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Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are closely related to the treatment of human 
diseases. Traditional biological experiments often require time-consuming and labor-intensive in their search 
for mechanisms of disease. Computational methods are regarded as an effective way to predict unknown 
lncRNA-miRNA interactions (LMIs). However, most of them complete their tasks by mainly focusing on a single 
lncRNA-miRNA network without considering the complex mechanism between biomolecular in life activities, 
which are believed to be useful for improving the accuracy of LMI prediction. To address this, a heterogeneous 
information network (HIN) learning model with neighborhood-level structural representation, called HINLMI, 
to precisely identify LMIs. In particular, HINLMI first constructs a HIN by integrating nine interactions of 
five biomolecules. After that, different representation learning strategies are applied to learn the biological 
and network representations of lncRNAs and miRNAs in the HIN from different perspectives. Finally, HINLMI 
incorporates the XGBoost classifier to predict unknown LMIs using final embeddings of lncRNAs and miRNAs. 
Experimental results show that HINLMI yields a best performance on the real dataset when compared with 
state-of-the-art computational models. Moreover, several analysis experiments indicate that the simultaneous 
consideration of biological knowledge and network topology of lncRNAs and miRNAs allows HINLMI to 
accurately predict LMIs from a more comprehensive perspective. The promising performance of HINLMI also 
reveals that the utilization of rich heterogeneous information can provide an alternative insight for HINLMI to 
identify novel interactions between lncRNAs and miRNAs.
1. Introduction

Non-coding RNA (ncRNA) has been demonstrated to be associated 
with mammalian and human genomes, and further study of non-coding 
RNA can improve the understand of gene regulatory networks for re-
searchers [16,31,20,5,39]. As researchers delve deeper into the study 
of non-coding RNAs (ncRNAs), it becomes evident that long non-coding 
RNAs (lncRNAs) and microRNAs (miRNAs) play crucial roles in reg-
ulating various cellular processes. These ncRNAs are found to have 
significant impacts on the control of life activities. In particular, lncR-
NAs have been extensively investigated and have been shown to possess 
diverse and intricate mechanisms for governing gene expression. They 
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exert their influence at both the transcriptional and post-transcriptional 
levels, adding to their importance in cellular regulation [41]. More-
over, lncRNAs are closely interested with miRNAs in terms of stability, 
which makes miRNAs also indispensable in process of physiological and 
pathological. MicroRNAs (miRNAs) are single-stranded (<22nt) ncRNA 
sequences, which is the most attractive and most clearly characterized 
regulatory ncRNAs [22]. Therefore, studying unknown interactions be-
tween lncRNA and miRNA can help us better understand the functional 
expression of lncRNAs and miRNAs, and further gain new insights for 
medical research.

Traditional biological experiments, the acquisition of unknown 
lnRNA-miRNA interactions (LMIs) is time consuming and expensive, 
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resulting in inefficiency and unpopularity. Artificial intelligence tech-
niques have been successfully applied in bioinformatics, including LMIs 
prediction, has attracted much attention as an alternative yet comple-
mentary strategy to discover new interactions for lncRNAs and miRNAs, 
thus offering significant advantages to accelerate the process of biolog-
ical research.

In recent years, there has been growing interest in the representa-
tion learning of ncRNAs within Heterogeneous Information Networks 
(HINs), owing to the rich feature information of lncRNAs and miRNAs 
contained in these networks. While this method enhances precision, it 
overlooks the complex relationships and interactions that biomolecules 
exhibit within rich molecular association networks, making it challeng-
ing to understand the molecular mechanisms of disease occurrence from 
a holistic biological systems perspective. For example, in the treat-
ment of gastric cancer, the post-transcriptional regulatory roles played 
by lncRNAs and miRNAs, particularly in regulating protein stability, 
are crucial [17,15]. Therefore, incorporating a variety of significant 
biomolecules such as proteins and diseases to construct a systematic 
and enriched biomolecular association network to explore potential in-
teractions between lncRNAs and miRNAs holds significant biomedical 
importance [4,14].

To address the issues mentioned, we develop a novel computa-
tional model for learning in Heterogeneous Information Networks 
(HINs) with neighborhood structures, named HINLMI, which predicts 
new lncRNA-miRNA interactions (LMIs) by leveraging the biological 
knowledge and network topology of lncRNAs and miRNAs. Specifi-
cally, HINLMI first integrates nine types of biomolecular networks, 
including lncRNA-miRNA, lncRNA-disease, lncRNA-protein, mi-RNA-
disease, miRNA-protein, protein-disease, protein-protein, protein-drug, 
and drug-disease, into a HIN, where the nucleotide sequences of lncR-
NAs and miRNAs serve as their biological knowledge. Subsequently, the 
popular sequence representation learning algorithm k-mer [32] is em-
ployed to represent the biological knowledge of lncRNAs and miRNAs. 
Then, to more precisely capture the complex relationships of lncR-
NAs and miRNAs within the HIN, HINLMI calculates the neighborhood 
structural similarity between molecules, including both first-order and 
higher-order similarities, to obtain a comprehensive network represen-
tation. Finally, the ultimate representation of lncRNAs and miRNAs, 
composed of both biological and network topology representations de-
rived from the given HIN, is fed into an XGBoost classifier to perform the 
LMI prediction task. Experimental results demonstrate that HINLMI out-
performs the latest computational models used for predicting novel LMIs 
on several independent metrics in real datasets. Furthermore, our case 
studies indicate that the rich biological information gains new insight 
into lncRNA-miRNA interaction prediction with improved accuracy. The 
main contributions of this work are summarized as:

(1) An effective computational algorithm, namely HINL-MI, is pro-
posed to precisely identify novel DDAs by calculating neighborhood-
level structural representation of lncRNAs and miRNAs through a XG-
Boost classifier.

(2) Different representation learning strategies are developed to 
learn the biological and network representations of lncRNAs and miR-
NAs from different perspectives.

(3) First-order and high-order similarity structure information are 
taken into account simultaneously to better learn the feature representa-
tions of lncRNAs and miRNAs on heterogeneous information networks.

