Supplementary Information for

Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress

Figure S1. Loss of ENDOG represses PLIN2 expression and lipid accumulation in hepatocytes. a-b Representative images and quantitative

results of PLIN2 staining in HepG2 cells under control and oleic acid treatment. CT: control; OA: 200 μ M oleic acid for 24 hours; *n* = 8 samples; WT: wild-type, KO: ENDOG knockout. **c-d** Representative images of BODIPY/ PLIN2 costaining in HepG2 and HCC-LM3 cells. CT: control; OA: 200 μ M oleic acid for 24 hours; WT: wild-type, KO: ENDOG knockout. Statistical significance was determined by unpaired Student's t-test (two-tailed) in **(b)**; error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; *** *P* < 0.001

Figure S2. Loss of ENDOG represses lipid accumulation in *C. elegans* after egg yolk supplementation. a-b Representative images and quantitative results of oil red o staining in N2 and *cps*-6 mutant *C. elegans*. N2: wild-type; *cps*-6: loss of CPS-6; CT: control; egg yolk: egg yolk supplementation; n = 30 *C. elegans*. c Whole measurement of triglycerides. n = 4 independent samples; N2: wild-type; cps-6: loss of CPS-6; CT: control; egg yolk: egg yolk: egg yolk: egg yolk: egg yolk supplementation. Statistical significance was determined by unpaired Student's t-test (two-tailed) in (b, c); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. ** *P* < 0.01.

Figure S3. ENDOG promotes the activation of AKT. a Volcano plots of gene expression differences for wild-type or ENDOG overexpressing cells in control or oleic acid treatment. **b** Venn diagram of up-regulated (up panel) or down-regulated (below panel) between wild-type and ENDOG overexpressing cells. **c** The bubble map of KEGG pathway enrichment analyses of the up-regulated genes. **d-e** Representative western blots (d) and the quantitative results (e) of the indicated proteins in ENDOG overexpressing and knockout cells. pK-Myc and ENDOG plasmids were transfected for 48 hours, *n* = 4 each group; WT: wild-type; KO: ENDOG knockout. Statistical significance was determined by unpaired Student's t-test (two-tailed) in **(e)**; error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01.

b

Figure S4. ENDOG promoted the phosphorylation of AKT and ACLY. a-b Quantitative results of western blots in Figure 2 a-b. n = 4 samples. **c** Quantitative results of western blots in Figure 2 k. n = 4 samples. **d** Quantitative results of western blots in Figure 2 o. n = 4 samples; Statistical significance was determined by unpaired Student's t-test (two-tailed). Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure S5. The oleic acid treatment enhances the binding between ENDOG and PI3K. a Co-IP analyses. Cells were transfected with ENDOG-Flag for 48 hours. b Endogenous Co-IP analyses. C Co-IP analyses. Cells were transfected with ENDOG-Flag for 24 hours and then treated with 200 μ M oleic acid for another 24 hours. These data had three independent experiments with similar results.

а

Figure S6. ENDOG did not affect the acetate metabolism enzymes. a-b Representative western blots (a) and the quantitative results (b) of AceCS1 and ALDH2 in ENDOG overexpressed HepG2 cells. n = 4 samples; pLVX3: the control HepG2; ENDOG : ENDOG stable overexpressed HepG2. **c-d** Representative western blots (c) and the quantitative results (d) of AceCS1 and ALDH2 in wild-type and ENDOG knockout HepG2 cells. n = 4 samples; WT: wild-type; KO: ENDOG knockout. **e-f** Representative western blots (c) and the quantitative results (d) of AceCS1 and ALDH2 in Endog^{+/-} and Endog^{-/-} female mice livers. n = 8 mice. Statistical significance was determined by unpaired Student's t-test (two-tailed) in (**b,d,f**); error bars are mean ± SD.Source data and exact *P* values are provided in a Source data file.

