
sensors

Article

Performance Evaluation of Bundle Adjustment with Population
Based Optimization Algorithms Applied to Panoramic
Image Stitching

Maria Júlia R. Aguiar , Tiago da Rocha Alves , Leonardo M. Honório * , Ivo C. S. Junior
and Vinícius F. Vidal

����������
�������

Citation: Aguiar, M.J.R.; Alves,

T.d.R.; Honório, L.M.; Junior, I.C.S.;

Vidal, V.F. Performance Evaluation of

Bundle Adjustment with Population

Based Optimization Algorithms

Applied to Panoramic Image

Stitching. Sensors 2021, 21, 5054.

https://doi.org/10.3390/s21155054

Academic Editor: Junliang Xing

Received: 2 June 2021

Accepted: 19 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
maria.aguiar@engenharia.ufjf.br (M.J.R.A.); tiago.alves@engenharia.ufjf.br (T.d.R.A.);
ivo.junior@ufjf.edu.br (I.C.S.J.); vinicius.vidal@engenharia.ufjf.br (V.F.V.)
* Correspondence: leonardo.honorio@ufjf.edu.br

Abstract: The image stitching process is based on the alignment and composition of multiple images
that represent parts of a 3D scene. The automatic construction of panoramas from multiple digital
images is a technique of great importance, finding applications in different areas such as remote
sensing and inspection and maintenance in many work environments. In traditional automatic image
stitching, image alignment is generally performed by the Levenberg–Marquardt numerical-based
method. Although these traditional approaches only present minor flaws in the final reconstruction,
the final result is not appropriate for industrial grade applications. To improve the final stitching
quality, this work uses a RGBD robot capable of precise image positing. To optimize the final ad-
justment, this paper proposes the use of bio-inspired algorithms such as Bat Algorithm, Grey Wolf
Optimizer, Arithmetic Optimization Algorithm, Salp Swarm Algorithm and Particle Swarm Opti-
mization in order verify the efficiency and competitiveness of metaheuristics against the classical
Levenberg–Marquardt method. The obtained results showed that metaheuristcs have found better
solutions than the traditional approach.

Keywords: metaheuristics; bundle adjustment; panorama image; bat algorithm; grey wolf optimizer;
arithmetic optimization algorithm; Salp Swarm Algorithm; particle swarm optimization

1. Introduction

Over the years, several computer vision simulation techniques and methods have been
developed to extract information in order to understand the environment through the use
of sensors and cameras. As computers and cameras have become more affordable, the use
of digital images has grown, and thus generated an increasing interest in high-resolution
images. The automatic panoramic image stitching, as an example, is an important field
of study for the research community due to its use in several applications in computer
vision [1], photogrammetry [2–4] and remote sensing [5–8].

Panoramic images are obtained to produce images with wide field of view (FOV)
and depict large objects that cannot be captured in a single image. Therefore, multiple
images of the same environment are combined to obtain the whole scene. Image stitching
is the process of overlapping a set of images obtained from different points of view, time,
visual angles and sensors to generate a high resolution image with a wider view [9,10].

Although seamless panoramic images the desired result for applications, and there are
advances in this area of study in recent years, image stitching remains a challenge due to
factors such as registration and blending [11]. Some questions remain unresolved and from
a computational geometry perspective the result usually contains cut objects or blur [12].
The image stitching method is the joining of images based on their overlapping areas and
can be defined in two main steps: alignment and blending [13].
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In image registration process, several errors can arise when images are grouped.
Geometric and photometric misalignment often result in undesirable discontinuities of
objects and visibility in the overlap area between images [14]. However, perfect alignment
is rarely achieved. In that regard, most efforts in this research field are focused on designing
better alignment or compositing techniques to reduce or hide misalignment. Some algo-
rithms are used in order to minimize the coloration discontinuities in the appearance of
the final generated image, being some techniques of pixel matching and image blend-
ing [15–18]. The research on images alignment for stitching culminated, to some extent,
in the use of bundle adjustment [19] to simultaneously optimize the relative positions of the
images. Several types and classes of optimization-based algorithms [20–26] can be used to
align all images to a common frame of reference typically, the classic Levenberg–Marquardt
method is used to optimize the intrinsic and extrinsic parameters of the camera [27,28].

This paper proposes the comparison of the Levenberg-Maquardt algorithm, which is
commonly used in the literature, against some meta heuristics that are well proven to be
a good solution to multimodal optimization problems, that tend to be affected by local
minima [29]. Thus, it aims to experiment a modified optimization approach for the Bundle
Adjustment of a custom 360-degree image capture device. Therefore, this research’s main
contribution is the comparison of the Levenberg–Marquardt method against bio-inspired al-
gorithms, such as Bat Algorithm, Grey Wolf Optimizer, Salp Swarm Algorithm, Arithmetic
Optimization Algorithm and Particle Swarm Optimization in Bundle adjustment opti-
mization of the intrinsic and extrinsic parameters of cameras, focusing on improving the
system’s image alignment stage. The remainder of this work is organized as follows:
Section 2 details the proposed methodology and its mathematical and construction foun-
dations. Section 3 presents the results and discussions about what was proposed and
improved when using bio-inspired meta heuristics. The final concluding remarks and
ideas for future works are presented in Section 4.

2. Proposed Study Methodology

This paper proposes a comparison of optimization methods for image alignment
using bundle adjustment to generate spherical panoramic images. This section presents the
overview of the proposed pipeline, followed by the main components of the methodology.