(4) Experimental results demonstrate that HINLMI performs better 
than several state-of-the-art computational models under 5-fold cross-
validation. The promising performance of HINLMI also reveals that the 
utilization of rich heterogeneous information allows HINLMI to identify 
novel relationships between lncRNAs and miRNAs.

2. Related works

Existing LMI prediction methods can be divided into two categories 
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based on feature extraction strategies: similarity network-based com-
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putation and graph representation learning. Similarity network-based 
methods rely on phenotypic data of lncRNAs and miRNAs, predicting 
interactions by calculating their similarities. These methods are compu-
tationally simple and easy to implement, but their performance may 
decline with sparse data due to high dependency on available data. 
For instance, Huang et al. [21] propose a computational-based model, 
called EPLMI, for predicting unknown LMIs. EPLMI assumes that highly 
similar lncRNAs have similar patterns of interaction or non-interaction 
with miRNAs, and then different similarity matrices are constructed to 
identify unknown LMIs. Hu et al. [19] present a matrix factorization-
based model, namely LMNLMI, to complete the LMIs prediction task. 
First, LMNLMI obtains patterns according to the sequences expression 
and functional of lncRNAs and miRNAs, and then constructs several 
similarity networks, and finally the interaction scores of lncRNAs and 
miRNAs are calculated. GNMFLMI [36] combines known interaction in-
formation, sequence data, and graph regularization to predict potential 
lncRNA-miRNA interactions, which leverages both biological knowl-
edge and network structure to enhance the accuracy of LMI prediction. 
LMI-INGI [42] constructs two graphs according to the similarity of lncR-
NAs and miRNAs, and then calculates the scores for lncRNA-miRNA 
pairs by these two graphs and the known interactions.

In contrast, graph representation learning methods transform lncRNA-
miRNA relationships into low-dimensional, dense vector representations 
while preserving the original graph properties. For example, GCNCRF 
[37] initially constructs a heterogeneous network using known interac-
tions, similarity networks, and feature matrices of lncRNAs and miRNAs, 
then employs a graph convolutional neural network equipped with an 
attention mechanism to obtain representations of the nodes. Subse-
quently, these representations are decoded through a decoding layer 
to yield scores. MGCAT [26] adopts a multi-view graph neural net-
work with cascaded attention to learn informative node representations 
by leveraging view-level, node-level, and layer-level attentions for LMI 
prediction.

3. Materials and methods

3.1. Dataset

To construct a HIN for performance evaluation, we have based 
on a heterogeneous dataset, namely MAN dataset, composed of five 
kinds of biomolecules, i.e., lncRNA, miRNA, protein, drug, and dis-
ease, and their interactions. To systematically and comprehensively 
establish a biomolecular relationship network, we followed the method-
ology described by Guo et al. [13], downloading known associations 
between small biological molecules (miRNA, lncRNA, and proteins), 
diseases, and drugs from multiple databases. These databases include 
lncRNASNP2, lncRNADisease, lncRNA2Target, HMDDv3.0, miRTar-
Base, DisGeNET, and etc. Initially, we extracted all lncRNA and miRNA 
interaction pairs from the lncRNASNP2 database and performed the fol-
lowing processing steps: unifying identifiers to ensure data consistency 
across different databases; removing duplicates to retain unique inter-
action pairs; simplifying the data structure by keeping key fields such 
as lncRNA ID, miRNA ID, and interaction type; and eliminating irrele-
vant items to ensure data relevance and accuracy. We applied the same 
preprocessing steps to other types of data to maintain consistency and 
relevance. After completing these steps, we obtained a non-redundant 
and simplified molecular association network (MAN) dataset. The de-
tailed data statistics are shown in Tables 1 and 2, where lncRNA-miRNA 
interactions are regarded as the benchmark dataset.

3.2. Construction of HIN

As mentioned before, a HIN of interest is consisted of nine different 
types associations [10,1,43,11], and then two kinds of biological infor-
mation are contained, i.e., the biological and network representations of 

lncRNAs and miRNAs. The framework overview of HINLMI is shown in 
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Fig. 1. The framework overview of HINLMI.
Table 1

Nine biological molecules association.

Associations Number Database

lncRNA-miRNA 8,374 lncRNASNP2 [28]
lncRNA-disease 1,264 lncRNADisease [2], lncRNASNP2
lncRNA-protein 690 lncRNA2Target [24]
miRNA-disease 16,427 HMDDv3.0 [23]
miRNA-protein 4,944 miRTarBase [7]
protein-disease 25,087 DisGeNET [30]
protein-protein 19,237 STRING [33]
protein-drug 11,107 DrugBank5.0 [38]
drug-disease 18,416 CTD [8]
Total 105,546 MAN [14]

Table 2

The number of five biomolecular types.

Name lncRNA miRNA protein drug disease Total

Number 769 1023 1649 1025 2062 6528

Fig. 1. To model a HIN, we develop a classical three-element tuple, i.e., 
 = (𝑉 , 𝐶, 𝐸), where 𝑉 = {𝑉 𝑙, 𝑉 𝑚, 𝑉 𝑝, 𝑉 𝑑𝑟, 𝑉 𝑑𝑖} is a set of all biological 
molecules, 𝐶 = {𝐶𝑙, 𝐶𝑚} is a set of biological representation of lncR-
NAs and miRNAs. 𝐸 = {𝐸𝑙𝑚, 𝐸𝑙𝑑 , 𝐸𝑙𝑝, 𝐸𝑚𝑑, 𝐸𝑚𝑝, 𝐸𝑝𝑑, 𝐸𝑝𝑝, 𝐸𝑝𝑑, 𝐸𝑑𝑑} is 
composed of all lncRNA-miRNA associations (𝐸𝑙𝑚), lncRNA-disease as-
sociations (𝐸𝑙𝑑 ), lncRNA-protein associations (𝐸𝑙𝑝), miRNA-disease as-
sociations (𝐸𝑚𝑑 ), miRNA-protein associations (𝐸𝑚𝑝), protein-disease as-
sociations (𝐸𝑝𝑑 ), protein-protein associations (𝐸𝑝𝑝), drug-protein asso-
ciations (𝐸𝑑𝑝) and drug-disease associations (𝐸𝑑𝑑 ). Besides, |𝑉 | is the 
size of 𝑉 , 𝐿 and 𝑀 are assumed as the number of lncRNAs and miRNAs, 
respectively.

