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Biological pathways play important roles in the development of complex diseases, such as cancers, which aremultifactorial complex
diseases that are usually caused by multiple disorders gene mutations or pathway. It has become one of the most important issues
to analyze pathways combining multiple types of high-throughput data, such as genomics and proteomics, to understand the
mechanisms of complex diseases. In this paper, we propose a method for constructing the pathway network of gene phenotype
and find out disease pathogenesis pathways through the analysis of the constructed network. The specific process of constructing
the network includes, firstly, similarity calculation between genes expressing data combined with phenotypic mutual information
and GO ontology information, secondly, calculating the correlation between pathways based on the similarity between differential
genes and constructing the pathway network, and, finally, mining critical pathways to identify diseases. Experimental results on
Breast Cancer Dataset using this method show that our method is better. In addition, testing on an alternative dataset proved that
the key pathways we found were more accurate and reliable as biological markers of disease. These results show that our proposed
method is effective.

1. Introduction

The growth in knowledge of large-scale transcriptomic and
proteomic technologies has enabled the identification of risk
factors of complex diseases, personalized medicine, and so
forth. Many algorithms (such as the supervision, nonsuper-
vision, and statistics method) have been developed to process
these data for acquiring important biological biomarkers.
However, these methods still have some limitations and
challenges. First, transcriptomic data analysis is the inherent
complexity of multiple biological processes. Second, the data
from different platforms also lead to noise. Although some
methods were used to reduce the deviation, it is difficult to
obtain robust result of these data. To circumvent these limita-
tions, some computational methods project gene expression
data into a molecular signaling network, but errors generated
by variations in experiment also affect the accuracy to distinct
different samples.

Biological networks are powerful resources for the dis-
covery of genes and genetic modules that drive disease.
Fundamental to network analysis is the concept that genes

underlying the same phenotype tend to interact; this prin-
ciple can be used to combine and to amplify signals from
individual genes [1], a biological pathway which plays an
important role in understanding the mechanisms of complex
diseases, improving clinical treatment, and discovering drug
targets and biomarkers [2]. The increasing availability of
high-throughput biological data of complex diseases and the
development of various biological networks provided better
conditions to build accurate pathway analysis models. But
due to a lack of abundant pathway knowledge, most pathway
analysis results are incomplete, unreliable, or inaccurate
[3]. So, it is an important work to build pathway analysis
method of multitype data, such as gene expression data,
transcriptomic data, and protein data. The major advantage
of pathway-based methods is their capability to perform
biologically relevant dimension reduction as a result of the
analysis [4].

There are some popular pathway analysis tools, such
as GSEA, SPIA, DAVID, and Pathologist. They provide
different methods to explain the function of the pathway
analysis.
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GSEA (Gene Set Enrichment Analysis) [5] processes
expression profile data with labels, sorting every path-
way according to enrichment statistics of the difference of
gene.

SPIA (Significant Pathway Inference Analysis) [6] com-
bines the difference expression and pathway structure infor-
mation. The effect of alteration of gene expression at different
positions in the pathway is considered to be different.

DAVID [7] (Database for Annotation, Visualization
and Integrated Discovery) can provide a comprehensive
functional annotation of the gene list to help researchers
understand the biological significance of genes behind. At
present, it is the most widely used method of gene function
annotation.

Although many of the above methods have shown
encouraging results for finding new information, there are
still some limitations. In thosemethods, pathway is simplified
into a simple set of genes, treating pathways as unstructured
sets of genes, ignoring the functional relationship between
different genes in the pathway, so it cannot accurately assess
function change of the related pathways.

To overcome the above limitations, new analytical
methodologies are required that infer complex transcrip-
tomic changes more accurately into the biologically network.

System biology considers that biological functions are
not the result of a single gene or protein, but the inter-
action result of multiple biological molecules with each
other. With the development of system biology, the bio-
logical network has become a powerful tool to research
the complex biological activity. Biological networks can
simultaneously study the interaction relationships between
different biological molecules. System biology can help
us understand the exercise process of biological func-
tion and explore the underlying mechanisms of biological
processes.

