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Two supramolecular nanomedicines (CB[7]⊃DOX and CB[7]⊃CPT) based on the
host–guest recognition between CB[7] and anticancer drugs were constructed. After
supramolecular modification, the stability and water solubility of DOX and CPT were greatly
improved, and the anticancer activities of chemotherapeutic drugs were effectively
maintained. This work provided a simple but efficient method to enrich supramolecular
nanomedicines for cancer therapy.
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INTRODUCTION

Being able to reach every corners of the body, chemotherapy is the first choice for the patients
diagnosed with metastatic cancers. Chemotherapy can suppress the fast proliferation of tumor cells,
yet they also restrain the rapid growth of the bone marrow, hair follicles, and gastrointestinal tract
cells (Chabner and Roberts, 2005; Pérez-Herrero and Fernández-Medarde, 2015; Wu Dan et al.,
2021). Hence, severe adverse reactions are always the undesired appurtenances of cancer
chemotherapy. Because most of the chemotherapeutic drugs are hydrophobic molecules, they
have poor solubility and stability in physiological environments, thus leading to the limited
therapeutic effect (Zhou et al., 2017). Nanomedicines are receiving increasing attentions over the
past decades because of their ability to promote the pharmacokinetics of drugs, enhance the
therapeutic efficacy, and decrease the side effects of drugs (Janib et al., 2010; Lee et al., 2012;
Oun et al., 2018; Xue et al., 2018; Wu et al., 2022). Incorporation of traditional chemotherapeutic
drugs into nanomedicine is an effective method to overcome the limitations of conventional
chemotherapy.

Nanomedicines constructed based on supramolecular chemistry are preferred for their
feasibility of preparation, biodegradability, and stimuli responsiveness. Supramolecular
chemistry, chemistry that is beyond the molecule, is based on various non-covalent
interactions, such as hydrogen bonding, charge-transfer interactions, π–π stacking
interactions, electrostatic interactions, and host–guest interactions (Lehn, 1988; Erbas-
Cakmak et al., 2015; Liu et al., 2015; Xue et al., 2015; You et al., 2015). Supramolecular
systems self-assembled from host–guest complexation exhibit outstanding properties owing to
the introduction of host molecules, showing promising potentials in biomedical applications (Yu
et al., 2012; Yu et al., 2013a; Webber and Langer, 2017). The complexation between hosts and
guests can be regulated by multiple external stimuli, such as ions, temperature, redox, pH, light,
and enzyme (Harada, 2001; Yan et al., 2012; Cook et al., 2013; Yu et al., 2013b; Spa et al., 2018).
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Fortunately, some differences in the biological
microenvironment between normal and tumor cells can also
be used to adjust the binding affinities of host–guest reactions,
realizing precise cancer theranostics (Laza-Knoerr et al., 2010;
Tiwari et al., 2012; Cafeo et al., 2013; Tibbitt et al., 2016; Yu
et al., 2018). Macrocylic hosts including crown ethers,
cyclodextrins, calixarenes, pillararenes, and cucurbiturils
usually own hydrophobic cavities which can be used to
embed guests (Kim et al., 2007; Niu et al., 2011; Appel
et al., 2012; Yu et al., 2015). Cucurbit[n]urils (CB[n]s, n =
5–8, 13–15) are pumpkin-liked macrocylic host in which the
glycoluril units and methylene bridges are repeatedly linked
(Lee et al., 2003; Lagona et al., 2005; Ni et al., 2014; Li et al.,
2018; Xu et al., 2018). Unlike cyclodextrins whose driving force
are hydrophobic interaction possessing moderate binding
affinity in the range of 102–104 M, the binding affinities of
CB[n]s are much higher mainly arising from the cooperation
of hydrophobic interactions and ion–dipole interactions. Due
to the difference in polarity and cavity sizes, different unique
host−guest recognitions are built between CB[n]s and different
guests. Considering their excellent biocompatibility and
outstanding molecular recognitions, CB[n]s have been
extensively employed to fabricate drug delivery systems for
disease theranostics (Sun et al., 2018; Ding et al., 2019; Wu Han
et al., 2021).

Herein, we constructed two supramolecular nanomedicines
(CB[7]⊃DOX and CB[7]⊃CPT) based on the host–guest
recognition between CB[7] and two anticancer drugs
(doxorubicin (DOX) and camptothecin (CPT)), mainly driven
by host−guest interactions. After supramolecular modification,
the stability and water solubility of supramolecular
nanomedicines were greatly improved, and the anticancer
activities of DOX and CPT were effectively maintained.
Attributing to the simplicity and feasibility of preparation as
well as the good therapeutic effect, two supramolecular
nanomedicines have great potentials to realize clinical
transformation in the near future.