3.3. Learning biological representation

In this paper, we collect the sequences of lncRNAs and miRNAs are 
derived from the miRbase [25] and NONCODE [9], respectively. For 
the sake of convenience, a gene sequence which can be made up of 
A (Adenine), G (Guanine), C (Cytosine), and U (Uracil) is divided a 
series of subsequences by k-mer algorithm (𝑘=3) [32]. For example, 
“𝐴𝐴𝐶𝑇𝐺𝐴𝐶𝑇𝐺𝐴” first can be divided into “𝐴𝐴𝐶 , 𝐴𝐶𝑇 , 𝐶𝑇𝐺, 𝑇𝐺𝐴, 
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𝐺𝐴𝐶 , 𝐴𝐶𝑇 , 𝐶𝑇𝐺, 𝑇𝐺𝐴”. Second, the representation vectors of lncR-
NAs and miRNAs are obtained by counting sub-sequences occurrence 
frequency. At last, these representation vectors are normalized as final 
biological representation C ∈ℝ(𝐿+𝑀)×𝑑1 of lncRNAs and miRNAs.

3.4. Learning network representation

Since the HIN involves many molecular attributes, which is more 
complex network [18]. To fully capture the network representation 
of lncRNAs and miRNAs, we take into account the features of nodes 
in given HIN from first-order and high-order similarity structures. 
Among which, the first-order similarity indicates known associations 
between biological molecules, and high-order similarity regards biolog-
ical molecules are similar if they have shared neighborhood structures. 
Inspired by graph representation learning algorithm [34], first-order 
similarity is constructed by the joint probability among node 𝑣𝑖 and 
𝑣𝑗 (𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ) as follows:

𝑝𝑟𝑜𝑏1(𝑣𝑖, 𝑣𝑗 ) =
1

1 + exp(−
→
𝑓 𝑖

𝑇 ⋅
→
𝑓 𝑗 )

, (1)

where 
→
𝑓 𝑖 and 

→
𝑓 𝑗 denote the feature vector of the node 𝑣𝑖 and 𝑣𝑗 re-

spectively, 𝑝𝑟𝑜𝑏1 as a probability distribution in the space |𝑉 | × |𝑉 |. 
Subsequently, 𝑝𝑟𝑜𝑏

1
defines the empirical probability of Eq. (1), as fol-

lows:

𝑝𝑟𝑜𝑏
1
(𝑣𝑖, 𝑣𝑗 ) =

𝑤𝑖,𝑗

𝑊
,𝑊 =

∑
(𝑣𝑖,𝑣𝑗 )∈𝐸

𝑤𝑖,𝑗 , (2)

where 𝑊 is a |𝑉 | × |𝑉 | trainable weight matrix and 𝑤𝑖,𝑗 represents the 

first-order similarity between node 𝑖 and 𝑗. To preserve 
→
𝑓 , we optimize 

Eq. (1) by minimizing the following objective functions.

𝑂1 =𝐷(𝑝𝑟𝑜𝑏
1
, 𝑝𝑟𝑜𝑏1), (3)

where the function 𝐷 denotes the distance between probability 𝑝𝑟𝑜𝑏
1

and 𝑝𝑟𝑜𝑏1. For the sake of calculation, the KL-divergence is introduced 
to replace the function 𝐷 by following:

𝑂1 = −
∑

𝑤𝑖,𝑗 log𝑝𝑟𝑜𝑏1(𝑣𝑖, 𝑣𝑗 ), (4)

(𝑣𝑖,𝑣𝑗 )∈𝐸
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Hence, the first-order representations of all nodes in  are repre-
sented as F = {𝑓𝑖} ∈ℝ|𝑉 |×𝑑2 by minimize the Eq. (4). In the same way, 
we calculate the second-order representations in HIN by following:

𝑝𝑟𝑜𝑏2(𝑣𝑗 |𝑣𝑖) =
exp(

→
𝑠 𝑗

𝑇 ⋅
→
𝑠 𝑖)

|𝑁(𝑣𝑖)|∑
𝑘=1

exp(
→
𝑠 𝑘

𝑇 ⋅
→
𝑠 𝑖)

, (5)

where 𝑁(𝑣𝑖) denotes a set of neighbor of nodes, 𝑝𝑟𝑜𝑏2 defines a condi-

tional probability function. 
→
𝑠 𝑗 and 

→
𝑠 𝑖 are the second-order representa-

tions of node 𝑣𝑗 and 𝑣𝑖 in , respectively. To preserve 
→
𝑠 , we optimize 

Eq. (5) by minimize the following objective function.

𝑂2 = −
∑

𝑖∈𝑁(𝑣𝑖)
𝜆𝑖𝐷(𝑝𝑟𝑜𝑏

2
, 𝑝𝑟𝑜𝑏2), (6)

where 𝜆𝑖 denotes the degree of node 𝑣𝑖, and 𝑝𝑟𝑜𝑏
2

is empirical proba-
bility of Eq. (5).

𝑝𝑟𝑜𝑏
2
(𝑣𝑗 |𝑣𝑖) =

𝑤𝑖.𝑗

𝜆𝑖
, (7)

where 𝜆𝑖 =
∑

𝑘∈𝑁(𝑣𝑖)
𝑤𝑖,𝑘. For the sake of calculation, the KL-divergence 

is introduced to replace the function 𝐷. The KL-divergence is used in 
the HINLMI model to minimize the distance between two probability 
distributions: the empirical distribution and the joint distribution for 
both first-order and second-order proximities. The advantages of using 
KL-divergence include three folds, fidelity to the data distribution, ef-
fectiveness in sparse data, and non-symmetry. Its calculation process by 
following:

𝑂2 = −
∑

(𝑣𝑖,𝑣𝑗 )∈𝐸
𝑤𝑖,𝑗 log𝑝𝑟𝑜𝑏2(𝑣𝑗 |𝑣𝑖), (8)

Therefore, the second-order representations of all nodes in  are rep-
resented as S = {𝑠𝑖} ∈ ℝ|𝑉 |×𝑑3 by minimize the Eq. (8). In the end, 
first-order and second-order representations are spliced together, and 
we have a matrix P = 𝜎(F(𝑉 𝑙, 𝑉 𝑚), S(𝑉 𝑙, 𝑉 𝑚)) ∈ ℝ(𝐿+𝑀)×𝑑4 to collect 
the network representations of lncRNAs and miRNAs, where 𝜎(⋅) is a 
splice function.