2.1. Framework Overview

Figure 1 shows the general architecture of the proposed method. The panoramic
image generation pipeline is composed of several steps including image acquisition, feature
extraction and matching, bundle adjustment, spherical projection, image stitching and
blending. The first step is to capture images using a proprietary robotic system consisting
of a camera and laser on a mechanical structure capable of rotation in pan and tilt directions
under controlled conditions, which are used as input data for the system. Feature points
are extracted from the images and combined with each other, resulting in a set of matched
pairs. In the next step, the pairs are used to obtain the intrinsic and extrinsic parameters of
the images by bundle adjustment, in which the re-projection error of the correspondences is
minimized using optimization. Finally, a spherical projection is performed, as each image
is projected onto a spherical surface and all image are stitched and blended together to
obtain the final panorama. The components of the methodology are described in separated
sections with detailed explanation.
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Figure 1. Flowchart of the Proposed Method.

2.2. Data Acquisition

Image acquisition is performed using a robotic system illustrated in Figure 2. The robot
is a scanning system capable of obtaining the reconstruction of an entire 3D environment
or object that can be used in augmented and virtual reality applications. This concept
inserts a camera and a laser into a mechanical structure that is capable of rotating under
controlled conditions. It is composed of a Livox MID-40 LIDAR laser scanner, a Logitech
C925e USB camera, two Dynamixel AX-18A servo motors and an InvenSense Intertial
Measurement Unit (IMU) MPU-6050. The control strategy is a fault tolerant nonlinear
feedback linearization [30–32]. This helps with image reconstruction, as the acquisition
poses are previously known using the initial orientations from the IMU and servo angles as
references in the Bundle Adjustment process. The angle positioning and intrinsic parameter
information of each camera are included in the respective datasets. The acquired images
are available in [33].

This module was used to acquire several high-resolution images for assembling
360° panoramas, using distance and positioning data from IMU and servo motors angles.
This would be essential to ensure that the scene of interest is effectively recorded.

The servo motors are responsible for pan and tilt movements over a range of 360
and 120 degrees, respectively. The images were taken using a 50° pan and 15° tilt step to
move the servomotor, covering the 360° region. In this way, sets of 56 images from the
Arts and Design School at Federal University of Juiz de Fora were acquired. For this work,
1280 × 720 pixels HD image sets were used.
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Figure 2. Data Acquisition System.

2.3. Feature Detection and Matching

Image alignment consists of overlapping two or more images of the same scene taken
at different times, establishing geometric correspondences between pairs of images that
represent the same environment [34]. In order, to register multiple images, it is necessary
to estimate the transformations that align them according to an image reference within the
data set. Therefore, the images are aligned to a common coordinate using the computed
geometric transformation. The aligned images are overlaid on a larger image by merging
the pixel values of the overlap area so that the border is continuous with a smooth transition
between images.

The first step in the alignment process is to extract and find correspondences between
images. The Scale Invariant Feature Transform (SIFT) algorithm developed by Lowe [35]
was used for this method and is widely used in image stitching [17,36–38] . After calculating
the descriptors for all images, points are found in the images that have similar descriptors.
For each feature found, the two best candidate matches (nearest matches) were maintained.
To improve the match set, the ratio test is first applied according to (1) in which d1 is
the nearest neighbor distance, d2 is the second nearest neighbor distance and the ratio
value less than a threshold (θ) set to 0.8 is considered a good match. After this condition,
unwanted matches are discarded. Even so, in the resulting correspondences there can still
be found outliers. Therefore, the good matches are filtered by calculating the fundamental
matrix, capable of mapping points from one image to another with the Random Sample
Consensus Algorithm (RANSAC) [39].

d1

d2
≤ θ (1)

2.4. Optimization Process

After obtaining the set of geometrically consistent matches between images, bundle
adjustment is used to solve all camera parameters together. The initial intrinsic and extrin-
sic parameters for each camera are known. The extrinsic parameters are derived from servo
motors positions and the IMU during image acquisition obtaining rotation angles of each
image. The focal length and optical centers were previously found by camera calibration.
From this structured acquisition information it was possible to find the best neighbors of
each image and perform image-matching with the best neighbors. In this step, the opti-
mization process begins. The images are added with their correspondent neighborhood,
and the bundle adjustment process is initialized with the values of neighbor’s matches,
focal length, optical center and pan and tilt angles for each camera. Then the parameters
are update using Bio-inspired methods.

Bio-inspired techniques were utilized in order to verify which method finds the best
result for the Bundle Adjustment problem, and compared with the classic Levenberg-
Maquardt. Population based metaheuristics were used and some solutions are modified
at each iteration, while others reach the next iteration. The modifications of the solu-
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tion, generally, are made by specific properties of each algorithm and its populations [40].
For that, optimization algorithms as Bat Algorithm, Grey Wolf Optimizer, Salp Swarm Al-
gorithm, Arithmetic Optimization Algorithm and Particle Swarm Optimization were used.

2.4.1. Mathematical Formulation

To solve the camera positioning problem, the approach of relating images according
to the homography matrix between images pairs to project them onto a reference plane
was used [17]. The homography matrix that represents the pairs between the i-th and j-th
images is given by Equation (2).

Hij = KiRiRT
j K−1

j (2)

where

Ki =

 fx 0 cx
0 fy cy
0 0 1

 (3)

represents the intrinsic matrix, fx, fy are the focal length and cx, cy the optical centers of
the camera. The rotation matrix is given by: Ri = RθiRφi where θ and φ are the pan and tilt
angles, respectively.