Because changes in biological function are the result of
molecular interactions, the functional annotation of differ-
entially expressed genes should consider not only the effects
of differentially expressed genes on the pathway, but also the
effects of gene interaction on different pathways. In addition,
consideration should also be given to the association between
pathways.

So, in this paper, we proposed a network-based path-
way analysis method. We find the disease related pathways
through the analysis of the constructed network. The spe-
cific process for the construction of networks includes the
following. First, we integrated protein-protein interaction
(PPI) information and gene expression profile data into the
pathway, and then the candidate genes associatedwith disease
phenotypes were screened using mutual information calcu-
lations. Secondly, we integrated gene’s GO information into
pathway to calculate the correlation between the pathways
and then construct the pathway network. Finally, the critical
pathways are identified in the network. The experimental
results of this method with breast cancer data show that
our method can not only find the high risk of gene and
signaling pathways, but also find an association between the
risk pathways.

2. Methods

Figure 1 describes our network-based pathway analysis
method. First, the differentially expressed genes were iden-
tified by comparing the disease samples and normal samples,
and then they were projected onto protein interaction data.
If two protein nodes all appear in differentially expressed
genes, they are preserved, and the candidate genes were
screened out. Secondly, the biological signaling pathways
are obtained from database MSigDB which includes 1329
sets of biological metabolism and signaling pathways. The
candidate genes are projected into the pathway, and we
calculate the active score of each pathway for every sample
according to the document [8].Then according to the activity
vectors of each biological pathway, combining the phenotypic
information of the samples, the mutual information between
the activity vectors and the phenotypic vectors of the samples
is calculated. Next, the semantic similarity of differentially
expressed genes in each pathway is calculated using gene’s
GO knowledge, and we calculate the correlation between the
pathways and then construct the pathway network. At last,
we used GeneRank algorithm to find the critical pathways in
the network. In the following, the detailed explanations of our
proposed method are described.

2.1. Project the Candidate Gene to the Pathway. Gene expres-
sion data often aim to identify genes that are differentially
regulated across different classes of samples, for example,
finding the genes affected by a treatment, or finding marker
genes that discriminate diseased from healthy subjects. Using
gene expression profiles obtained from a number of genes for
several samples or experimental conditions, we can obtain a
gene set that shows a differential expression pattern across
different samples. However, a differential expression gene
set does not guarantee the existence of a real interaction
between the corresponding proteins. Instead, it only suggests
that there may be an interaction between the proteins. To
accurately describe the change in gene interactions for several
samples or experimental conditions, here we screen genes
with PPI network.

In the PPI network, if the two nodes (gene) of the edge
are both in the set of differentially expressed genes, then the
two genes were reserved; otherwise theywere removed. So we
get the candidate gene set (CG set). The biological pathway
is a complete metabolic pathway which contains all genes
that constitute a set. The gene-gene interaction of pathway is
different in different tissues or samples.These differencesmay
be caused by genes interactions of the pathway or neighbor
pathway. To find the related biological pathway of the disease,
we analyze the expression of each gene set in different sample,
calculating the activity score of the biological pathway (active
fraction) according to [8]; main procedures are as follows and
shown in Figure 2.

(1) We get the PPI data from HPRD (human protein
reference database) and gene expression data of the breast
cancer from NCBI GEO (the Gene Expression Omnibus
at the National Center for Biotechnology Information
(NCBI)).
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Figure 1: Flow chart of analysis method.
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Figure 2: Project the candidate gene to the pathway.
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Figure 3: Calculation of mutual information.

(2)We compute differential expression genes in samples
and filter through PPI network to get the candidate gene set
(CGS).

(3)The biological signaling pathways are obtained from
database MSigDB c2 (canonical pathway) which includes
1329 sets of biological metabolism and signaling pathways.
The candidate genes are projected into the pathway, calculat-
ing the active score of each pathway.