There are three primary reasons why third-order proximities are not 
deemed necessary in the HINLMI model. Firstly, the combination of first-
and second-order proximities effectively captures a substantial amount 
of the structural information inherent in the HIN. This comprehensive 
capture of network structure minimizes the need for higher-order prox-
imities. Secondly, the inclusion of second-order proximity already signif-
icantly enhances the performance of HINLMI on various prediction tasks 
compared to using only first-order proximity, suggesting a robust im-
provement in embedding quality without necessitating further complex-
ity. Lastly, while higher-order proximities may potentially yield even 
more representative embeddings, the increased computational complex-
ity will compromise the model’s efficiency, particularly when scaling to 
very large networks such as molecular association networks.

3.5. Predicting novel LMIs

According to the above steps, HINLMI have been obtained two kinds 
of representations for lncRNAs and miRNAs for a given , i.e., the biolog-
ical representation C and network representation P. The lncRNA-miRNA 
interaction prediction issue usually is regarded as a binary classifica-
tion, which is positive samples consist of known LMI and negative sam-
ples consist of unknown LMI are fed to a machine learning classifier 
to train the model, and then predictive samples are input to the train 
model to obtain their scores as predicted results. Hence, we connect 
them by a connection matrix X = [C, R] ∈ ℝ(𝐿+𝑀)×(𝑑1+𝑑4) to represent 
the final representations of lncRNAs and miRNAs. To accurately predict 
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novel LMIs, HINLMI predict novel LMIs by incorporating the XGBoost 
Computational and Structural Biotechnology Journal 23 (2024) 2924–2933

Table 3

Main symbols used.

Symbol Description

HIN Heterogeneous Information Network
MAN Molecular Association Network
LMI LncRNA-miRNA Interaction
 = (𝑉 ,𝐶,𝐸) The HIN graph
𝑉 The set of all biological molecules
𝐶 The set of biological representation of lncRNAs and miRNAs
𝐸 The set of all molecular associations
|𝑉 | The number of all molecules
𝐿 The number of lncRNAs
𝑀 The number of miRNAs
C The matrix of the final biological representations
F The set of the first-order representations
S The set of second-order representations
P The matrix of the network representations
X The matrix of the final train representations
𝐸𝑡𝑟𝑎𝑖𝑛 The train set of LMIs
𝐸𝑡𝑒𝑠𝑡 The test set of LMIs
H The feature vector set of 𝐸𝑡𝑟𝑎𝑖𝑛

classifier [3]. In particular, we prepare a training dataset, denoted as 
𝐸𝑡𝑟𝑎𝑖𝑛, to build the XGBoost classifier based on the feature representa-
tions of lncRNAs and miRNAs. 𝐸𝑡𝑟𝑎𝑖𝑛 contains |𝐸𝑙𝑚| kinds of feature 
vectors H = [h𝑘], and each feature vector ℎ𝑘 is composed of 𝑥𝑖 and 𝑥𝑗 , 
where < 𝑣𝑖 ∈ 𝑉 𝑙, 𝑣𝑗 ∈ 𝑉 𝑚 >∈𝐸𝑙𝑚, 𝑥𝑖, 𝑥𝑗 ∈ X. Similarly, 𝐸𝑡𝑒𝑠𝑡 is also con-
structed by 𝑁 lncRNA-miRNA pairs with unknown interactions.

For the XGBoost classifier consist of 𝐾 decision trees, each decision 
tree can be regarded as a projection function 𝑓 (𝑥), and its calculation 
process as follows:

𝑦̂𝑘 =
𝑇∑
𝑡=1

𝑓𝑡(ℎ𝑘) (9)

where 𝑦̂𝑘 is the prediction value of 𝑘-th training samples in 𝐸𝑡𝑟𝑎𝑖𝑛 , 𝑓𝑡
is 𝑡-th decision tree, 𝑇 is the number of all training trees. The objec-
tive function of the XGBoost classifier contains two steps: training loss 
and complexity regularization. Given a training sample {(𝑥𝑘, 𝑦𝑘)}, its 
objective function can be defined as:

𝑂𝑏𝑗 =
|𝐸𝑡𝑟𝑎𝑖𝑛|∑
𝑘=1

𝐿𝑜𝑠𝑠(𝑦𝑘, 𝑦̂𝑘) +
𝑇∑
𝑡=1

Ω(𝑓𝑡) (10)

where 𝐿𝑜𝑠𝑠(𝑦𝑖, 𝑦̂𝑖) is the loss function that measure the error between 
the predicted value 𝑦̂𝑖 and the real value 𝑦𝑖. Ω(𝑓𝑡) is a regularization of 
the complexity for 𝑡-th decision tree, usually defined as:

Ω(𝑓𝑡) = 𝛾𝐿𝑡 +
1
2
𝜆

𝐿𝑡∑
𝑗=1

𝜔2
𝑗 (11)

where 𝛾𝐿𝑡 is the number of leaf nodes in 𝑘-th decision tree, 𝜔𝑗 is the 
weight of the 𝑗-th leaf node, and 𝛾 and 𝜆 are the regularization pa-
rameters. Subsequently, we calculate candidate lncRNA-miRNA pairs 
by following a logical function:

𝑃 (𝑦𝑘 = 1|ℎ𝑘) = 𝜎(𝑦̂𝑘) =
1

1 + exp(−𝑦̂𝑘)
(12)

where 𝜎 is sigmoid function, which converts logarithmic odds to prob-
abilities.

𝑐𝑘 = argmax
𝑐

𝑃 (𝑦𝑘 = 𝑐|𝑥𝑘) (13)

where 𝑐𝑘 denotes the final classification of the candidate sample 𝑥𝑘 . 
Through the above calculation process, the XGBoost classifier can be 
used to give the probability for 𝐸𝑡𝑒𝑠𝑡. Regarding the predicted results, a 
𝑁 -dimension vector r is adopted to collect the prediction score of each 
lncRNA-miRNA pair in 𝐸𝑡𝑒𝑠𝑡. One should note that the range of each 
element in r is within [0, 1]. The main symbols used in this paper are 

summarized in Table 3.
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Table 4

The performance of HINLMI using 5-fold CV on the MAN dataset.