Each feature is projected onto all the images it corresponds to, and the sum of the
squared distances of images is minimized in relation to the camera parameters. For each
image, the parameters representing pan and tilt can be optimized [41], as well as the values
of camera’s focal length and optical center. Equation (4) represents the projection residue
of k-th feature in one image corresponding to the m-th feature in another image.

rk
ij = uk

i − pk
ij (4)

where uk
i represents the k-th feature in the i-th image, rk

ij is the residue of the projection of

the k-th feature of the j-th image in i-th image, and pk
ij is the projection of the image j to

image i of the corresponding point um
j , represented by Equation (5b).

pk
ij = KiRiRT

j K−1
i um

j (5a)

pk
ij = Hijum

j (5b)

Therefore, each camera is defined by rotation (φi, θi), focal length ( fi) and optical
centers (ci). Thus, the cost function is given by the error represented by the squared sum of
the residual errors of all images, presented by Equation (6).

C({(φi, θi, fi, ci)}N
i=1) =

N

∑
i=1

∑
j∈I(i)

∑
k∈F(i,j)

(rk
ij)

2 (6)

N is the number of images, I(i) is the set of images corresponding to the image i and
F(i, j) is the set of features between images i and j. The problem consists in minimizing the
Equation (6). The parameters values will be found using optimization methods based on
bio-inspired algorithm composed of a set of constraints related to the minimum and maxi-
mum boundary values of the parameters. Thus, the optimization problem mathematical
model can be described according to Equations (7) and (8).

Minimize f itness = C({(φi, θi, fi, ci)}N
i=1) (7)
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Subject to:
φmin

i ≤ φi ≤ φmax
i

θmin
i ≤ θi ≤ θmax

i
f min
i ≤ fi ≤ f max

i
cmin

i ≤ ci ≤ cmax
i

(8)

As originally conceived, this problem is unrestricted. This represent a problem to
population based algorithms as the search space is too wide. In the optimization process, the
values obtained during image capture by the robotic system were taken as references for the
parameters to be adjusted. In order to address the fact that data provided by the acquisition
device might have errors that can cause misalignment, the bounds described in Equation (8)
is used to accommodate the sensors’ uncertainty and errors. Thus, these bounds that
constrain the parameters between a minimum and maximum value, for this solution, were
established empirically. Through tests, the limits for the the rotation angles were set in a
range of +5 and −5 degrees of the original acquisition values and focal length and optical
centers limited by +5 and −5 pixels from calibration values.

The feasibility of the solutions in metaheuristic methods can be assured in one of two
ways: objective function cost penalization for unfeasible generated solutions or, restricting
unfeasible generated solutions that surpasses a bound to its value. In this particular study,
the latter form is used in order to maintain the population of solutions in a limited search
space thus, ensuring the feasibility of the solutions.

2.4.2. Bat Algorithm

As proposed by Yang [42], Bat Algorithm (BA) is a metaheuristic optimization al-
gorithm based on the echolocation behavior of bats, in which bats emits loud pulses in
varying frequencies to detect and seek preys or to avoid hitting objects. In that matter,
a mathematical analogy was developed to implement it as an optimization problem solving
algorithm. To control exploration and exploitation process, the frequency ( f ) and loud-
ness amplitude (A) parameters are modified during the iterative process according to (9)
and (10). The α parameter represents the decrease rate of amplitude and β is a random
vector in the interval [0, 1].

f ri = f rmin + ( f rmax − f rmin)β (9)

At+1
i = αAt

i (10)

The positions (Xt
i ) and velocities (Vt

i ) of the bats are described from Equations (11)–(13).

Vt+1
i = Vt

i + (Xt
i − Xt

∗) f ri (11)

Xt+1
i = Xt

i + Vt+1
i (12)

For the local exploitation stage, a new bat is generated according to a solution selected
among the current best solutions, using a random walk as described in Equation (13).

Xt+1
i = Xt

∗ + ε ·mean(At
i) (13)

Also, the pulse emission rate increases once a bat is getting closer to a prey according
to (14) in which the λ represents the increase rate.

rt+1
i = 1− eλt (14)

The Bat Algorithm pseudocode is given in Algorithm 1.
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Algorithm 1 Bat Algorithm (BA) Pseudocode.
Initialize parameters: α, λ
Initialize bats: Xi(i = 1, 2, 3, . . . , n)
Evaluate bats: Fob(Xi)
Update best bat: Xt

∗
while stop criteria isn’t met do

for i← 1, n do
f ri = f rmin + ( f rmax − f rmin)β, β ∈ [0, 1]
Vt+1

i = Vt
i + (Xt

i − Xt
∗) f ri

Xt+1
i = Vt+1

i + Xt
i

if ri > rand, rand ∈ [0, 1], then
Xt+1

i = Xt
∗ + ε ·mean(At

i), ε ∈ [−1, 1]
end if
Verify bounds (Xt+1

i )

Evaluate bat f (Xt+1
i )

if rand < At
i & f (Xt+1

i ) ≤ f (Xt
i ), rand ∈ [0, 1], then

rt+1
i = 1− exp(−λt)
At+1

i = αAt
i

end if
Update best bat Xt

∗
end for

end while

2.4.3. Grey Wolf Optimizer

First published in 2014 [43], the Grey Wolf Optimizer (GWO), is a bio-inspired opti-
mization metaheuristic, based on the hunting behavior of grey wolfs. The algorithm takes
into account their social interaction and hierarchy, as well as their approaching pattern
when hunting. The wolfs represent possible solutions for the problem and are divided
as follows: α the best search agent, β the second best agent, δ the third best agent and ω
the rest of the population. The searching process described by a movement of the wolfs
according to the α, β and δ positions as described by Equations (15)–(17).