(4) In the GEO data, we divide the samples into disease
and control parts and normalize gene expression profiles
of the samples and then calculate to get the differentially
expressed genes. Wemap differential gene to the PPI network
to obtain the candidate gene set (CGS). The activity scores
are calculated according to the expression value of candidate
gene set (CGS) on each sample. Gene expression value of
gene in biological pathway for every sample constitutes an
expression value matrix; each column represents a sample
and each row represents a gene. Abiological pathway includes
p genes whose expression values can form a matrix of p rows.
Each biological path corresponds to an activity vector, and
the dimension of the vector is the number of samples; that
is, in each sample j, an activity score can be calculated. The
calculation formula is as follows:

𝑎𝑡𝑗 =
𝑝

∑
𝑖=1

𝑒𝑖𝑗
√𝑝 (1)

𝑎𝑡𝑗 represents the activity score of the t biological pathway
in the j sample, and 𝑒𝑖𝑗 represents the gene expression value
of the i gene in the t biological pathway of the sample j,
and p is the number of genes in the biological pathway.
After that, we get an activity vector of biological pathways;
vector [𝑎𝑡1, 𝑎𝑡2, 𝑎𝑡3, . . . 𝑎𝑡𝑚] represents the activity score of the
t biological pathway inm samples.

Next, a phenotypic vector is constructed based on the
phenotypic labels of the samples, and then the mutual
information between the activity vectors and the phenotypic
vectors of the samples is computed by combining the activity
vectors of each biological pathway.

2.2. Mutual Information With Phenotype. Mutual informa-
tion (MI) is a commonly used method of information

measurement in information theory. In [8], the rationale
behind using MI to classify cancer patients is explained, and
the processing is shown in Figure 3. By calculating themutual
information between the activity vectors and the phenotypic
vectors of biological pathways, the correlations between the
two vectors are measured, that is, the influence of a biological
pathway on the phenotype of the disease.

Constructing a phenotype vector based on the phenotype
of the sample, [𝑐1, 𝑐2, 𝑐3, . . . 𝑐𝑚], the phenotypic vector is a
zero-one vector, and if the sample is tumor, the corresponding
value is one, otherwise zero.

Using 𝑎(𝑖) to indicate the activity score of the i bio-
logical pathway on each sample, 𝑎(𝑖)=[𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, . . . 𝑎𝑖𝑚]. 𝑐
is used to represent the phenotypic vectors of m samples,
𝑐 = [𝑐1, 𝑐2, 𝑐3, . . . 𝑐𝑚]. So the correlation between biological
pathways and disease phenotype 𝑆(𝑖) can be represented by
mutual information 𝑀𝐼(𝑎󸀠(𝑖), 𝑐) between 𝑎󸀠(𝑖) vector and
𝑐 vector. 𝑎󸀠 is a discretized form of a. The formula is as
follows:

𝑀(𝑖) = 𝑀𝐼 (𝑎󸀠 (𝑖) , 𝑐)

= ∑
𝑥∈𝑎󸀠

∑
𝑦∈𝑐

𝑝 (𝑥, 𝑦) log 𝑝 (𝑥, 𝑦)
𝑝 (𝑥) 𝑝 (𝑦)

(2)

The activity score 𝑎 is discretized into ⌊log 2(𝑠𝑢𝑚 𝑜𝑓
𝑠𝑚𝑎𝑝𝑙𝑒𝑠) + 1⌋ equally spaced bins to obtain 𝑎󸀠, respectively,
𝑝(𝑥, 𝑦) is the joint probability density function of 𝑎󸀠 and
𝑐, and 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability density
function of 𝑎󸀠 and 𝑐.

3. Constructing Pathway Network
Related To Disease

The interaction of the pathway can be represented as a
network which was constructed as follows.