Figure S7. Activation of AKT-ACLY signaling repromotes lipid accumulation in ENDOG knockout cells. a-b Representative images of oil red O staining and the quantitative results of lipid area in the indicated groups. Wild-type and ENDOG knockout cells were transfected with the indicated plasmids for 24 hours and then treated with 200 μ M oleic acid for another 24 hours. *n* = 6 samples. c-d Western blot analyses and the quantitative results of AKT-ACLY signaling in wild-type and ENDOG knockout cells following 100 nM insulin treatment for 6 hours. *n* = 4 samples. e-h Representative images of Nile

red (e-f) or oil red O (g-h) staining and the related quantitative results of lipid area in wild-type or ENDOG knockout cells after the indicated treatments. n =6 for Nile red staining and 10 for oil o staining; Insulin, 100 nM for 6 hours, OA: 200 µM for 24 hours. OA + insulin: 100 nM insulin for 6 hours and then replaced with 200 µM oleic acid-contained media for another 24 hours. Statistical significance was determined by unpaired Student's t-test (two-tailed) in (b,d,f,h); error bars are mean ± SD.Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01, *** *P* < 0.001, n.s.: no significance.

Figure S8. Knockdown of ACLY repressed ENDOG-induced lipid accumulation. a Western blot of ENDOG and ACLY. pLVX3: the control cells; ENDOG: ENDOG overexpressing cells; ENDOG-ACLYsh: ENDOG overexpressing and ACLY knockdown. **b-d** Representative images of Nile red, the quantitative results of lipid area, and measurement of triglycerides following 200 μ M oleic acid treatment for 24 hours. *n* = 8 for Nile red staining and 4 for triglyceride measurement. Statistical significance was determined by unpaired

Student's t-test (two-tailed) in (c,d,); error bars are mean \pm SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01, *** *P* < 0.001.

Figure S9. Loss of ENDOG had no effects on the body weight and NFBG male mice after HFD. a, c Body weight of ENDOG knockout (a) and liver-specific knockout male mice (b) after HFD chow. n = 5 in Endog ^{+/-} group and 7 in Endog^{-/-} group. b, d Weight of liver, kidney, white adipose tissue (WAT), and brown adipose tissue (BAT). n = 5 in Endog ^{+/-} group and 7 in Endog^{-/-} group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file.

Figure S10. Loss of ENDOG had no influence on the blood glucose both in normal and HFD chow. a-b Nonfasting blood glucose (NFBG) in the normal chow condition. n = 5, 8 in $Endog^{+/-} / Endog^{-/-}$ male; n = 4, 5 in $Endog^{+/-} / Endog^{-/-}$ female. c-d Nonfasting blood glucose (NFBG) in the HFD chow condition. n =9, 12 in $Endog^{+/-} / Endog^{-/-}$ male; n = 8, 9 in $Endog^{+/-} / Endog^{-/-}$ female. e-f Nonfasting blood glucose (NFBG) in $Endog^{flox} / Endog^{LKO}$ male and female mice under the HFD condition. n = 6, 10 in $Endog^{flox} / Endog^{LKO}$ male; n = 11, 7 in $Endog^{flox} / Endog^{LKO}$ female. g-h Fasting blood glucose (FBG) in $Endog^{+/-} /$ Endog^{-/-} male and female mice under the HFD chow condition. Before blood glucose measurement, mice were fasting for 12 hours. n = 5, 3 in $Endog^{+/-} /$ $Endog^{-/-}$ male; n = 4, 5 in $Endog^{+/-} / Endog^{-/-}$ female. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean \pm SD. Source data and exact P values are provided in a Source data file.

Figure S11. Loss of ENDOG represses the lipid metabolism pathway. a The bubble map of KEGG pathway enrichment analyses of the down-regulated genes in *Endog*^{+/-} and *Endog*^{-/-} mouse livers following the HFD chow feeding. **b** GSEA (Gene Set Enrichment Analyses) shows the biological processes enriched in *Endog*^{+/-} liver. (NES: normalized enrichment score; p: nominal pvalue; q: false discovery rate q-value).