#  »

Dα =

∣∣∣ # »

C1 ·
#  »

Xt
α −

# »

Xt
i

∣∣∣ #  »

Dβ =

∣∣∣ # »

C2 ·
#  »

Xt
β −

# »

Xt
i

∣∣∣ #  »

Dδ =

∣∣∣ # »

C3 ·
#  »

Xt
δ −

# »

Xt
i

∣∣∣ (15)

#  »

X1 =
#  »

Xt
α −

#  »

A1 ·
#  »

Dα
#  »

X2 =
#  »

Xt
β −

#  »

A2 ·
#  »

Dβ
#  »

X3 =
#  »

Xt
δ −

#  »

A3 ·
#  »

Dδ (16)

# »

Xi
t+1 =

#  »

X1 +
#  »

X2 +
#  »

X3

3
(17)

The GWO uses a searching parameter a to control the exploitation and exploration
process, which is decreased linearly from 2 to 0 over the course of the iterations, and is
used to limit the fluctuation range of the parameter

#»

A. Note that when the process reaches
half of the max iteration value, the wolfs can only move between their position and the
position of the prey as

#»

A is limited by the interval [−1, 1] and the exploitation stage of the
algorithm starts.

The Grey Wolf Optimizer pseudocode is given in Algorithm 2.
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Algorithm 2 Grey Wolf Optimizer (GWO) Pseudocode.
Initialize wolfs: Xi(i = 1, 2, 3, . . . , n)
Evaluate wolfs: Fob(Xi)
Hierarchy definition: Xα, Xβ, Xδ

while Stop criteria isn’t met, do
Update search parameter: at

for i← 1, n do
#»

A = at · #»r1 − at, #»r1 ∈ [0, 1]
#»

C = 2 · #»r2, #»r2 ∈ [0, 1]

#  »

Dα =

∣∣∣ # »

C1 ·
#  »

Xt
α −

# »

Xt
i

∣∣∣
#  »

Dβ =

∣∣∣ # »

C2 ·
#  »

Xt
β −

# »

Xt
i

∣∣∣
#  »

Dδ =

∣∣∣ # »

C3 ·
#  »

Xt
δ −

# »

Xt
i

∣∣∣
#  »

X1 =
#  »

Xt
α −

#  »

A1 ·
#  »

Dα

#  »

X2 =
#  »

Xt
β −

#  »

A2 ·
#  »

Dβ

#  »

X3 =
#  »

Xt
δ −

#  »

A3 ·
#  »

Dδ

# »

Xi
t+1 =

#  »

X1 +
#  »

X2 +
#  »

X3

3
Wolf’s hierarchy update: Xα, Xβ, Xδ

end for
end while

2.4.4. Salp Swarm Algorithm

The Salp Swarm algorithm is a bio-inspired optimization metaheuristic. Firstly pub-
lished in 2017 [44] and further reviewed in [45], it was inspired by the behavior of salps
when navigating and foraging in oceans. As a way to mathematically model the move-
ment of the salp chain, the population is divided into two types: the leader (Xi=1) and
the followers (Xi>1). The leader is the salp in front of the chain and every other salp is
considered as a follower. The best solution obtained so far is modeled as a food source (X∗)
and the position update of the leader is done according to it‘s current position as described
in Equation (18). {

Xt+1
1 = X∗ − C1

[
(bup − blo).C2 + blo

]
C3 ≤ 0.5

Xt+1
1 = X∗ + C1

[
(bup − blo).C2 + blo

]
C3 > 0.5

(18)

The position update of the follower salps is given by Equation (19).

Xt+1
i =

Xt
i + Xt

i−1
2

, i ≥ 2 (19)

To control the exploration and exploitation in this method a search parameter C1 is
proposed. This parameter is updated in each iteration as given by Equation (20).

C1 = 2 · exp

(
−
(

4t
tmax

)2
)

(20)

The Salp Swarm Algorithm pseudocode is given in Algorithm 3.
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Algorithm 3 Salp Swarm Algorithm (SSA) Pseudocode.
Initialize Salps: Xi(i = 1, 2, 3, . . . , n)
Evaluate Salps: Fob(Xi)
Sort X by ascending order (minimization)
Update Best Salp X∗
for t← 1, tmáx do

C1 = 2 · exp
(
−
(

4t
tmax

)2
)

for i← 1, n do
if i < n/2, then

C3 receives a random number between 0 and 1
C2 receives a random number between 0 and 1
if C3 < 0.5, then

Xt+1
i = X∗ − C1

[
(bup − blo).C2 + blo

]
else

Xt+1
i = X∗ + C1

[
(bup − blo).C2 + blo

]
end if

else
Xt+1

i =
Xt

i+Xt
i−1

2
end if
Verify search bounds Xt+1

i
if Fob(Xt+1

i ) < Fob(X∗), then
X∗ = Xt+1

i
end if

end for
end for

2.4.5. Arithmetic Optimization Algorithm

The Arithmetic optimization algorithm is a novel metaheuristic method that was
proposed in 2021 [46]. It is a population based technique and, as the name implies, its based
on using Arithmetic operators. The algorithm uses a parameter called Math Optimizer
Accelerated (MOA) to control the exploration and exploitation phases as described in (21).
Min and Max denotes the maximum and minimum values and are user specified.

MOA(t) = Min× t
(

Max−Min
tmax

)
(21)

Another coefficient used in this algorithm is the Math Optimizer probability (MOP) as
shown by Equation (22) in which the α denotes a exploitation sensitivity parameter.