Let 𝐺(𝑉, 𝐸) comprise a set 𝑉 of pathways and a set 𝐸
denote the weighted pathway-pathway interaction network
with 𝐸 ∈ 𝑉 ∗ 𝑉. Here, we use similarity to define weight of
the network. 𝑉 = {𝑝1, 𝑝2 . . . 𝑝𝑛}, 𝑛 = |𝑉| is the number of
pathways. Matrix 𝐴 represents the weighted 𝑛 × 𝑛 adjacency
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matrix of𝐺, where𝑤𝑖𝑗 denotes theweight of the edge connect-
ing pathway 𝑝𝑖 to 𝑝𝑗 and 𝑤𝑖𝑗 is calculated by the similarity of
𝑝𝑖 and 𝑝𝑗. Supposing two pathways 𝑝1and 𝑝2, 𝑝1, 𝑝2 is a set of
genes. 𝑝1 = {𝑔11, 𝑔12 . . . 𝑔1𝑛}, and 𝑝2 = {𝑔21, 𝑔22 . . . 𝑔2𝑚}.The
similarity of 𝑝1 and 𝑝2 can be calculated as weight of network.
The similarity between the two pathways is the ratio of the
sum of the similarities of all similar genes to the sum of the
two pathway’s elements. The formula is shown in

𝑠𝑖𝑚𝑝𝑖,𝑝𝑗 =
∑𝑔𝑖𝑥∈𝑝𝑖,𝑔𝑗𝑦∈𝑝𝑗 𝑠𝑖𝑚 (𝑔𝑖𝑥,𝑔𝑗𝑦)

𝑀 +𝑁
(3)

𝑀 = |𝑝𝑖| is the number of genes on 𝑝𝑖, and𝑁 = |𝑝𝑗| is the
number of genes on 𝑝𝑗.

By this formula, the similarity values of each pair of
candidate pathways can be calculated, and the pathway
network can be constructed to identify the critical pathway.

We useGOSemSim package of R language [9] to calculate
the semantic similarity (𝑠𝑖𝑚(𝑔𝑖𝑥, 𝑔𝑗𝑦)) between genes, includ-
ing molecular function similarity (MF), biological processes
similarity (BP), and Cellular Component (CC) similarity.
Since a pathway contains multiple genes, we calculate the
similarity of genes on the pathway as the similarity between
the pathways to obtain the pathway similarity matrix 𝑠𝑖𝑚𝑝𝑖,𝑝𝑗.

4. Identifying Significant Pathways of
Pathway Network

Based on the biological pathway information and the simi-
larity information of genes in the pathway, we constructed
the biological pathway interaction network. In the network,
each node represents a biological pathway, and if the two
pathways contain differentially expressed genes, then they are
connected. And the similarity of the differential genes on the
two pathways is used as the similarity of the two pathways.

After constructing the biological pathway network, we
hope to find biological pathways related to cancer pheno-
type. We use the random walk algorithm combined with
phenotypic information to find the key nodes in the pathway
network. The GeneRank method is a sorting algorithm pro-
posed by Morrison et al. [10]. In our method, the initial node
order is determined by the value of mutual information MI,
and the transfer matrix is obtained by the pathway similarity
matrix (𝑠𝑖𝑚𝑝𝑖,𝑝𝑗). According to the random walk GeneRank
algorithm, starting from the initial node, the final stable
pathway node sequence is obtained by iterative calculation
of the transfer matrix. This approach considers both the
pathway and phenotype information and the semantic sim-
ilarity between pathways, thus avoiding the node as isolated
individuals and ignoring the important nodes that are highly
correlated with other nodes. Therefore, this method can find
potential pathway nodes.

We let set 𝑃 = {𝑝1,𝑝2, . . . , 𝑝𝑁} represent 𝑛 nodes in the
pathway network. According to whether there is a similarity
relationship between the two pathway nodes, the adjacency
matrix 𝑤(𝑖, 𝑗) can be obtained by a similar matrix 𝑠𝑖𝑚𝑝𝑖,𝑝𝑗
according to a threshold 𝜃, as shown in

𝑤 (𝑖, 𝑗) =
{
{
{

1 if sim (pi, pj) ≥ 𝜃
0 𝑜𝑡ℎ𝑒𝑟𝑠

(4)

Sort the pathway set 𝑃 according to the mutual informa-
tion (𝑀𝐼) of pathway and phenotype. The initial row rank of
𝑃 is obtained, which is denoted as 𝑥, 𝑒𝑥 = (𝑒𝑥1,𝑒𝑥2, . . . , 𝑒𝑥𝑁).