Figure S12. Loss of ENDOG increased insulin sensitivity in female mice after the HFD chow. a-d Glucose tolerance test (a-b) and insulin tolerance test (c-d) in HFD-fed Endog^{+/-} / Endog^{-/-} male mice. n = 5, 3 for GTT assay; n = 4,3 for ITT assay. e-h Glucose tolerance test (a-b) and insulin tolerance test (c-d) in HFD-fed Endog^{+/-} / Endog^{-/-} female mice. n = 4, 5. i-j Serum insulin in ENDOG knockout and liver-specific knockout female mice in normal, fasting, and HFD conditions. n = 4 for NC and Fasting insulin measurement and HFD insulin measurement in liver-specific knockout mice; n = 6 for HFD insulin measurement in ENDOG knockout mice. NC: normal chow; fasting: fasting for 16 hours; HFD: high-fat diet chow for 16 weeks. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. n.s.: no significance; ** *P* < 0.01.

Figure S14. ENDOG promoted the expression of SCD1. a-c qPCR results (a), representative western blots (b), and the quantitative results (c) of SCD1, DGAT1, and DGAT2 in Endog^{+/-} / Endog^{-/-} female mice liver. n = 6 for each group. d-g Representative western blots and the quantitative results of SCD1, DGAT1, and DGAT2 in ENDOG overexpressed (d-e) and knockout (f-g) HepG2 cells.

pLVX3: the control HepG2; ENDOG: ENDOG overexpressed HepG2; n = 4 each group. WT: wild-type; KO: ENDOG knockout; Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01.

Figure S15. Overexpression or knockout of ENDOG had no effects on fatty acid β -oxidation. a-d Representative western blots and the quantitative results of CPT1 and CPT2 in ENDOG overexpressed (a-b) and knockout (c-d) HepG2 cells. n = 4 for each group. pLVX3: the control HepG2; ENDOG: ENDOG overexpressed HepG2; WT: wild-type; KO: ENDOG konockout. e-f Representative western blots and the quantitative results of CPT1 and CPT2 in Endog^{+/-}/Endog^{-/-}female mice liver. n = 8 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file.

Figure S16. Loss of ENDOG repressed ER stress. a Quantitative results of western blots in Figure 5 b-c. n = 4 for each group. b Quantitative results of western blots in Figure 5 e. n = 4 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure 17. Loss of ENDOG represses IRE1a-XBP1 activation and Lipin1

expression. a qPCR results of the ER stress-related genes in wild-type and ENDOG knockout cells. n = 4 for each group. **b** RT-PCR analyses of *XBP1*. Wild-type and ENDOG knockout cells were treated with 2 µg/ml tunicamycin (TM) for 24 hours. **c-d** Western blots and the quantitative results of the indicated protein in wild-type and ENDOG knockout cells. n = 4 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure S18. ENDOG promoted the expression of SREBP1 but not other lipid metabolism transcriptional factors. a-c qPCR results (a), representative western blots (b), and the quantitative results (c) of the indicated transcriptional factors in Endog^{+/-} / Endog^{-/-} female mice liver. n = 8 for each

group. **d-i** qPCR results, representative Western blots, and the quantitative results of the indicated transcriptional factors in ENDOG knockout (d-f) and overexpressed (g-i) HepG2. n = 4 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. * *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure S19. Loss of ENDOG repressed lipid synthesis in hepatocytes. a-b Western bots and quantitative results of lipid synthesis proteins and the AKT-ACLY axis in MHCC97H cells. n = 4 each group. **c-d** Representative images of BODIPY in pLKO.1 and ENDOG knockdown MHCC97H cells following the oleic acid treatment. n = 8 for each group. **e-f** Western bots and quantitative results of lipid synthesis proteins and the AKT-ACLY axis in HCC-LM3 cells. n = 4 for

each group. **g-h** Representative images of BODIPY in pLKO.1 and ENDOG knockdown HCC-LM3 cells following the oleic acid treatment. n = 8 for each group. **i-j** Western bots and quantitative results of lipid synthesis proteins and the AKT-ACLY axis in Huh-7 cells. n = 4 for each group. **k-l** Representative images of BODIPY in pLKO.1 and ENDOG knockdown Huh-7 cells following the oleic acid treatment. n = 8 for each group. pLKO.1: the control cells; ENDOGsh: ENDOG knockdown cells; CT: control; OA: 200 µM oleic acid for 24 hours; Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. ** *P* < 0.01; *** *P* < 0.001.