MOP(t) = 1− t1/α

t1/α
max

(22)

While in the exploration phase, the algorithm uses the Division and Multiplication
operators according to Equation (23).

xt+1
i,d =

{
x∗d ÷ (MOP + ε)× ((X∗ − C1

[
(bdup − bdlo

)× µ + bdlo
) r2 < 0.5

x∗d ×MOP× ((X∗ − C1
[
(bdup − bdlo

)× µ + bdlo
) r2≥ 0.5

(23)

The exploitation phase of the algorithm uses the Addition and Subtraction operators
and is described in Equation (24).

xt+1
i,d =

{
x∗d −MOP× ((X∗ − C1

[
(bdup − bdlo

)× µ + bdlo
) r3 < 0.5

x∗d + MOP× ((X∗ − C1
[
(bdup − bdlo

)× µ + bdlo
) r3 ≥ 0.5

(24)
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The Arithmetic Optimization Algorithm pseudocode is given in Algorithm 4.

Algorithm 4 Arithmetic Optimization Algorithm (AOA) Pseudocode.
Initialize parameters: α, µ
Initialize solutions: Xi(i = 1, 2, 3, . . . , n)
while t < tmax do

Evaluate Solutions: Fob(Xi)
Update Best solution: X∗
Update MOA value using EQ (21)
Update MOP value using EQ (22)
for i← 1, n do

for d← 1, D do
r1, r1, r3 receives a random number between 0 and 1
if r1 > MOA then

if r2 > 0.5 then
Apply the Division math operator (D “÷”)
Update the ith solutions’ positions using the first rule in Equation (23)

else
Apply the Multiplication math operator (M “×”)
Update the ith solutions’ positions using the second rule in Equation (23)

end if
else

if r3 > 0.5 then
Apply the Subtraction math operator (S “−”)
Update the ith solutions’ positions using the first rule in Equation (24)

else
Apply the Addition math operator (A “+”)
Update the ith solutions’ positions using the second rule in Equation (24)

end if
end if

end for
end for

t = t + 1
end while

2.4.6. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization method based on
population developed in 1995 by James Kennedy and Russell Eberhart [47]. The algorithm
is based on the collective behavior of flocks of birds and schools of fish by observing the ac-
tivities of these individuals in dodging predators and searching for food. The initialization
of the PSO algorithm occurs with the random creation of the particles that constitute the
population (swarm). Particle determination consists of the description of its velocity (V(i,d))
and position (Xi) which are expressed through Equations (25) and (26), respectively.

V(i,d) = ωV(i,d) + c1 · rp(Xp∗
(i,d) − X(i,d)) + c2 · rg(Xg∗

(d) − X(i,d)) (25)

Xi = Xi + Vi (26)

As described by Equation (25), the velocity of each particle is updated according to the
direction of the individual’s best found position (Xp∗

(i,d)) and in the best individual’s found

position (Xg∗
(d)). ω is a weight parameter that controls the impact of previous particle’s

velocity on its current one; r1, r2 are random variables uniformly distributed between [0, 1]
and c1, c2 are positive constants that control the maximum step size.

The Particle Swarm Optimization pseudocode is given in Algorithm 5.
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Algorithm 5 Particle Swarm Optimization (PSO) Pseudocode.
Initialize particles: Xi(i = 1, 2, 3, . . . , n)
Initialize velocity for each particle: Vi(U[−(bup − blo), (bup − blo)])
Evaluate particles: Fob(Xi)
Update best position for each particle: Xp∗

Update swarm’s best position: Xg∗

while stop criteria isn’t met do
for i← 1, n do

for d← 1, D do
rp, rg receives a uniform random number between 0 and 1
V(i,d) = ωV(i,d) + c1 · rp(Xp∗

(i,d) − X(i,d)) + c2 · rg(Xg∗
(d) − X(i,d))

Xi = Xi + Vi
if Fob(Xi) < Fob(Xp∗) then

Update particle‘s best position: Xp∗ = Xi
if Fob(Xp∗) < Fob(Xg∗) then

Update swarm‘s best position: Xg∗ = Xp∗

end if
end if

end for
end for

end while

2.4.7. Time Complexity Analysis for the Metaheuristics Algorithms

For the five metaheuristic algorithms focused in this article, the time complexity is
dependant on the number of individuals/agents, dimension of the problem and maximum
number of iterations. Overall, by analyzing the steps of each algorithm, the computational
complexity t is stated in Equation (27).

O(t(d · n + C · n)) (27)

where t is the number of iterations, d shows the number of dimensions, n indicates the
number of search agents and C is the cost of objective function.

2.4.8. Levenberg-Maquardt

The Levenberg-Maquardt (LM) Algorithm, first proposed by Kenneth Levenberg [48]
and later by Donald Marquardt [49], is a technique that numerically solves nonlinear func-
tion minimization problems iteratively by finding local minima of multivariable functions
expressed by the sum of squares. This technique is a combination of the gradient descent
and Gauss–Newton methods [50] which is based on a local linearization of the residuals
according to (28). A vector function f maps p ∈ Rm to estimate a measured value x̂ = f (p),
x̂ ∈ Rn. It is desired to minimize the squared distance εTε with ε = x− x̂ for all p, with the
initial parameter p0 and a measured value x with the intention of at the end finding p+

that satisfies the relation f locally.

f (p + δp) ≈ f (p) + Jδp (28)

J =
∂ f (p)

∂p
(29)

Equation (29) defines the Jacobian matrix of f with respect to p. At each iteration a
value for δp ir estimated in order to minimize Equation (30).

||x− f (p + δp)|| ≈ ||x− f (p)− Jδp|| = ||ε− Jδp|| (30)
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The δp value is the solution of the linear least-squares problem where minimum is
found when Jδp − ε is orthogonal to the column space of J [51]. The LM Algorithm actually
solves a equation called as augmented normal equations presented in Equation (31).

(JTJ + µI)δp = JTε µ > 0 (31)

where I is the identity matrix, and µ is known as the damping term, which is adjusted at
each iteration to ensure error reduction.