According to the definition, W is a symmetric matrix,
𝑤𝑖,𝑗 = 𝑊(𝑖, 𝑗) = 𝑊(𝑗, 𝑖) = 𝑤𝑗,𝑖. According to graph theory,
the degree of the i node is equal to the sum of the elements of
row i of matrix 𝑤 and is expressed in deg𝑖, as shown in

𝑑𝑒𝑔𝑖 =
𝑛

∑
𝑗=1

𝑤𝑖,𝑗 =
𝑛

∑
𝑗=1

𝑤𝑗,𝑖 (5)

d is the damping coefficient, and the closer the value of
d is to 0, the greater the impact of the mutual information is
on the node sorting; on the contrary, if d is closer to 1, node
sorting is more affected by the similarity. In our algorithm,
we initialized d to 0.85.

The algorithm steps are as follows:
Input: initialization vector 𝑒𝑥 = (𝑒𝑥1,𝑒𝑥2, . . . , 𝑒𝑥𝑁);

adjacency matrix 𝑤; parameter d.
𝜀 is the error value; max is the maximum iterations.
Output: 𝑟;
(1) Data Preprocessing:

𝑟[0] = 𝑒𝑥
‖𝑒𝑥‖1

;

𝑟[𝑛] = (r[𝑛]1 , r[𝑛]2 , . . . , r[𝑛]𝑁 ) ; 𝑛 = 0, 1, 2, . . . .
(6)

(2) Iteration:

r[𝑛]𝑗 = (1 − 𝑑) 𝑒𝑥𝑗 + 𝑑
𝑁

∑
𝑖=1

𝑤𝑖𝑗𝑟[𝑛−1]𝑖
𝑑𝑒𝑔𝑖

, 1 ≤ 𝑗 ≤ 𝑁;

𝑟𝑒𝑠[𝑛] = 󵄩󵄩󵄩󵄩󵄩𝑟
[𝑛] − 𝑟[𝑛−1]󵄩󵄩󵄩󵄩󵄩1 ;

(7)

(3) Stop Condition

If 𝑟𝑒𝑠[𝑛] ≤ 𝜀 𝑜𝑟 𝑛 ≥ 𝑚𝑎𝑥 , 𝑆𝑡𝑜𝑝;
Else goto (2);
Return 𝑟=𝑟[𝑛];

5. Experiments and Results

5.1. Data. The Breast Cancer Dataset was downloaded from
GEO (Gene Expression Omnibus) website (https://www.ncbi
.nlm.nih.gov/geo/), including GSE33447 [11], GSE9309,
GSE15852[12], GSE5364 [13]. and GSE20437 [14].The dataset
consists of 484 samples obtained from comparing 387 breast
cancer samples with 97 normal samples, as shown in Table 1.

The gene expression profiles of 369 cases of breast
cancer and 73 cases of normal breast tissues were obtained,
and the differentially expressed genes were analyzed, PPI
network was obtained from the Human Protein Reference

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1: Breast Cancer Data Set.

DataSet Normal Tumor
GSE 9309 9 132
GSE 15852 43 43
GSE 5364 13 186
GSE 33447 8 8
GSE 20437 24 18

Table 2: Top 15 pathways identified with our method.

Rank Pathway Name gene p-value
1 KEGG FATTY ACID METABOLISM 42 5.76e-12
2 KEGG STARCH AND SUCROSE METABOLISM 52 0.0047780
3 KEGG SPLICEOSOME 128 3.63e-12
4 KEGG PPAR SIGNALING PATHWAY 69 8.64e-21
5 KEGG P53 SIGNALING PATHWAY 69 0.0005045
6 KEGG ADIPOCYTOKINE SIGNALING PATHWAY 68 2.23e-09
7 PID SHP2 PATHWAY 58 2.40e-05
8 PID BARD1 PATHWAY 29 0.0010373
9 REACTOME MRNA 3 END PROCESSING 36 0.0137007
10 REACTOME METABOLISM OF NON CODING RNA 49 0.0008123
11 REACTOME CELL CYCLE 421 1.02e-08
12 REACTOME SIGNALING BY BMP 23 0.0247461
13 REACTOME TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM 54 0.0426007
14 REACTOME CELL CYCLE MITOTIC 325 9.35e-07
15 REACTOME PROCESSING OF CAPPED INTRONLESS PRE MRNA 23 0.0127461