Figure S21. ENDOG bound with Bip and Grp75. a-b Co-IP results in 293T cells. 293T cells were transiently transfected with Flag-Bip or Myc-ENDOG for

48 hours. **c** Co-IP results. 293T cells were transiently transfected with Flag-ENDOG for 24 hours and then treated with or without 200 μ M oleic acid for another 24 hours. These data had three independent experiments with similar results.

Figure S22. ER stress inductors promote the translocation of ENDOG to the ER. a-b Representative images of costaining of ENDOG and Grp75 or Calnexin. Cells were treated with 2 μ g/ml tunicamycin (TM) and 1 μ M thapsigargin (TG) for 24 hours.

Figure S23. Overexpression of Bip partially represses ENDOG-mediated ER stress and lipid accumulation. a-b Western blot and quantitative results of ER stress-related and lipid synthesis proteins. Cells were transfected with the indicated plasmids for 48 hours. n = 4 for each group. p, precursor SREBP1; m, mature SREBP1. c Measurement of triglycerides. Cells were transfected with the indicated plasmids for 24 hours and then treated with 200 µM oleic acid for another 24 hours. n = 6 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD.

Source data and exact *P* values are provided in a Source data file.* P < 0.05; ** P < 0.01; *** P < 0.001.

Figure S24. Loss of ENDOG activated mTORC1 and repressed mTORC2 in normal and HFD chow in female mice livers. a-d Representative western blots and quantitative results of the mTORC1 and mTORC2 pathway proteins in Endog^{+/-} / Endog^{-/-} female mice liver under normal and HFD chow. n = 8 for each group. e-g Representative western blots and quantitative results of the

mTORC1 and mTORC2 pathway proteins in Endog^{flox} / Endog^{LKO} female mice livers under normal and HFD chow. n = 6 for each group. NC: normal chow; HFD: high-fat diet chow; Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact P values are provided in a Source data file.* P < 0.05; ** P < 0.01; *** P < 0.001.

Figure S25 Overexpression of GSK3 β enhanced ENDOG-mediated mTORC1 suppression and mTORC2 activation. a-b Western blots and quantitative results of mTORC1 and mTORC2 pathway proteins in pLVX3 and ENDOG overexpressed HepG2 with or without transfected with GSK3 β . *n* = 4 for each group. pLVX3: the control cells; ENDOG: ENDOG overexpressed cells; pLVX3 and ENDOG overexpressed HepG2 were transiently transfected with pCNDA3.1 and GSK3 β for 48 hours. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data

and exact *P* values are provided in a Source data file.* *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001. **c-d** Co-IP analyses. 293T cells were transiently transfected with the indicated plasmids for 48 hours. ENDOG-AA: ENDOG T128S288 to A128A288. These data had three independent experiments with similar results.

Figure S26. ENDOG has no effects on cell glycolysis. a-b Western blot and quantitative results of glycolysis-related proteins in wild-type and ENDOG knockout cells. n = 4 for each group. **c** Seahorse analyses of extracellular acidification rate (ECAR) in wild-type and ENDOG knockout cells (Glucose: 100 mM, Oligomycin: 100 μ M, 2-DG: 500 mM). n = 5 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file.

p-GSK3P

p-mTOR

PULKI

P-4EBP1

Figure S27. AKT had little influence on ENDOG-mediated mTORC1 suppression and autophagy. a Representative images of BODIPY / LAMP1 co-staining in pLVX3 and ENDOG overexpressed HepG2 cells after transfected with AKT. pLVX3: the control cells; ENDOG: ENDOG overexpressed cells; pLVX3 and ENDOG overexpressed HepG2 were transiently transfected with pK-Myc and myr-AKT for 24 hours and then treated with 200 μ M oleic acid for