The Levenberg-Maquardt pseudocode is given in Algorithm 6.

Algorithm 6 Levenberg-Maquardt Pseudocode.
Input: A vector function f : Rm → Rn with n ≥ m, a measurement vector x ∈ Rn and
an initial parameters estimate p0 ∈ Rm.
Output: A vector p+ ∈ Rm minimizing ||x− f (p)||2
Algorithm:
k := 0; v := 2; p := p0;
A := JTJ; εp := x− f (p); g := JTεp;
stop:=(||g||∞ ≤ ε1); µ := τ ∗maxi=1,...,m(Aii);
while stop criteria isn’t met and (k < kmax) do

k := k + 1;
repeat

Solve (A + µI)δp = g;
if (||δp|| ≤ ε2(||p||+ ε2)) then

stop:=true;
else

pnew := p + δp;
ρ := (||εp||2 − ||x− f (pnew)||2)/(δT

p (µδp + g));
if ρ > 0 then

stop:=(||εp|| − ||x− f (pnew)|| < ε4||εp||);
p = pnew;
A := JTJ; εp := x− f (p); g := JTεp;
stop:=(stop) or (||g||∞ ≤ ε1);
µ := µ ∗max( 1

3 , 1− (2ρ− 1)3); v := 2;
else

µ := µ ∗ v; v := 2 ∗ v;
end if

end if
until (ρ > 0 or stop)
stop:=(||εp|| ≤ ε3);

end while
p+ := p;

2.5. Image Stitching Process

The image stitching process is initialized after adjusting the positioning of the images.
First, the spherical projection of the images is performed with the desired final resolution.
In this process, the images are mapped on a cartographic plane with a projection formula-
tion that relates pixel and geographic coordinates [52]. The images are projected using the
relations [u, v]T = R[θ, φ]T , where (θ,φ) are the horizontal and vertical angular directions
(longitude and latitude, respectively), and (u, v) are pixel coordinates [53]. The projection
provides a value (u, v) directly from a value (x, y, z). A point P = (x, y, z) is the 3D pro-
jection of a point (x, y) from the original image. Thus, the spherical coordinates can be
obtained from the cartesian coordinates given by P, according to the relations shown in
(32) and (33):

θ = arctan
y
z

(32)
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φ = arccos
z√

x2 + y2 + z2
(33)

In spherical projection, a point can be mapped to a 2D plane simply by setting lon-
gitude as horizontal coordinate value and latitude as vertical [54]. After projecting the
images there may be lines on the boundaries of the overlapping areas, for example due
to the intensity of adjacent pixels differing. Therefore, a correction algorithm is applied
to obtain a uniform panorama and remove visible seams. Multi-band Blending technique
was used for image blending [55]. This technique uses Laplacian Pyramid with Gaussian
Kernel to blend the images while keeping their significant features. The images are reduced
to different levels with the Gaussian Kernel. Afterwards, a Laplacian Pyramid is created,
calculated based on the subtraction between the Gaussian image and the expansion of the
Gaussian pyramid lower level. The Laplacian pyramids are then mixed, resulting in a final
panorama obtained by interpolating and adding all of the pyramid’s levels [55].

2.6. Comparison Method

In order to evaluate the impact of using metaheuristics to improve the optimization
problem of minimizing re-projection error in 360° panorama image stitching, the dispersion
of final solutions, computational time and convergence curves are taken into consideration.
In addition, an Analysis of Variance (ANOVA) and Tukey’s Honest Significance(THS) Tests
were performed to statistically evaluate the validity of the simulation results. Before each
run, a novel group of initial solution is generated. As a way to ensure that the final result of
the optimization will achieve a result at least as good as the previously known acquisition
parameters, the latter are used as the first individual of the initial population. The rest of
the population is generated randomly within the search space according to Equation (34).

Xi,d = [r]10 × (bdup − bdlo
) + bdlo

; (34)

Then, all metaheuristic algorithms run with the same initial group to avoid starting-
point bias interfering with the comparison. All methods are population based and the
population is set to 35. In addition, the stopping criteria for all algorithms is set as
1000 iterations. In that regard, the total number of objective function evaluations per
method is equal. This is meant to ensure that the algorithms return a final solution at least
as good as the one that was acquired initially. This procedure is illustrated by Figure 3.

Figure 3. Database generation procedure.

Besides the population size and the maximum number of iterations, the techniques
have other parameters and some are determined empirically. These parameters and
definitions are presented in Table 1.



Sensors 2021, 21, 5054 14 of 26

Table 1. Parameter values for the comparative algorithms.

Algorithm Parameter Value

BA A 1
r 1
λ 0.01
α 0.9995
f rmin 0
f rmax 100

GWO Convergence parameter (a) Linear reduction from 2 to 0
AOA α 5

µ 0.49999
SSA Convergence parameter (C1) According to Equation (20)
PSO Topology Global

Cognitive and social constants (C1, C2) 2,2
Inertia weight Linear reduction 0.9 to 0.2
Velocity limit 6

3. Results and Discussion

This section presents the obtained results for each proposed optimization method,
and some discussions about them. The simulations were conducted by using an Intel Core
i7-7700HQ CPU 2.80 GHz computer with 16 GB of RAM and Windows 10 64-bit operating
system. The proposed method was implemented in C++ programming language.

The proposed approaches are applied to image data from the Arts and Design School
at the Federal University of Juiz de Fora, Brazil, from two different points of view, and com-
pared with the Levenberg–Marquardt methodology. Figure 4 presents two points off view
generated from the original image acquisition data.

Figure 4. Arts and Design School at the Federal University of Juiz de Fora: Two point of View.