Fold Accuracy MCC Precision Recall F1-score

1 0.9484 0.8969 0.9563 0.9379 0.9479
2 0.9472 0.8944 0.9534 0.9403 0.9468
3 0.9534 0.9069 0.9529 0.9540 0.9535
4 0.9558 0.9116 0.9564 0.9552 0.9558
5 0.9460 0.8921 0.9374 0.9558 0.9465
Mean 0.9502±0.0042 0.9004±0.0084 0.9513±0.0079 0.9490±0.0082 0.9501±0.0043

Fig. 2. The ROC and PR curves of HINLMI using 5-fold CV on the MAN dataset.
4. Results and discussion

4.1. Evolution metrics

To evaluate the predictive performance of HINLMI from different 
perspectives, several evaluation metrics are introduced, including Ac-
curacy, Matthew’s correlation coefficient (MCC), Precision, Recall, and 
F1-score. The definition of them is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(14)

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√
(𝑇𝑃 + 𝐹𝑃 ) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃 ) × (𝑇𝑁 + 𝐹𝑁)

(15)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(16)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(17)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(18)

where TP, TN, FP and FN represent the numbers of true positives, true 
negatives, false positives and false negatives respectively for predicted 
LMIs.

Besides, AUC and AUPR are also used as important evaluation met-
rics, they are the areas under the Receiver Operating Characteristic 
(ROC) curve and the Precision-Recall (PR) curve respectively.

4.2. Evaluate performance

In the experiments, the performance of HINLMI is evaluated by fol-
lowing a 5-fold cross-validation (CV) scheme. Specifically, the bench-
mark dataset is first divided into 5-folds, and then each fold is alter-
natively taken as a testing dataset while the rest compose the training 
dataset. The experiment results of 5-fold CV on the MAN dataset are 
shown in Table 4 and Fig. 2. We note that the average results achieved 
by HINLMI in term of AUC, AUPR, Accuracy, MCC and F1-score are 
98.76%, 98.71%, 95.02%, 90.04%, and 95.01%, respectively. More 
importantly, HINLMI yields a promising performance in terms of ro-
bustness and stability, as it obtains relatively small variances for these 
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independent evaluation metrics.
Regarding the hardware environment, all experiments have been 
conducted on an AMD Ryzen machine with an 8-core CPU running at 
3.9 GHz, 128 GB of RAM, and an NVIDIA GeForce GTX 2080 Ti GPU. 
The Python code was executed in an Anaconda3 environment.

4.3. Comparison with state-of-the-art models

To demonstrate the prediction ability of HINLMI, we compare it 
with several state-of-the-art baseline models, i.e., EPLMI [21], GNM-
FLMI [36], LMI-INGI [42], GCNCRF [37]. The work details of these 
comparing models are presented in Introduction. Regarding the param-
eter settings used for training, we explicitly adhere to the default values 
recommended in the original work to ensure a fair comparison. The 
experimental results of all competing models, evaluated under 5-fold 
cross-validation on the benchmark dataset, are presented in Table 5. 
We note that HINLMI yields the best performance across the benchmark 
dataset, as on average it gives 1.69%, 1.07%, 32.65%, and 5.94% rela-
tive improvement in AUC, respectively, over all baseline models.

In addition to its superior accuracy, HINLMI also demonstrates 
greater robustness compared to other algorithms, as evidenced by its 
evaluation scores. For instance, when comparing HINLMI with GCN-
CRF, the scores for Accuracy and AUC are significantly higher, while the 
scores for MCC, F1-score, and AUPR are comparatively lower for GCN-
CRF. This phenomenon can be attributed to the fact that the number 
of positive samples correctly predicted by comparing models is much 
lower than that of HINLMI. In other words, HINLMI outperforms the 
comparing models, particularly in terms of its ability to discover novel 
LMIs, as indicated by its superior performance in Recall. Furthermore, 
the predictive power of GCNCRF is limited due to the inherent issue of 
over-smoothing in graph neural networks. In contrast, HINLMI demon-
strates significantly lower performance fluctuations across all evaluation 
metrics compared to other prediction models. The robustness of HINLMI 
can be attributed to two key factors. Firstly, the integration of multi-
ple molecular associations enables HINLMI to learn node features from 
both first-order and high-order similarity structures. This comprehen-
sive perspective allows it to effectively predict unknown lncRNA-miRNA 
associations, benefiting from the rich biological and topological infor-
mation available in the heterogeneous information network. Secondly, 
HINLMI functions as an effective ensemble model by incorporating the 

XGBoost classifier to perform the binary classification task. This ensem-
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Table 5

The performance of all comparing models using 5-fold CV.

Model Accuracy MCC Precision Recall F1-score AUC AUPR

EPLMI N/A N/A N/A N/A N/A 0.9707±0.0051 N/A
GNMFLMI 0.9209±0.0052 N/A 0.9038±0.0063 0.9420±0.0049 0.9225±0.0048 0.9769±0.0037 N/A
LMI-INGI 0.5794±0.0061 0.2023±0.0074 0.6163±0.0057 0.5082±0.0046 0.5780±0.0049 0.6611±0.0062 0.6913±0.0053
GCNCRF 0.9316±0.0049 0.1050±0.0067 0.8729±0.0043 0.2727±0.0058 0.0945±0.0061 0.9282±0.0045 0.1710±0.0064
MGCAT 0.9038±0.0054 0.8147±0.0063 0.9087±0.0049 0.8979±0.0058 0.9033±0.0062 0.9414±0.0051 0.9059±0.0048
HINLMI 0.9502±0.0042 0.9004±0.0084 0.9513±0.0079 0.9490±0.0082 0.9501±0.0043 0.9876±0.0024 0.9871±0.0037

Fig. 3. The ROC and PR curves for several variants of HINLMI were generated using 5-fold CV on the MAN dataset.
ble approach contributes to the robustness and generalization ability of 
HINLMI, enhancing its performance across diverse scenarios.