LC3B-11

p62

another 24 hours. **b-c** Western blots and the quantitative results of the indicated proteins. n = 4 for each group. pLVX3: the control cells; ENDOG: ENDOG overexpressed cells; pLVX3 and ENDOG overexpressed HepG2 were transiently transfected with pK-Myc and myr-AKT for 48 hours. **d** Representative images of BODIPY / LC3B co-staining in WT and ENDOG knockout HepG2 cells after transfected with AKT. WT: wild-type; KO: ENDOG knockout cells; WT and ENDOG KO HepG2 cells were transiently transfected with pK-Myc and myr-AKT for 24 hours and then treated with 200 μ M oleic acid for another 24 hours. **e-f** Western blots and the quantitative results of the indicated proteins. n = 4 for each group. WT: wild-type; KO: ENDOG knockout cells; WT and ENDOG KO HepG2 cells were transiently transfected with pK-Myc and myr-AKT for 24 hours. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file.* *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure S28. ENDOG promoted the expression of lipolysis. a-b Representative images of BODIPY/LAMP1 and BODIPY / LC3B co-staining in ENDOG overexpressed and knockout HepG2 cells. Cells were treated with 200

 μ M oleic acid for 24 hours. pLVX3: the control cells; ENDOG: ENDOG overexpressed cells; WT:wild-type; KO: ENDOG knockout. OA: 200 μ M oleic acid for 24 hours. **c-f** Western blots and quantitative results of ATGL and HSL in ENDOG overexpressed (c-d) and knockout (e-f) HepG2 cells. *n* = 4 for each group. Statistical significance was determined by unpaired Student's t-test (two-tailed); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file.* *P* < 0.05; ** *P* < 0.01; *** *P* < 0.001.

Figure S28. ENDOG-promoted lipid synthesis is endonuclease activity independent. a-b Western blots and quantitative results of AKT-ACLY axis in ENDOG knockout HepG2 cells after transfected with pK-Myc, ENDOG, and ENDOG-EM for 48 hours. n = 4 independent samples. **c** Co-IP analyses. 293T cells were cotransfected with 14-3-3 γ / ENDOG or 14-3-3 γ / ENDOG-Mut for 48

hours. **d-e** Western blots and quantitative results of the indicated proteins in ENDOG knockout HepG2 cells after transfected with pK-Myc, ENDOG, and ENDOG-EM for 48 hours. *n* = 4 independent samples. **f** Co-IP analyses. 293T cells were transfected with ENDOG, and ENDOG-EM (Myc tag) for 48 hours. **g-h** Representative images of BODIPY staining and triglyceride measurement (*n* = 4 independent samples). ENDOG knockout HepG2 cells were transfected with pK-Myc, ENDOG, and ENDOG-EM for 24 hours and treated with 200 μ M oleic acid for another 24 hours. **i-j** Representative images of BODIPY staining and triglyceride measurement (*n* = 6 independent samples). HepG2 cells were treated with 200 μ M oleic acid with or without ENDOG inhibitor (PNR-3-80, PNR-3-82: 50 μ M). Statistical significance was determined by unpaired Student's t-test (two-tailed) in (**b**, **e**, **h**, **j**); error bars are mean ± SD. Source data and exact *P* values are provided in a Source data file. ** *P* < 0.01; *** *P* < 0.001.