Database (http://www.hprd.org/) [15]. The pathways were
downloaded from theMolecular Signatures Database website
(http://software.broadinstitute.org/gsea/msigdb) [16]. The
database mainly collects gene set which was annotated
with certain biological functions. We chose C2 gene sets
(canonical pathways, 1392 gene sets); the set of genes is
derived from several major biological pathway databases,
including BioCarta [17], KEGG [18], and Reactome [19]
databases.

To identify the significance of the given pathway, first, we
computed differential expression genes of the sample datasets
(GSE9309, GSE15852) and then dealt with the PPI data. PPI
network wasmapped into the differential expression gene; we
obtained candidate gene set (CGS). Secondly, the candidate
genes are mapped into the pathways, calculating the active
score of each pathway, and then the mutual information is
computed by combining the activity vectors of each biological
pathway. Finally, we calculate the similarity of the pathway
to obtain pathway network, and the random walk algorithm
combined with phenotypic information was used to find
significance node of the pathway network.

To provide a more comprehensive understanding of the
proposed method, we discuss the method from the following
aspects separately.

5.2. The Results of Pathway Recognition. According to the
above description, the rank of each pathway is the degree of
relevance between the given pathway and the corresponding
disease.The rank is calculated by algorithm (see in Section 4).

In this study, the significance of the pathway was tested by
hypergeometric distribution of each pathway with annotated
differential genes using formula (8). The top 15 pathways
with p-value are shown in Table 2; we selected part of the
interaction pathways, as shown in Figure 4.

𝑝 − V𝑎𝑙𝑢𝑒 = 1 −
𝑥−1

∑
𝑖=0

(𝑀𝑖 ) ( 𝑈−𝑀𝑁−𝑖 )
( 𝑈𝑁 )

(8)

U—the number of genes in the human genome;
N—the number of differential genes;
M—the number of genes in the pathway;
x—the number of differentially expressed genes in
this pathway.

The top 1 pathway is KEGG FATTY ACID METABO-
LISM; the pathway is supported by [20–22], and the
KEGG SPLICEOSOME [23–25], REACTOME METAB-
OLISM OF NON CODING RNA [26, 27], and REACTO-
ME CELL CYCLE [28] are all very important metabolic
pathways, and we focus on the following important pathways.

One significant pathway identified by our method
was P53 SIGNALING PATH-WAY [29–31]. Currently, breast
cancer is the most prevalent cancer diagnosed in women,
with an estimated 1.8 million cases reported worldwide in
2013 [32, 33]. Radiation is commonly adopted as an adjuvant
therapy for the management of breast cancer [34]. However,

http://www.hprd.org/
http://software.broadinstitute.org/gsea/msigdb
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Figure 4: Interaction between disease pathways.

there is growing evidence that autophagy is induced by
ionizing radiation, and this induction plays a crucial role
in radiosensitivity [35, 36]. Furthermore, the regulatory
effect of autophagy in radiation-induced cell death remains
controversial, and the underlying molecular mechanisms
remain to be fully characterized. The research of [37] shows
that the p53/DRAM signaling pathway appears to contribute
to radiation-induced autophagic cell death in MCF-7 breast
cancer cells.

Another significant pathway was KEGG PPAR SIGNAL-
ING PATHWAY. In [38], the authors analyzed six patho-
logical complete response (pCR) patients and 25 patients
with non-pCR; 300 probes (231 genes) were identified as
differentially expressed between pCR and residual disease by
the SAM program when the fold change was >2. The gene
functional enrichment analysis revealed 15 prominent gene
categories that were different between pCR and non-pCR
patients, most notably the genes involved in the peroxisome
proliferator-activated receptor (PPAR), DNA repair, and ER
signal pathways and in the immune-related gene cluster;
they believe that the PPAR pathway may be an important
predictor of genes that are involved in the chemotherapy
response.

