarbituric acid
(TBA) in 20% (w/v) trichloroacetic acid (TCA) at 95 ◦C for 15 min. The solution was
then placed on ice to terminate the reaction and centrifuged to collect the supernatant. A
spectrophotometer was used to measure the absorbance of the solution at 532 and 600 nm,
where the net absorbance value was recorded. Lastly, the MDA content was calculated
with the extinction-coefficient 155 mM−1 cm−1.

Proline content was estimated as described by Bates et al. [65]. A total of 0.5 g root
samples were homogenized in 1 mL of 70% ethanol. The filtrate was mixed with an equal
volume of acid-ninhydrin and acetic acid for 1 h at 100 ◦C. The reaction was terminated
using an ice bath. The solution was partitioned against 4 mL toluene and measured in
the organic layer for absorbance at 520 nm. Commercially available proline was used as a
standard to construct a calibration curve.
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4.5. Antioxidant Enzyme Assays

The antioxidant enzyme activities, namely SOD, APX, GR, GPX, and CAT, in well-
watered and waterlogged banana plants, were measured. The antioxidant enzyme activities
were determined according to Zhang et al. [66]. In brief, soluble proteins were extracted
from the homogenized roots in potassium phosphate buffer (pH 7.0) containing ethylenedi-
aminetetraacetic acid (EDTA) and polyvinylpyrrolidone, with the addition of ascorbic acid
in the case of APX assay. The supernatant was collected through centrifugation and used
for SOD, APX, CAT, GR, and GPX assays.

Total SOD activity was monitored through the inhibition of photochemical reduction
of nitro blue tetrazolium. The reaction mixture was illuminated for 10 min under a 35 W
fluorescent tube. The reaction was then terminated by placing the tube in a dark container.
The absorbance of the mixture at 560 nm was measured for all samples at 15 s intervals for
3 min. The SOD level was calculated according to the following formula:

SOD (U g−1) = ∆A/Blank A560nm × (Volume of reaction)/(Volume of enzyme) × 0.02 × 1/FW × 100 (2)

∆A = Difference in absorbance between blank and sample
FW = Sample fresh weight (g)

APX activity was determined from the decrease in absorbance at 290 nm reading for
1 min in a reaction mixture with an extinction coefficient of 28 mM−1 cm−1. The APX
reaction mixture contained enzyme extract, 50 mM phosphate buffer (pH 7.0), 0.5 mM
ascorbic acid, and 0.1 mM H2O2. GR assay was performed according to Carlberg et al. [67]
through the oxidation of 1 µmol of NADPH in 3 min at 290 nm with an extinction coefficient
of 6200 M−1 cm−1. The GR reaction mixture contained enzyme extract, 50 mM phosphate
buffer (pH 7.0), 0.5 mM EDTA, 0.1 mM reduced nicotinamide adenine dinucleotide phos-
phate (NADPH), and 1 mM glutathione disulphide (GSSG). GPX was measured as the oxi-
dation of guaiacol in the presence of H2O2 with an extinction coefficient of 43.6 M−1 cm−1.
The reaction mixture consisted of enzyme extract, 100 mM phosphate buffer (pH 7.0), gua-
iacol, and 0.1 mM H2O2. The reaction started after adding guaiacol, followed by changes
of 470 nm over 3 min [68]. CAT activity was monitored through the consumption of H2O2
with an extinct coefficient of 39.4 mM−1 cm−1, resulting in a decrease in absorbance at
240 nm for 3 min. The CAT reaction mixture consisted of enzyme extract, 50 mM phosphate
buffer (pH 7.0), and 10 mM H2O2. The enzyme activities were calculated according to the
general formula:

Enzyme activity (M min−1 g−1 FW) = (∆A × VTR)/(ε × ∆t × 1 cm × Ve × g FW) × 1000 (3)

∆A = Difference in absorbance of mixture
VTR = Volume of reaction (mL)
Ve = Volume of enzyme extract (mL)
∆t = Difference in time of absorbance (min)
ε = extinction coefficient
FW = Sample fresh weight (g)