3.1. Case Study I

The performance of BA, GWO, AOA, SSA and PSO are compared with respect to:
(i) the final value of the objective function; (ii) convergence; (iii) boxplots of the results and
(iv) statics indices. In addition, the results are analyzed with respect to that obtained by the
classical Levenberg–Marquardt method.

Performing the algorithms described in Section 2, convergence curves and average
convergence for the metaheuristic algorithms were obtained as shown in Figures 5 and 6.
Figure 5 shows the convergence history of each algorithms for the 250 simulations per-
formed and Figure 6 shows the average curve of all convergence curves from all simulations.
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Figure 5. Convergence Curves in 250 simulations for Case Study I.
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Figure 6. Average Convergence Curve.
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Analyzing the responses obtained by the convergence curves presented in
Figures 5 and 6, it can be seen that in Levenberg–Marquardt method, the initial point
interferes with the final solution, and as the initial guess is equal to the solution acquired
by the robot, the method converged to the same solution, i.e., the solution presented is
already a local optimum point. Therefore, the presented metaheuristics obtained a better
response, since they found new solutions with objective function values of less than the
initial one. When comparing the metaheuristics, the techniques convergence verifies that
PSO and BA present a better global search stage compared to the others methods. That is,
at process beginning, the algorithms perform an exploration of solution region and find
good solutions. Meanwhile, GWO and AOA obtained similar convergence characteristics
by having their differential in the local search step.

For further analysis, boxplot test is carried out for all the considered algorithms.
They are presented in Figure 7, showing the objective function optimal values considering
a set of 250 simulations. Table 2 presents statistical indices like median, mean and standard
deviation of the fitness value acquired. They can be used to explain the information
enclosed in the boxplot figure, and also present the average time (computational effort) in
seconds of each algorithm.

GWO BA AOA SSA PSO
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Figure 7. Boxplots of the Optimal Fitness Values from the 250 Simulations.

Table 2. Comparison of Fitness Values Obtained by Metaheuristics and Average Execution Time.

Algorithm Minimum Median Mean Standard Deviation Average Time (sec)

GWO 9.552480 × 106 1.0027000 × 107 1.0033 × 107 1.7718 × 105 10.6541
BA 1.1979000 × 107 1.2106950 × 107 1.2111 × 107 6.4233 × 104 9.1809

AOA 1.1504700 × 107 1.0674300 × 107 1.0757 × 107 4.9586 × 105 9.7178
SSA 1.1994400 × 107 1.2233100 × 107 1.2228 × 107 2.8482 × 104 9.0267
PSO 8.802380 × 106 9.520155 × 106 9.5329 × 106 2.9654 × 105 9.2606

Based on results in Figure 7 and Table 2, it can be noticed that PSO Algorithm out-
performs the other metaheuristic algorithms in the optimization by presenting the lowest
median, mean and fitness values. On the other hand, SSA showed the worst results. Al-
though the Bat algorithm presents the second highest median value, it presents a smaller
dispersion of the data, which indicates stability in the results, while the Arithmetic Opti-
mization Algorithm presents greater variation. Table 2 indicates that the computation time
values of all algorithms are similar to each other.
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In order to reject the null hypothesis, a variance test analysis is done, with results are
shown in the Table 3. For further comparison, a Tukey’s honest significance was also done
and the results in Figure 8 assures that the groups are all different from each other.

Table 3. Anova Table.

Source SS df MS F P > F

Treatments 1.466 × 1015 4 3.665 × 1014 49,951.36 0
Error 9.216 × 1013 1245 7.403 × 1010 - -
Total 1.558 × 1015 1249 - - -

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

 10
7

PSO

SSA

AOA

GWO

BA

Tukey's honest significance test

Figure 8. Tukey’s Honest Significance Test from the 250 Simulations.

Panoramic images are obtained from the values found by the algorithms. In Figure 9,
the panoramas generated by the results of LM, AOA, GWO and SSA methods are shown.
Figure 10 illustrates the 360 panorama that obtained the best solution found by the
PSO Algorithm.

(a) LM (b) SSA

Figure 9. Cont.
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(c) BA (d) GWO

(e) AOA (f) PSO

Figure 9. 360 Panoramic Images Resulting from the Proposed Metaheuristics for Case Study I:
(a) Levenberg–Marquardt (LM), (b) Salp Swarm Algorithm (SSA), (c) Bat Algorithm (BA), (d) Grey
Wolf Optimizer (GWO), (e) Arithmetic Optimization Algorithm (AOA) and (f) Particle Swarm
Optimization (PSO).

Figure 10. 360 Panoramic Image Resulting from the best method for Case Study I: Particle Swarm
Optimization (PSO).

For a clearer visualization, some improvements in the objective function can be
visualized in the zoomed figures of the artifacts present in the comparison between the LM
(inner black square) and PSO (inner green square) optimized images in Figure 11. Four
spots were chosen to represent the difference (red, cyan, yellow and dark blue squares).
The details are shown below in the same figure.

Even with these improvements, the Panorama image is still not perfect and show
some artifacts and misalignment because of the multimodal nature of the Bundle adjust-
ment problem. More image processing procedures can further be used to enhance this
panorama’s results. Although there is clear statistical improvement of the objective func-
tion, the RGB image still can be modified to become a more visually appealing panorama.
In that regard, more procedures could further be used to enhance the panorama’s results
and are still under investigation.



Sensors 2021, 21, 5054 19 of 26

Figure 11. Zoomed figures in four spots for Case study I, represented by the red, cyan, yellow and
dark blue squares. The differences of each approach for these spots are shown below in the image.