RESULTS AND DISCUSSION

Investigation of the Host–Guest
Complexation Between CB[7] and
3-Methylcyclohexylamine
1H NMR spectroscopy was utilized to study the host–guest
recognition between CB[7] and DOX. Because DOX is
insoluble in aqueous solution, 3-methylcyclohexylamine
was used as a model guest. As shown in Figure 1D, when
equimolar amounts of CB[7] and 3-methylcyclohexylamine
were mixed in D2O, obvious chemical shift changes of the
protons on 3-methylcyclohexylamine were observed,
suggesting that 3-methylcyclohexylamine was encapsulated
in the hydrophobic cavity of CB[7]. When three equivalents of
3-methylcyclohexylamine were added into CB[7], the peak
shape of 3-methylcyclohexylamine became similar to that of
free 3-methylcyclohexylamine (Figure 1C), suggesting that

there were excess free 3-methylcyclohexylamine in solution.
On the other hand, nuclear Overhauser effect correlation
signals between CB[7] and 3-methylcyclohexylamine were
observed (Supplementary Figure S2), further
demonstrating host–guest complexation occurred between
CB[7] and 3-methylcyclohexylamine, in which the guest
molecular deeply penetrated into the cavity of CB[7].

Isothermal titration calorimetry (ITC) was used to acquire
the thermodynamic information for the complexation between
CB[7] and 3-methylcyclohexylamine. As shown in
Supplementary Figure S3, the Ka values of CB[7]⊃3-
methylcyclohexylamine were determined to be (2.73 ± 0.84)
× 106 M−1, indicating the binding affinity was very high and
was favorable for the fabrication of supramolecular systems in
physiological environments. Furthermore, the enthalpy
changes (ΔH < 0) indicated that the host–guest recognition
between CB[7] and 3-methylcyclohexylamine was driven by
enthalpy changes. All these results indicated that the
complexation between CB[7] and DOX could take place via
host–guest interactions, which paved the way for the
construction of supramolecular nanomedicine.

Investigation of the Morphology of
Supramolecular Nanomedicines
After confirming the possible inclusion complexation between
CB[7] and DOX, we studied the morphology of
supramolecular nanomedicines in water. As can be seen in

FIGURE 1 |Chemical structure of DOX, CPT, and CB[7]. Partial 1H NMR
spectra (D2O, room temperature, 400 MHz): (A) 3-methylcyclohexylamine
(isomer form), (B) CB[7], (C) CB[7] and 3-methylcyclohexylamine (molar ratio:
1 : 3), and (D) CB[7] and 3-methylcyclohexylamine (molar ratio: 1: 1).
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Figure 2A, large precipitates were observed in the DOX group
owing to the low solubility of DOX in water, but regular
spherical nanoparticles with a diameter of about 100 nm
were observed in the presence of CB[7] (Figure 2B),
suggesting hydrophilic CB[7] significantly inhibited the π–π
stacking and improved the water solubility of DOX. The
average diameter of CB[7]⊃DOX measured by the dynamic
light scattering (DLS) experiment was 121 ± 13.4 nm
(Figure 2C), which is in accordance with the result from
transmission electron microscopy (TEM). The average
diameter of the supramolecular nanomedicine almost
remained unchanged after incubation in PBS for 48 h
(Figures 2D, 4E), implying that the stability of
supramolecular nanomedicine was good in the physiological
environment.

Investigation of the Internalization Behavior
of Supramolecular Nanomedicines
The internalization behavior of CB[7]⊃DOX was then studied
by confocal laser scanning microscopy (CLSM). As shown in
Figure 3A, obvious red fluorescence arising from DOX was
observed in the cytoplasm after 2 h incubation, proving that
CB[7]⊃DOX was easily internalized by HeLa cells. When
incubation time reached 4 h, the red fluorescence appeared
in both the cytoplasm and nucleus, suggesting that CB[7]⊃
DOX could enter into the nucleus to prime their therapeutic

actions. The endocytic pathways of supramolecular
nanomedicines were evaluated by adding different
endocytosis inhibitors, such as amiloride-HCl (AMD),
chlorpromazine (CPZ), and genistein (Gen). As shown in
Figures 3B, 4F, the internalization of supramolecular
nanomedicines was greatly inhibited at 4°C, indicating their
cell uptake was energy-dependent. Meanwhile, pre-treatment
with CPZ, AMD, or Gen led to the difference in decrease of
cellular uptakes, suggesting that the endocytosis of
nanomedicines was mediated by the cooperation of
clathrin-, micropinocytosis-, and caveolae-participated
endocytic pathways.