Antibody	Company	Catalog number
АСТВ	Sigma	Cat: A8481
GAPDH	Cell Signaling Technology	Cat: #2118
ENDOG	Cell Signaling Technology	Cat: #4969
ENDOG	NOVUS	Cat: IMG-5565-2
p-ACLY (Ser455)	Cell Signaling Technology	Cat: #4331T
ACLY	Cell Signaling Technology	Cat: #4332T
FAS	Cell Signaling Technology	Cat: #3180T
ACC	Cell Signaling Technology	Cat: #3676
Lipin1	Cell Signaling Technology	Cat: #14906T
РІЗК	Cell Signaling Technology	Cat: #4249
PTEN	Cell Signaling Technology	Cat: #9188
p-PTEN(Ser380)	Cell Signaling Technology	Cat: #9551
p-AKT(Ser473)	Cell Signaling Technology	Cat: #4060
p-AKT(Thr308)	Cell Signaling Technology	Cat: #13038
АКТ	Cell Signaling Technology	Cat: #9272
Rictor	Proteintech	Cat: 27248-1-AP
Rictor	Novus	Cat: NB100-612
14-3-3γ	Proteintech	Cat: 12381-1-AP
14-3-3γ	Santa Cruz	Cat: sc-398423
IRE1a	Proteintech	Cat: 27528-1-AP
PERK	Proteintech	Cat: 20582-1-AP
ATF6	Proteintech	Cat: 24169-1-AP
Вір	Proteintech	Cat: 11587-1-AP
Вір	Proteintech	Cat: 66574-1-lg
СНОР	Proteintech	Cat: 15204-1-AP
XBP-1	Cell Signaling Technology	Cat: # 40435S
EIF2a	Cell Signaling Technology	Cat: #5324

Table 1. Primary and secondary antibodies used in the present study

p-EIF2a	Cell Signaling Technology	Cat: #3398
SREBP1	Santa Cruz	Cat: sc-365513
Tim23	Proteintech	Cat: 11123-1-AP
Tim23	Proteintech	Cat: 67535-1-lg
SDHA	Proteintech	Cat: 14865-1-AP
Cytochrome c	Santa Cruz	Cat:sc-13560
Grp75	Proteintech	Cat:14887-1-AP
PDI	Proteintech	Cat:66422-1-Ig
НЗ	Cell Signaling Technology	Cat: # 9715
GSK3β	Proteintech	Cat:22104-1-AP
p-GSK3β (Ser 9)	Cell Signaling Technology	Cat:#9323
p62	Sigma	Cat: P0067
LC3B	Sigma	Cat: L7543
LAMP1	Cell Signaling Technology	Cat:#9091
ATGL	Proteintech	Cat:55190-1-AP
HSL	Proteintech	Cat:17333-1-AP
ΡΡΑRγ	Proteintech	Cat:16643-1-AP
ChREBP1	Proteintech	Cat:13256-1-AP
FABP4	Proteintech	Cat:12802-1-AP
CRTC2	Proteintech	Cat: 12497-1-AP
CREBH (CREB3L3)	NOVUS	Cat: NBP2-16008
SCD1	Proteintech	Cat: 28678-1-AP
DGAT1	Proteintech	Cat: 11561-1-AP
DGAT2	Proteintech	Cat: 17100-1-AP
PLIN2	Proteintech	Cat: 15294-1-AP
CPT1	Abcam	Cat: ab128568
CPT2	Proteintech	Cat: 26555-1-AP
AceCS1	Cell Signaling Technology	Cat: #3658
ALDH2	Proteintech	Cat: 15310-1-AP

mTOR	Cell Signaling Technology	Cat: #2983
p-mTOR	Cell Signaling Technology	Cat: #5536
ULK1	Cell Signaling Technology	Cat: # 8054
p-ULK1	Cell Signaling Technology	Cat: #14202
p70S6K	Cell Signaling Technology	Cat: #2708
p-p70S6K	Cell Signaling Technology	Cat: #9234
4EBP1	Proteintech	Cat: 60246-1-lg
p-4EBP1	Cell Signaling Technology	Cat: #2855
Mouse Anti-Rabbit IgG (Light- Chain Specific) (D4W3E) mAb (HRP Conjugate)	Cell Signaling Technology	Cat: 93702S
VeriBlot for IP Detection Reagent	Abcam	Cat: ab131366
(HRP)		
Peroxidase-AffiniPure Goat Anti-	Jackson Immunoresearch	Cat: 115-035-003
Mouse IgG (H+L)		
Peroxidase-AffiniPure Goat Anti-	Jackson Immunoresearch	Cat: 111-035-003
Rabbit IgG (H+L)		
Goat anti-Mouse IgG(H+L) Cross-Adsobed Secondary	Thermo	Cat: A28175
Antibody,Alexa Fluor 488		
Goat anti-Rabbit IgG(H+L)	Thermo	Cat: A11010
Antibody,Alexa Fluor 546		
Alexa Fluor® 488-AffiniPure	Jackson Immunoresearch	Cat: 111-545-144
Goat Anti-Rabbit IgG (H+L)		
Alexa Fluor® 594-AffiniPure	Jackson Immunoresearch	Cat: 115-585-146
Goat Anti-Mouse IgG (H+L)		