3.2. Case Study Ii

The same analyses of Case Study I, presented in Section 3.1, were performed for
Case Study II. Therefore, the results of convergence and average convergence curve of the
methods can be seen in Figures 12 and 13.

For this case, Levenberg–Marquardt’s behavior converging to the initial local mini-
mum solution is also notorious. Analyzing the convergence curves of the other methods,
it is observed that, the Particle Swarm Optimization and Bat techniques present a better
global search in the solution, while Grey Wolf Optimizer and Arithmetic Optimization
Algorithm have their prominence in the local search. The Salp Swarm Algorithm in all sim-
ulations, on the other hand, kept the fitness value equal to the original, that is, the algorithm
did not find better solutions during iterations.

Figure 14 presents the boxplots of all methods considering the minimum values found
in the 250 simulations. Table 2 presents the statistical data for better results analysis ob-
tained by the boxplots and the average computational efforts in seconds for each algorithm.

Analyzing the results of the Figure 14 and Table 4, it can be seen that the PSO Al-
gorithm presented the smallest objective function value as well as median and mean,
but in relation to the others it presented the largest standard deviation. The Grey Wolf
optimizer presented the smallest dispersion of the data. On the other side, Salp Swarm
Algorithm performed the worst result, not improving the solution. Table 4 indicates that
the computational time values of all algorithms are similar to each other.
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Figure 12. Convergence Curves in 250 simulations for Case Study II.
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Figure 13. Average Convergence Curve.
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Figure 14. Boxplots of the optimal fitness values from the 250 simulations.

Table 4. Comparison of fitness values obtained by metaheuristics and average execution time.

Algorithm Minimum Median Mean Standard Deviation Average Time (s)

GWO 2.119770 × 106 2.224145 × 106 2.2247 × 106 2.9250 × 104 15.1934
BA 2.282500 × 106 2.349620 × 106 2.3530 × 106 3.3987 × 104 13.7660

AOA 2.179840 × 106 2.179840 × 106 2.1794 × 106 3.3183 × 104 14.3220
SSA 2.417660 × 106 2.417660 × 106 2.417660 × 106 0 13.4370
PSO 1.477820 × 106 1.573870 × 106 1.5764 × 106 4.0016 × 104 13.6258

In order to reject the null hypothesis, an analysis of variance test is done, and the results
are shown in the Table 5. For further comparison, a Tukey’s honest significance was also done
and the results in Figure 15 assures that the groups are all different from each other.

Table 5. Anova Table.

Source SS df MS F P > F

Treatments 1.120 × 1014 4 2.802 × 1013 29,726.08 0
Error 1.174 × 1012 1245 9.426 × 108 - -
Total 1.132 × 1014 1249 - - -

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

10
6

PSO

SSA

AOA

GWO

BA

Tukey's honest significance test

Figure 15. Tukey’s Honest Significance Test from the 250 Simulations.
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Panorama Results

The results of optimization algorithms are shown in Figures 16 and 17 by means of
the panoramic images generated. Figure 16 presents the panoramic results of LM, SSA, BA,
GWO, AOA and PSO methods. Figure 17 illustrates the 360 panorama that obtained the
best solution found by PSO Algorithm.

(a) LM (b) SSA

(c) BA (d) GWO

(e) AOA (f) PSO

Figure 16. 360 Panoramic Images Resulting from the Proposed Metaheuristics for Case Study II:
(a) Levenberg–Marquardt (LM), (b) Salp Swarm Algorithm (SSA), (c) Bat Algorithm (BA), (d) Grey
Wolf Optimizer (GWO), (e) Arithmetic Optimization Algorithm (AOA) and (f) Particle Swarm
Optimization (PSO).

Figure 17. 360 Panoramic Image Resulting from the best method for Case Study II : Particle Swarm
Optimization (PSO).
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For a clearer visualization, some improvements in the objective function can be
visualized in the zoomed figures of the artifacts present in the comparison between the LM
(inner black square) and PSO (inner green square) optimized images in Figure 18.

Figure 18. Case study II - Zoomed figures of four different spots represented by the red, cyan, yellow
and dark blue squares show the nuance of each optimization approach.

Although the panorama improved, the image is still not perfect and show some
artifacts and misalignment that might be caused, in the same way as in case I, by the
multimodal nature of the Bundle adjustment problem. Even though there is statistical
improvement of the objective function, the RGB image still has room for improvement.
In addition, more procedures could further be used to enhance the panorama’s results and
are still under investigation.

For a more comprehensive visual comparison, an animated figure is available in the
following link: https://github.com/PvirtualGit/Sensors2021 (accessed on 2 June 2021).

4. Conclusions and Future Work

The proposed research work presented the realization of bundle adjustment opti-
mization through metaheuristics for 360 panoramic image generation. The main idea is
to perform camera parameters optimization in order to achieve better alignment between
images, comparing bio-inspired algorithms to the classical, derivative based, Levenberg–
Marquardt used in the literature. The process was formulated as a problem to minimize
the re-projection error, in order to find the best transformation that aligns the images to be
stitched together.

The proposed techniques were evaluated in real scenarios and show good statistical
results, proving an improvement in the solutions over the classical method, i.e., the meta-
heuristics obtained an improvement in the bundle adjustment problem. Although the

https://github.com/PvirtualGit/Sensors2021
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panorama images are still not perfect, the objective of this study was achieved as the
bio-inspired algorithms obtained better results than those found by Levenberg–Marquardt.

For future works, the modeling of hybrid algorithms can be explored in order to
aggregate the main advantages of each chosen technique. Also, the image processing might
be improved using the gain compensation described in [17] and a weighted average of the
matches cost in the objective function, both of which are under evaluation by the time this
article was written.
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