The other pathway was PID SHP2 PATHWAY; in [39],
the researchers show a fundamental role for Src-homology 2
domain-containing phosphatase 2 (SHP2) in these processes
in human epidermal growth factor receptor 2- (HER2-)
positive and triple-negative breast cancers. Knockdown of
SHP2 eradicated breast tumor-initiating cells in xenograft
models, and SHP2 depletion also prevented invasion in three-
dimensional cultures and in a transductal invasion assay
in vivo. Notably, SHP2 knockdown in established breast
tumors blocked their growth and reduced metastasis. Mech-
anistically, SHP2 activated stemness-associated transcription
factors, including v-myc myelocytomatosis viral oncogene
homolog (c-Myc) and zinc finger E-box binding homeobox
1 (ZEB1), which resulted in the repression of let-7 microRNA
and the expression of a set of “SHP2 signature” genes. They
found these genes to be simultaneously activated in a large
subset of human primary breast tumors that are associated
with invasive behavior and poor prognosis. These results
provide new insights into the signaling cascades influencing
tumor-initiating cells as well as a rationale for targeting SHP2
in breast cancer.

Moreover, we obtained top 15 pathways; their p-values
are all less than 0.05. In order to test the effectiveness of this
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Figure 5: DAVID method and our method to identify the risk
pathway.

Table 3: Common pathways with our method and David.

Pathway Name p-value
KEGG FATTY ACID METABOLISM 5.76e-12
KEGG SPLICEOSOME 3.63e-12
KEGG PPAR SIGNALING PATHWAY 8.64e-21
KEGG P53 SIGNALING PATHWAY 0.0005045
KEGG ADIPOCYTOKINE SIGNALING PATHWAY 2.23e-09
REACTOME CELL CYCLE 1.02e-08
REACTOME CELL CYCLE MITOTIC 9.35e-07

method, we compare with the most used DAVID software.
The identified top 15 pathways are compared with DAVID
method and ourmethod to identify the risk pathway of breast
cancer as shown in Figure 5; the commonpathways are shown
in Table 3.

DAVID is awidely used and approvedmethod.According
to the pathway set we have identified (in Tables 2 and 5).
Pathways identified by our method and DAVID method
have obvious intersection (in Figure 5); the p-value of the
pathway is also significant. In addition, compared with
DAVID, we also found some pathways which DAVID did
not find. In Table 2, PID BARD1 PATHWAY [40–45],
PID SHP2 PATHWAY [39], REACTOME TRANSPORT
OF MATURE TRANSCRIPT TO CYTOPLASM [46], and
REACTOME METABOLISM OF NON CODING RNA
[46, 47] are the pathways that our method identified but
DAVID did not. The relationship between them and breast
cancer has been evaluated in detail and is affirmative in the
corresponding literature.

So, according to the above analysis, it can be concluded
that our proposed method is effective in identifying the
important pathways of the complex diseases.

5.3. Test on Dataset

5.3.1. Results and Analysis. To estimate the classification
performance, firstly we prepared our dataset (GSE9309,
GSE15852) and took 80 genes in the selected pathways as
features, and SVM [48] is employed to classify the selected
samples. Next, a 10-fold cross-validation was used to train
and test SVM.The above experiment was repeated 100 times;
the average value of the 100-time calculation is taken as the

final result. In order to evaluate ourmethod, we compared the
classification results of cancer and normal samples with the
commonly used methods based on differential expression.
We choose the T-test method, and the T-test can be used
to test whether the means of two independent normal
distribution samples are equal. For gene expression data,
we can test whether there is a significant difference in the
expression of a gene between different phenotypes, that is,
to identify differentially expressed genes through tests. The
results obtained by the T-test method are compared with our
method according to the genes contained in the biological
pathway, and the same number of genes is sorted according
to the order. The comparison results show that the method
is superior to the T-test method, and the experimental
results show that our proposed method is more effective in
distinguishing cancer from normal samples, and the results
are shown in Figure 6.