Table 2. Reagents and plasmids used in the present study

Chemicals or plasmids	Company	Catalog number
Oleic acid	Sigma	Cat: L1376
Palmitic acid	Sigma	Cat: 57-10-3
LY294002	Selleck	Cat: S1105

Sodium citrate	Sigma	Cat: 1613859-1G
Acetyl-CoA	Sigma	Cat: A2056-5MG
Insulin	Sigma	Cat: I3536
Tunicamycin	MedChemExpress	Cat: HY-A0098
Thapsigargin	MedChemExpress	Cat: HY- 13433
VBIT-12	Selleck	Cat: S8936
Digitonin	Sigma	Cat: D141-100MG
Mouse High-fat diet	Research Diets Inc	D12492
Mouse normal diet	Beijing HFK Bioscience Co.,	1032
	Ltd.	
Triglyceride analysis kit	Applygen Technologies Inc.	Cat: E1013-105
Acetyl CoA Assay Kit	Abcam	Cat: ab87546
Acetyl CoA Assay Kit	Sangon Biotech	Cat: D751001-
		0096
Free fatty acid kit	Solarbio Life Science	Cat: BC0595
In situ PLA assay	Sigma	Cat: DUO92101
ABScript II cDNA First Strand	ABclonal	Cat: RK20400
Synthesis Kit		
Mouse INS(Insulin) ELISA Kit	Sangon Biotech	Cat: D721159-
		0096
Nile red	Sigma	Cat: 72458
BODIPY [™] 493/503	Invitrogen	Cat: D3922
Oil red o	Sigma	Cat: O1391
DAPI	Sigma	Cat: D8417
Plasmids		
рК-Мус	Addgene	Cat: #19400
pLVX3-ENDOG-Flag	This paper	Expression construct generated in the lab

pK-Mvc-ENDOG	This paper	Expression
		construct
		generated in the
		lab
pK-Myc-14-3-3γ	This paper	Expression
		construct
		generated in the
		lab
pLVX3-Bip-Flag	This paper	Expression
		construct
		generated in the
		lab
pCDNA3.1-myr-AKT	Addgene	Cat: #9008
pK-Myc-ENDOG-AA	This paper	Expression
		construct
		generated in the
		lab
pCDNA3.1-GSK3β	Addgene	Cat: 14753
pCDNA3.1-GSK3β-Mut (K85A)	Addgene	Cat: 14755

Table S3. Primers sequence in the present study

Gene:	Sequences: (5'-3')
ACTB-Human	GTTGTCGACGACGAGCG
	GCACAGAGCCTCGCCTT
Endog-Mouse	GTGCCATTGTTGCCGGTG
	AGCTAAGCACGTAGGACTCG
Actb-Mouse	CACTGTCGAGTCGCGTCC
	CGCAGCGATATCGTCATCCA
Pparg-Mouse	TGTGAGACCAACAGCCTGAC
	TCAGTGGTTCACCGCTTCTT
Chrebp1-Mouse	CCAGAGACAACAACCCCTGT
	AAACTGTATCCTGCGGGGAC
Srebp1-Mouse	ACTGGACACAGCGGTTTTGA
	CTGTCTCACCCCAGCATAG
Srebp2-Mouse	CAAAGGGAGTTGAGCAGCAAG