Regarding the unsatisfactory performance of LMI-INGI for the LMIs 
prediction task, its operations conducted in the lncRNA-miRNA net-
work have a two-fold effect. First, LMI-INGI requires more biological 
attributes in term of biological knowledge, such as sequence similarity, 
expression profiles and functional similarity of lncRNAs and miRNAs, 
but many biological attributes are lacking in practical application. In 
this regard, HINLMI have flexibility and robustness against feature rep-
resentations of nodes by mining the first-order and high-order similar 
structure in given HIN can be enhanced as indicated by the experimental 
results. Second, the features obtained only in the light of the lncRNA-
miRNAs association network, its expression power is weak, and it is 
difficult to capture outstanding feature representations.

To conduct the experiments with MGCAT, we first download the 
source codes from the GitHub repositories provided in their original 
work and compile these codes to run the prediction models for per-
formance comparison. For parameter settings, we explicitly adopt the 
default values recommended in their original work to ensure a fair 
comparison. The experimental results of 5-fold cross-validation on the 
benchmark dataset are presented in Table 5. MGCAT achieves 90.38%, 
81.47%, 90.87%, 89.79%, 90.33%, 94.14%, and 90.59% in terms of Ac-
curacy, MCC, Precision, Recall, F1-score, AUC, and AUPR, respectively. 
On average, HINLMI performs better by 4.62% and 8.12% than MGCAT 
in terms of AUC and AUPR, respectively. We analyze that the possi-
ble reason why MGCAT performs lower than HINLMI is that the graph 
neural network mechanism adopted by MGCAT has difficulty capturing 
expressive features due to its inherent limitations.

In summary, the multiple molecular associations and their biological 
knowledge of HIN are benefited for HINLMI to correctly capture its full 
complexity and structural richness, and the applied graph representa-
tion learning algorithm allows HINLMI to seamlessly incorporate such 
features for learning high-quality network representations of lncRNAs 
and miRNAs. Thus, HINLMI yields a promising performance for identi-
fying novel LMIs.

4.4. Ablation study

To investigate the impact of different feature representations in 
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HINLMI, we conducted an ablation study with two variants: HINLMI-A 
and HINLMI-N. The primary difference between them lies in how they 
capture the feature representations of lncRNAs and miRNAs in HIN. 
In HINLMI-A, we only consider the biological knowledge of lncRNAs 
and miRNAs for representation learning. On the other hand, HINLMI-N 
solely incorporates the network representations of lncRNAs and miR-
NAs, omitting their biological knowledge. The experimental results of 
5-fold cross-validation are presented in Table 4 and Fig. 3. Several obser-
vations can be made from these results. The performance of HINLMI-A 
is influenced by focusing exclusively on biological knowledge, while 
HINLMI-N relies solely on the network structure. By comparing their re-
sults with the original HINLMI, we gain insights into the individual con-
tributions of biological knowledge and network topology in predicting 
lncRNA-miRNA interactions. This ablation study highlights the impor-
tance of integrating both biological knowledge and network structure 
in HINLMI, showcasing how diverse feature representations enhance its 
predictive capabilities for identifying potential lncRNA-miRNA interac-
tions, where several things can be noted.

Firstly, HINLMI-A exhibits the lowest performance among HINLMI 
and its variants. This suggests that relying solely on the biological knowl-
edge of lncRNAs and miRNAs may not be sufficient to achieve the 
desired prediction performance. Secondly, HINLMI-N demonstrates a 
considerable performance advantage over HINLMI-A in each evalua-
tion metric. Specifically, HINLMI-N outperforms HINLMI-A by 2.88%, 
3.84%, 4.42%, 8.76%, and 4.20% in terms of AUC, AUPR, Accuracy, 
MCC, and F1-score, respectively. This significant margin indicates that 
the network topology information represented by the HIN enables 
HINLMI-N to better capture the characteristics of lncRNAs and miRNAs 
during the training of the XGBoost classifier. Lastly, an additional im-
provement is observed in HINLMI by combining the strengths of both 
HINLMI-A and HINLMI-N. Comparing the performance of HINLMI-A 
with that of HINLMI-N, we deduce that it is the integration of more 
heterogeneous association information that contributes the most to the 
performance enhancement of HINLMI. In other words, HINLMI can com-
prehensively leverage the feature representations of lncRNAs and miR-
NAs, thus enhancing the predictive capability of the LMIs prediction task 
from different perspectives.

To effectively harness diverse features from various projection 
spaces, we analyze the optimal aggregation schemes for both biolog-

ical and network representations of lncRNA and miRNAs. Specifically, 
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Table 6

The performance of several variants of HINLMI using 5-fold CV on the MAN dataset.

Model Accuracy MCC Precision Recall F1-score

HINLMI-A 0.8885±0.0044 0.7778±0.0088 0.8725±0.0067 0.9101±0.0081 0.8909±0.0044
HINLMI-N 0.9327±0.0073 0.8654±0.0145 0.9358±0.0093 0.9291±0.0092 0.9324±0.0073
HINLMI-Multi 0.9319±0.0025 0.8639±0.0051 0.9255±0.0046 0.9395±0.0069 0.9324±0.0027
HINLMI-Mean 0.9442±0.0049 0.8884±0.0098 0.9473±0.0092 0.9408±0.0059 0.9440±0.0048
HINLMI-Add 0.9442±0.0056 0.8884±0.0112 0.9472±0.0099 0.9409±0.0056 0.9440±0.0054
HINLMI 0.9502±0.0042 0.9004±0.0084 0.9513±0.0079 0.9490±0.0082 0.9501±0.0043

Table 7

The performance of HINLMI on different heterogeneous network structure.