4.6. RNA Extraction

Total RNA was extracted from the roots using the CTAB extraction method, according
to Asif et al. [69]. The RNA quality was analyzed using Nanophotometer Perl® (Implen
GmbH, Munich, Germany), whereas the RNA integrity was visualized using agarose gel
electrophoresis and Bioanalyzer. The extracted RNA was treated with DNase (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol to remove residual genomic
DNA.
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4.7. Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) was performed to analyze the expression of ERFVII
TFs. The first strand of cDNA was synthesized from total RNA (2 µg) using the NxGen M-
MuLV Reverse Transcriptase cDNA synthesis kit (LGC Biosearch Technologies, Hoddesdon,
UK). The qPCR consisted of a final volume of 15 µL containing 10 ng of cDNA, 0.3 µM
primers, and 2 × SG Fast qPCR Master Mix (Sangon Biotech Co., Ltd. Shanghai, China),
with the elongation factor 1-alpha and tubulin as reference genes (Table S6). The qPCR
was carried out according to the manufacturer’s protocol. Relative expression levels were
calculated according to Pfaffl [70]. The qPCR analysis was carried out with three biological
replicates and three technical replicates for each gene.

4.8. RNA Sequencing

The extracted RNA with a RIN value between 6.5 and 10 was used for poly-A en-
riched library construction. RNA sequencing was performed on an Illumina system with
paired-end 150 bp reads. Raw reads were assessed for their quality using the FastQC
program (version 0.11.3) (Cambridge, UK) [71] and filtered using Cutadapt (v1.9.1) (Up-
psala, Sweden) [72]. Cutadapt software was used to remove primer and adapter se-
quences from the raw reads to obtain high-quality clean data. The clean reads of all
samples were aligned against the banana reference genome (M. acuminata DH-Pahang
version 4.3) (https://banana-genome-hub.southgreen.fr/content/download, (accessed
on 25 November 2021) [73]. The mapping was performed using Hisat2 (v2.0.1) [74]
using the default parameters. DEGs were identified using the DESeq2 Bioconductor
package [75]. GOSeq (v1.34.1) [76] was used to identify GO terms that annotate a list
of enriched genes, while the KEGG [26] was used to enrich genes in the KEGG path-
way. The generated FASTQ files were deposited at the NCBI Sequence Read Archives
database (https://www.ncbi.nlm.nih.gov/sra, (accessed on 25 July 2022) under BioProject
ID: PRJN850880.

4.9. Statistical Analysis

The morphological experiments were conducted with three replicates per treatment
and were repeated thrice. The biochemical and RNA sequencing experiments consisted of
three biological replicates with three technical replicates for each biological replicate. Data
are presented as means ± standard error. All morphological and biochemical data were
recorded and analysed using one-way ANOVA with Duncan’s multiple range comparison
post-hoc test at a significance level of p < 0.05 using SPSS 23.0 (SPSS, Chicago, IL, USA).

5. Conclusions

This study describes the morphological and molecular responses of banana plants in re-
sponse to waterlogging stress. In general, the waterlogging-stressed plants showed a higher
number of adventitious roots, enlarged root aerenchyma, and enhanced antioxidant en-
zyme activities than well-watered plants. The early waterlogging-responsive mechanisms
of bananas were determined by examining their transcriptome changes. Several unigenes
were validated to be differentially expressed, and most of them were classified as abiotic
stress-related transcription factors, signal transduction, and carbohydrate metabolisms.
Although the ethylene biosynthetic pathway was upregulated, the ethylene-independent
pathway activating ERF TFs might also be involved. Our findings provide insight into the
complex molecular events involved in response to waterlogging stress of banana roots,
which could help develop waterlogging resilient crops for the future climate.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11152052/s1, Figure S1: Representative image of banana
plants exposed to waterlogging stress for 0, 1, 3, 5, 7, 14, and 24 days. A total of 108 banana plantlets
grown in flowerpots were transferred to a 3 L plastic container with 18 cm diameter. Each time point
consisted of nine plants (n = 9), with three plants in a plastic container. Waterlogging treatment was

https://banana-genome-hub.southgreen.fr/content/download
https://www.ncbi.nlm.nih.gov/sra
https://www.mdpi.com/article/10.3390/plants11152052/s1
https://www.mdpi.com/article/10.3390/plants11152052/s1
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conducted by filling the plastic containers with water 2 cm above the soil surface. The containers
were refilled with tap water to maintain a constant water level; Table S1: The shoot and root DW
of banana plants in response to waterlogging stress; Table S2: The RIN value, 28S/18S ratio, and
concentration of RNA prior to library preparation; Table S3: Summary of the raw and cleaned reads;
Table S4: Total reads and mapped reads for well-watered and waterlogged bananas; Table S5: The list
of significantly differentially expressed genes; Table S6: Sequences of primers, banana genome hub
gene ID, and the product length of the targets.
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