	TCAGGGAACTCTCCCACTTGA
Fabp4-Mouse	ATCATAACCCTAGATGGCGGG
	CTTTCATAACACATTCCACCAGC
Crtc2-Mouse	CGTCCAATCCACGCAAGTTT
	AGTCAGAGCTTGTCCCGTGT
Crebh-Mouse	AGGTGTAGTGTTTGGGGCTTC
	ACCCGAGCTCCATGTTTCTGTTT
Scd1h-Mouse	GGAAAGTGAGGCGAGCAACT
	TGTAAGAACTGGAGATCTCTTGGA
Dgat1-Mouse	TGACCTCAGCCTTTTCCATGAGT
	CCACACAGCTGCATTGCCATAGTT
Dgat2-Mouse	AACCTGCTGACCACCAGGAACTAT
	AGGGCCTTATGCCAGGAAACTTCT
FASN-Human	TCTCCGACTCTGGCAGCTT
	GCTCCAGCCTCGCTCTC
ACC1-Human	AGTGGGTCACCCCATTGTT
	TTCTAACAGGAGCTGGAGCC
ACC2-Human	CAGCTTCTTGTGTTCCCGTC
	CCTGGAGGCTTATCTGACCA
LPIN1-Human	AAAGGAGAATCCACCAGGAGAC
	ATTCATGGTCTGCACTCTGCT
ACLY-Human	TCCGGATTTTGCGGGGTTC
	GGATGGCTGAGGTGGTACAG
<i>CPT1</i> -Human	GCCTCGTATGTGAGGCAAAA
	TCATCAAGAAATGTCGCACG
CPT-2-Human	CGGAGTCTCGAGCAGATAGG
	GGAAAAGAACTGCATGAGCA
ACOX1-Human	ATGCCCAAGTGAAGATCCAG
	GAAGATGAGGGAGTTTGGCA

FATP2-Human	TCACTTTTTCCACTCCTGCCT
	GTGAGGCCAGTTCCATACCA
FATP5-Human	TGATGGGACTTGTCGTTGGG
	CATTTGCCCGAAGTCCATTGC
CD36-Human	GTGCAAAATCCACAGGAAGTGA
	GACTGTGTTGTCCTCAGCGT
LDLR-Human	AACATGGCTAGAGACTGCCG
	TCATTGCAGACGTGGGAACA
MTTP-Human	CACCTCAGGACTGCGAAGAA
	GGTCTGAGCAGAGGTGACAG
PPARG-Human	CCAGAAGCCTGCATTTCTGC
	TGGCATCTCTGTGTCAACCA
CHREBP1-Human	CCAGACAGCAACAAGACCGA
	GAGCCCATGAAGGGTGTCAA
SREBP1-Human	GCTGCTGACCGACATCGAA
	AGCATGTCTTCGAAAGTGCAATC
SREBP2-Human	AGCTGACCCTGGGAGACATC
	AGCTGTTCTGAAAACAAGTCAGG
CRTC2-Human	GGACCCCAAAGTACCTGCT
	GGCTGGTCAGGAGATGGAAA
CREBH-Human	GCGCGGCTACCTACTTCTTA
	CGAGATCCATGCTTCTTGCC

Table S4. ACLY-shRNA sequence

	Sequence (5'-3')
Oligomer 1:	CCGGGGCATGTCCAACGAGCTCAATCTCGAGATTGA
	GCTCGTTGGACATGCCTTTTTG
Oligomer 2	AATTCAAAAAGGCATGTCCAACGAGCTCAATCTCGAG
	ATTGAGCTCGTTGGACATGCC

Table S5. ENDOG-shRNA sequence

	Sequence (5'-3')
Oligomer 1:	GATCCCCAGTCGTACGTGCTGTGCTATTCAAGAGATA
	GCACAGCACGTAC
Oligomer 2	TCGAATTTTTTCAGCATGCACGACACGATAGAGAACTT
	ATCGTGTCGTGC