Model Accuracy MCC Precision Recall F1-score

HINLMI-I 0.8636±0.0061 0.7273±0.0121 0.8633±0.0110 0.8641±0.0091 0.8637±0.0057
HINLMI-P 0.9198±0.0065 0.8380±0.0130 0.9246±0.0094 0.9124±0.0091 0.9184±0.0065
HINLMI-D 0.9197±0.0040 0.8395±0.0079 0.9247±0.0022 0.9138±0.0087 0.9192±0.0044
HINLMI-N 0.9327±0.0073 0.8654±0.0145 0.9358±0.0093 0.9291±0.0092 0.9324±0.0073
HINLMI 0.9502±0.0042 0.9004±0.0084 0.9513±0.0079 0.9490±0.0082 0.9501±0.0043

Fig. 4. The ROC and PR curves of different heterogeneous network structure by HINLMI.
we design four types of feature aggregation methods: HINLMI, HINLMI-
Multi, HINLMI-Mean, and HINLMI-Add. These methods perform multi-
plication, mean, and addition operations on two types of representation 
vectors. Experimental trials employing different variants within a 5-fold 
CV framework demonstrate that HINLMI achieves optimal performance 
by concatenating the biological and network representations, as indi-
cated in Table 6 and Fig. 3. Notably, the AUC value of HINLMI-Multi 
decreased by 1.01% and the AUPR value decreased by 1.18% com-
pared to HINLMI, suggesting that the multiplication of biological and 
network representations may introduce incompatibilities and amplify 
noise, thereby leading to a loss of meaningful information and overall 
performance degradation.

In summary, the ablation study highlights the importance of incor-
porating both biological knowledge and network topology information 
for accurate prediction of lncRNA-miRNA interactions. The findings un-
derscore the significance of leveraging diverse feature representations 
in HINLMI, leading to improved performance in identifying potential 
regulatory interactions between lncRNAs and miRNAs.

4.5. Heterogeneous network performance analysis

To better analysis the contribution of the given HIN for the per-
formance of LMIs prediction, we construct this experiment to eval-
uate the importance of biological molecules. In particular, several 
sub-heterogeneous networks, i.e., HINLMI-I, HINLMI-P, HINLMI-D, and 
HINLMI-N, are designed by biological knowledge. HINLMI-I merely con-
tains associations between lncRNAs and miRNAs, whereas HINLMI-P ad-
ditionally integrates protein-related networks on the basis of HINLMI-I. 
Similar, HINLMI-D can enrich the information of HINLMI-I by incor-
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porating drug-related associations. HINLMI-N consists of five types of 
nodes and nine association networks. Experimental results are also pre-
sented in Table 7 and Fig. 4, and several things are worth noting.

On the one hand, HINLMI-P and HINLMI-D have obvious improve-
ment against the performance of LMIs predictors. On average, they per-
form better by 7.62%, 8.18%, 11.23%, 22.29%, 12.27%, 9.80%, 11.02% 
than HINLMI-I in term of AUC, AUPR, Accuracy, MCC and F1-score, re-
spectively. Obviously, after the addition of protein or drug associations, 
rich network association information can provide additional pathways 
for lncRNAs and miRNAs. On the other hand, multi-molecular associ-
ation network contributes to LMIs prediction most as its highest eval-
uation metrics. The reason is that due to HINLMI-N can integrate the
advantages of HINLMI-P and HINLMI-D to enhance the expressive power 
of features of lncRNAs and miRNAs.

4.6. Parameter analysis

We perform an optical choice experiment for crucial parameters to 
achieve the optimal performance of HINLMI. As has been pointed out 
by [35], the encoder-list is considered the most critical hyperparame-
ter because it directly determines the structure and representation of 
HINLMI. By fine-tuning the encoder-list, the performance of HINLMI 
can be significantly enhanced. Typically, the encoder-list specifies the 
number of neurons in each encoder layer and the dimension of the out-
put node representation. Therefore, we construct a set (500, 128), (500, 
256), (1000, 128), (1000, 256), (2000, 128), (2000, 256) to represent 
different combinations of two variables for the encoder-list. Fig. 5 il-
lustrates the performance of HINLMI, showing that the highest AUC 
score of 98.76% and the highest AUPR score of 98.71% are achieved 
with the encoder-list configuration of (1000,128). This indicates that 

this configuration provides the most balanced and effective structure 
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Fig. 5. The AUC and AUPR values for different combinations of two variables in the encoder list.

Table 8

The performance of HINLMI by using different classifiers.

Model Accuracy MCC Precision Recall F1-score

NB 0.7459±0.0098 0.4920±0.0197 0.7464±0.0160 0.7457±0.0103 0.7459±0.0075
LR 0.7801±0.0044 0.5603±0.0086 0.7821±0.0111 0.7770±0.0128 0.7794±0.0039
SVM 0.8600±0.0084 0.7202±0.0168 0.8657±0.0133 0.8524±0.0125 0.8589±0.0082
GBDT 0.9187±0.0031 0.8376±0.0062 0.9240±0.0070 0.9126±0.0076 0.9182±0.0032
RF 0.9371±0.0044 0.8742±0.0087 0.9321±0.0083 0.9429±0.0047 0.9375±0.0041
XGBoost 0.9502±0.0042 0.9004±0.0084 0.9513±0.0079 0.9490±0.0082 0.9501±0.0043

Fig. 6. The ROC and PR curves of HINLMI by using different classifiers.
for HINLMI, optimizing its ability to capture complex relationships in 
the data. Additionally, the performance across different configurations 
shows significant variability, highlighting the importance of choosing 
the right encoder structure. The results demonstrate the sensitivity of 
HINLMI to the encoder-list configuration, underscoring the critical role 
of hyperparameter tuning in developing effective neural network mod-
els for complex tasks.

4.7. Classifier selection

Given the availability of well-established classifiers, such as Naïve 
Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), 
Gradient Boosting Decision Tree (GBDT), Random Forest (RF), and XG-
Boost, the selection of an appropriate classifier is crucial to achieve the 
best performance for HINLMI. To address this, we conducted experi-
ments comparing the performance of HINLMI with different classifiers. 
The experimental results of 5-fold cross-validation are presented in Ta-
ble 8 and Fig. 6. Overall, HINLMI demonstrates the best performance 
when employing XGBoost as its classifier. The decision to incorporate 
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XGBoost into HINLMI for predicting novel LMIs is based on its su-
perior performance compared to other classifiers. XGBoost’s ability to 
handle complex data and exploit the rich features from heterogeneous 
information networks makes it well-suited for enhancing the predic-
tive capability of HINLMI. Furthermore, several noteworthy points are 
worth mentioning. The consistent superiority of HINLMI with XGBoost 
as the classifier indicates the effectiveness of this combination in ac-
curately predicting lncRNA-miRNA interactions. This suggests that the 
integration of a powerful classifier like XGBoost plays a crucial role in 
improving the performance of HINLMI. In summary, the experimental 
comparison of different classifiers highlights the significance of selecting 
XGBoost as the preferred classifier for HINLMI. Its strong performance, 
coupled with the inherent advantages of HINLMI, makes it a powerful 
and reliable method for predicting novel lncRNA-miRNA interactions 
in heterogeneous biological networks. Besides, there are several points 
worth further commentary.