Investigation of Anticancer Efficacy of
Supramolecular Nanomedicines
The therapeutic efficacy of supramolecular nanomedicines
against U87 and HeLa cells was assessed by a 3-(4′,5′-
dimethylthiazol-2′-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay. The IC50 values of CB[7]⊃DOX against U87
and HeLa cells were 12.5 ± 1.43 and 11.9 ± 1.24 μM,
respectively, which were comparable to the IC50 values of
DOX (6.52 ± 0.70 and 5.47 ± 0.68 μM against U87 and HeLa
cells, respectively) (Figure 3C and Supplementary Figure
S4). An Annexin V-FITC/propidium iodide (PI) dual-staining
assay was utilized to analyze the percentage of apoptotic cells.
Figure 4H showed that a large percentage of the apoptotic

FIGURE 2 | TEM images of aggregates formed from DOX (A) and spherical nanoparticles formed from CB[7]⊃DOX (B), (C) DLS size distributions of nanoparticles
self-assembled from CB[7]⊃DOX, and (D) diameter changes of nanoparticles formed from CB[7]⊃DOX after incubation in PBS for different times.
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(31.3%) and necrotic (7.8%) cells was monitored for the HeLa
cells treated with CB[7]⊃DOX, which was similar to the values
for the cells treated with free DOX. CB[7]⊃DOX also showed a
similar ability to induce the apoptosis of U87 cells
(Supplementary Figure S6), further demonstrating the
anticancer efficacy of DOX was fully kept after
supramolecular fabrication. The percentage of apoptotic
cells induced by CB[7]⊃DOX was also higher than that in
the free DOX group (Figure 3D and Supplementary Figure
S6), suggesting the anticancer activity of DOX was highly
maintained.

Apart from DOX, CB[7] could also be used as a host to
interact with CPT through molecular recognition. The
host−guest interaction between CB[7] and CPT was
verified by biolayer interferometry (Supplementary Figure
S7), which demonstrated that CPT could be stably
encapsulated by CB[7] due to the high binding affinity.
More interestingly, the host−guest complexation was able
to regulate the self-assembly of CPT. Due to the severe
π–π stacking interactions, CPT formed large aggregates in
aqueous solution (Figure 4A). By the formation of the
host−guest inclusion complex, CB[7]⊃CPT self-assembled

into nanoparticles (Figure 4B). The average diameter of the
obtained nanoparticles was measured to be 133 ± 17.2 nm by
DLS (Figure 4C). The solubility of CPT is extremely poor,
which was determined to be 10.3 ± 0.87 μg/ml in PBS. It
should be emphasized that the solubility of CPT greatly
increased in the presence of CB[7] (Figure 4D) because
water soluble CB[7] encapsulated CPT and significantly
inhibited the π–π stacking of CPT. Additionally, the
stability of the nanoparticles formed by CB[7]⊃CPT was
satisfactory, and negligible changes in the size of the assemblies
were detected by DLS over 48 h (Figure 4E). Similar to CB[7]⊃
DOX, the endocytosis of nanoparticles assembled from CB
[7]⊃CPT was also mediated by the cooperation of clathrin-,
micropinocytosis-, and caveolae-participated endocytic
pathways. The anticancer capability of CB[7]⊃CPT was
evaluated by an MTT assay, which indicated that the IC50

value of CB[7]⊃CPT was lower than that of free CPT. The
possible reason was that the aggregates formed from free CPT
were unfavorable for cellular internalization, while the
supramolecular modification optimized the size of
assemblies prepared from CB[7]⊃CPT, thus enhancing cell
uptake. Annexin V-FITC/PI dual staining further

FIGURE 3 | (A) CLSM images of HeLa cells incubated with CB[7]⊃DOX for different time periods, (B) internalization efficiency analysis of CB[7]⊃DOX after
incubation with different endocytosis inhibitors, (C) cytotoxicity against HeLa cells incubated with different concentrations of CB[7]⊃DOX for 24 h (blue: CB[7]; red: DOX;
green: CB[7]⊃DOX), and (D) flow cytometric analysis of Annexin-V/PI dual-staining of HeLa cells after different treatments.
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demonstrated that the therapeutic efficacy of CPT was fully
maintained after supramolecular fabrication (Figures 4H,I).

CONCLUSION

In summary, two supramolecular nanomedicines were developed
based on the host–guest recognition motif, in which CB[7] acted as
the host, and anticancer drugs CPT and DOX acted as the guests.
In the aqueous solution, CB[7]⊃CPT and CB[7]⊃DOX self-
assembled into spherical nanoparticles with the diameter of
around 100 nm. Attributed to the water-soluble CB[7], the
stability and solubility of CPT and DOX were significantly
improved. CLSM experiments showed that both supramolecular
nanomedicines could be efficiently internalized and enter into the
nucleus of tumor cells. MTT and Annexin V-FITC/PI dual-
staining experiments demonstrated that two supramolecular
nanomedicines could efficiently induce apoptosis of U87 cells

and showed a good anticancer effect toward glioma. The
current study provides a simple but a high-efficiency
supramolecular method to improve the performance of traditional
small molecular anticancer drugs, making a contribution for the
preclinical drugs to realize clinical transformation.
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