We applied the feature gene set to the independent gene
expression datasets (GSE5364, GSE33447, and GSE20437).
This set of data is not related to the data previously used, and
they are independent of each other. In order to evaluate our
proposed method objectively, we used the same number of
biological pathways or gene markers to compare the results.
Thebiological pathwaymarkers obtained by ourmethod have
a good discrimination in the dataset, higher than 0.6, close to
0.7, and the results are shown in Figure 7. However, the AUC
of the currently reported prognostic models on independent
datasets is very difficult to reach 0.7 [49], which shows the
superiority of our method.

5.3.2. Test on Other Datasets. Secondly, in order to test
the robustness of our method, we apply the method
in this article to four gastric cancer gene expression
datasets. The dataset was also downloaded from GEO, which
includes GSE63089 [50], GSE56807 [51], GSE33335 [52],
and GSE19826 [53]. PPI data was obtained from STRING
(https://stringdb-static.org/); the sources of other data are
the same. The dataset consists of 177 samples obtained from
comparing 87 tumor samples with 90 normal samples, which
is shown in Table 4; the top 15 pathways with p-value are
shown in Table 5.

We used our method to test on the gastric cancer dataset,
and we selected the same number of biological pathways
and gene markers. Compared with the T-test, our method
has also achieved a higher or comparable value. We used
GSE63089 and GSE56807 as the training set, with GSE33335
and GSE19826 as the test set. A 10-fold cross-validation was
used to train and test SVM. The above experiment was
repeated 50 times; the average value is taken as the final result.
Our method also has good discrimination in this dataset,
higher than 0.6 and better than T-test; the results on gastric
cancer data are shown in Figure 8.

5.4. Conclusions. Complex diseases, especially cancer, are
extremely harmful to human health. Therefore, the identi-
fication of cancer markers is the key of the study. Pathway
analysis combined with multiple types of high-throughput
data reflects the biological processes more clearly. Therefore,
pathway-based complex disease analysis method has become

https://stringdb-static.org/
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Figure 6: Test on dataset.

Figure 7: Test on independent datasets.

a hot research topic. Unlike previously available pathway
analysis methods, we have considered not only the genes
interaction of the pathway, but also the interaction between
the pathways.

In this paper, we proposed a new approach to consider
the correlation between biological pathways and establish a
biological pathway interaction network.Then, the GeneRank
algorithmbased on randomwalk and themutual information
of phenotype were used to select cancer related biological
pathways. Finally, we use the support vector machine and
feature selection method to apply to cancer datasets. The
results show that our method achieves better results than T-
test method. In addition, the validation in the independent
dataset and the functional analysis of the biological pathway
indicate that the pathway we identified as a biological marker
of disease is more accurate and reliable. We will employ

more datasets to assess the validity of our approach in future
research.
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Table 4: Gastric Cancer Data Set.

DataSet Normal Tumor
GSE 63089 45 45
GSE 56807 5 5
GSE 33335 25 25
GSE 19826 15 12

Table 5: Top 15 pathways identified with our method in Gastric Cancer Data Set.

Rank Pathway Name gene p-value
1 KEGG DNA REPLICATION 36 1.50e-20
2 KEGG PROTEASOME 48 9.07e-05
3 KEGG ARGININE AND PROLINE METABOLISM 54 0.000489
4 KEGG GLYCEROLIPID METABOLISM 49 5.12e-05
5 KEGG PURINE METABOLISM 159 1.68e-12
6 KEGG PATHWAYS IN CANCER 328 2.52e-09
7 KEGG SPLICEOSOME 128 0.0003348
8 KEGG NUCLEOTIDE EXCISION REPAIR 44 0.0001406
9 KEGG MELANOGENESIS 102 0.0481885
10 KEGG RNA DEGRADATION 59 0.0003626
11 KEGG MAPK SIGNALING PATHWAY 267 0.0014066
12 KEGG GLYCEROLIPID METABOLISM 49 5.119e-05
13 KEGG DRUG METABOLISM CYTOCHROME P450 72 0.0115133
14 KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION 267 0.0183417
15 KEGG PROSTATE CANCER 89 0.0274642

Figure 8: Test on independent gastric cancer dataset.
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