First, among all classifiers, we note that the performance of NB and 
LR is the worst in terms of Accuracy, MCC, F1-score and AUC. The main 
reason for its unsatisfactory performance is that NB and LR have low 
fitting ability to heterogeneous information features and are not appli-

cable for the LMIs prediction task. Second, the performances of SVM and 
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Table 9

Top-30 predicted results for nonhsat022132.2.

miRNAs Confirmed miRNAs Confirmed

hsa-mir-3167 yes hsa-mir-367-3p yes
hsa-mir-873-5p yes hsa-mir-25-3p yes
hsa-mir-23c yes hsa-mir-4262 yes
hsa-mir-19b-3p no hsa-mir-425-5p yes
hsa-mir-301a-3p no hsa-mir-146a-5p yes
hsa-mir-361-5p no hsa-mir-224-5p yes
hsa-mir-329-3p no hsa-mir-346 yes
hsa-mir-4465 yes hsa-mir-370-3p yes
hsa-mir-144-3p yes hsa-mir-454-3p no
hsa-mir-519a-5p no hsa-mir-149-5p yes
hsa-mir-23b-3p yes hsa-mir-4725-5p no
hsa-mir-374a-5p yes hsa-mir-202-3p yes
hsa-mir-135b-5p yes hsa-mir-378b yes
hsa-mir-4306 yes hsa-mir-378e yes
hsa-mir-92b-3p yes hsa-mir-378e no

GBDT are only worse than RF, but better than NB and LR. This could be 
a strong indicator that high-dimension features require more complex 
classifiers to fit it. Last, although RF is the second-best classifier, its abil-
ity of fault tolerance tends to become less efficient when the number of 
features increases.

4.8. Case studies

In this experiment, we have conducted additional experiments on 
the MAN Dataset to demonstrate the effectiveness of HINLMI in practi-
cal prediction task. Firstly, we select a lncRNA, i.e., nonhsat022132.2, 
which is closely associated with mainstream diseases. As a kind of ma-
lignant tumor, colon cancer usually tends to be found at the borders of 
sigmoid colon and rectum [29]. According to statistics, colon cancer has 
been the third common cancer in the United States, and it also becomes 
the third leading cause of cancer death for human [27]. All the time, 
patients with early stage colon cancer usually present subtle symptoms 
so that colon cancer is difficult to be detected. However, an upward 
trend for its incidence is reported [6]. Thus, computing-based meth-
ods are an effective measure by predicting miRNAs-lncRNAs interactions 
for colon cancer. In biological experiments, the available lncRNAs have 
been shown to have a significant regulatory effect on colon tumors. For 
instance, nonhsat022132.2 has been shown to be associated with colon 
cancer and to affect the growth of colon cancer cells [2]. Moreover, 
breast cancer and prostate cancer also are proved to be associated with 
ncRNAs molecules [40,12].

Secondly, miRNAs with associated (a total 109 LMIs) the lncRNA 
(nonhsat022132.2) are removed from the MAN dataset, and then the 
remaining 8256 LMIs as a training set. In doing so, the generalization 
ability of HINLMI is proved by predicting unknown associations for new 
nodes. Finally, the associations between lncRNA (nonhsat022132.2) and 
all miRNAs are predicted by HINLMI, where the predicted results are 
present in Table 9. Obviously, HINLMI successfully predict 22 kinds of 
unknown LMIs for top-30 of predicted results. In this regard, HINLMI is 
a useful tool for the implementation of LMIs prediction task.

5. Conclusion

In this work, a novel computational method, namely HINLMI, is 
presented for lncRNA-miRNA interactions (LMIs) prediction based on 
neighborhood-level structural representation. To better capture the fea-
ture representations of lncRNAs and miRNAs from a more comprehen-
sive perspective. HINLMI first integrates five kinds of biomolecules and 
their interaction and biological knowledge, thus composing a compli-
cated HIN. After that, the biological and network representations of 
lncRNAs and miRNAs are obtained by different representation learning 
techniques from the perspectives of biological knowledge and network 
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topology, respectively. Last, HINLMI combines the XGBoost classifier to 
Computational and Structural Biotechnology Journal 23 (2024) 2924–2933

predict new LMIs by jointly considering these two kinds of feature rep-
resentations. Experimental results indicate that HINLMI yields the best 
performance than state-of-the-art computational models in terms of sev-
eral evaluation metrics. Case studies further demonstrate that HINLMI 
a useful tool in the practical LMIs prediction task.

The importance of integrating biological information and network 
topology lies in our study’s ability to enhance the accuracy of LMI pre-
dictions by combining these two elements. This approach demonstrates 
the significance of utilizing multiple information sources in biomedi-
cal predictions, offering new perspectives and methodologies for LMI 
predictions. The HINLMI model constructs a complex heterogeneous 
information network by integrating various biomolecules and their in-
teractions. Compared to traditional single-network methods, HINLMI 
captures the intricate relationships between lncRNAs and miRNAs more 
effectively, exhibiting superior predictive performance and stability. In 
future work, we first plan to develop an end-to-end model to further 
improve the precision and efficiency of LMI predictions. Second, we 
will incorporate a wider range of biomolecular data and their asso-
ciated information in future research. This will help to more vividly 
reconstruct complex biological regulatory networks and, consequently, 
develop richer datasets. By diversifying the datasets, we aim to better 
demonstrate the versatility and effectiveness of the proposed method. 
Last, we will consider viewing associations as semantic relationships 
based on biological information, further enhancing the model’s applica-
bility.
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