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The imbalance problem is widespread in real-world applications. When training a

classifier on the imbalance datasets, the classifier is hard to learn an appropriate

decision boundary, which causes unsatisfying classification performance. To deal with the

imbalance problem, various ensemble algorithms are proposed. However, conventional

ensemble algorithms do not consider exploring an effective feature space to further

improve the performance. In addition, they treat the base classifiers equally and ignore

the different contributions of each base classifier to the ensemble result. In order to

address these problems, we propose a novel ensemble algorithm that combines effective

data transformation and an adaptive weighted voting scheme. First, we utilize modified

metric learning to obtain an effective feature space based on imbalanced data. Next, the

base classifiers are assigned different weights adaptively. The experiments on multiple

imbalanced datasets, including images and biomedical datasets verify the superiority of

our proposed ensemble algorithm.

Keywords: imbalance learning, metric learning, information fusion, classification, ensemble learning

1. INTRODUCTION

Many applications face imbalance problems (Farrand et al., 2020; Khushi et al., 2021; Zhang et al.,
2021). The imbalance problem is caused by the difference in the number of samples in each
class. When the classifiers are trained on imbalanced datasets, the classifiers tend to favor the
majority class and predict more samples to be the majority class. Therefore, the minority class
samples can not be correctly classified, which is called the imbalance problem. The imbalance
problem is widespread in the applications, so more and more researchers focus on dealing with
the imbalance problem.

To solve the imbalance problem, researchers have proposed various methods from different
perspectives. Cost-sensitive method (Elkan, 2001) is a typical one. The cost-sensitive method
assigns different classification losses to each class. The minority class has a higher classification
loss than the majority class, such that the classifiers pay more attention to the minority class
and get a correct result. Resampling is another typical method. Resampling methods remove
or synthesize samples from the original data to balance the number of samples in each class,
including undersampling, oversampling, and hybrid sampling. Undersampling (He and Garcia,
2009) method removes the majority class samples by some informed rules. Undersampling can
produce a more clear decision boundary while the information of the excluded samples is lost.

On the other hand, the oversampling method proposes to generate the synthesis of minority
class samples until the data is balanced. The synthesis samples may lie in the overlapped area and
make the distribution worsen. To overcome the disadvantages, the hybrid sampling is investigated.
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FIGURE 1 | The overall framework of ensemble algorithm.

As a two-stage strategy, hybrid sampling method combines
undersampling and oversampling (I., 1976; Han et al.,
2005). Other researchers combine the clustering method
with oversampling (Barua et al., 2011).

Ensemble learning is widely used in solving the imbalance
problem. Ensemble learning trains different classifiers and gets
the result by integrated voting, which contains boosting and
bagging (Ho, 1998; Skurichina and Duin, 2002; Chawla et al.,
2003; Wang and Yao, 2009; Chen et al., 2010). Ensemble learning
plays an essential role in the imbalance classification tasks (Bi and
Zhang, 2018).

Nevertheless, the traditional imbalance algorithms have
the following problems. Most algorithms do not consider
mapping the imbalance data to another feature space for better
classification performance. In addition, the importance of base
classifiers is different, so it is inappropriate to treat the voting
weight of base classifiers equally.

Metric learning is a hot topic in machine learning, which has
been utilized in practical applications (Cao et al., 2019; Bai et al.,
2021). Metric learning learns a feature space that is more effective
than the original space. Euclidean distance is a commonmeasure.
However, Euclidean distance can not reflect the relationship
correctly in the overlapped area. Consequently, some researchers
capture the distance between samples by finding a transformation
that can increase the distance between dissimilar samples and
reduce the distance of similar samples (Köstinger et al., 2012).
When training on the imbalance datasets, metric learning also
suffers from imbalance problems (Gautheron et al., 2019). It
needs to be modified before training on the imbalance datasets.

In this article, we propose an ensemble learning framework
that combines metric learning and resampling. The metric
learning is employed by building a feature space from the
imbalanced dataset. The classifier is trained on the balanced
datasets after oversampling on the feature space to reduce the

impact of imbalance. Finally, the classifier is integrated by
adaptive weighted voting.

The contributions of the article are as follows:
1) An imbalanced version of the largemargin nearest neighbor

(LMNN) algorithm is proposed to alleviate the influence of
imbalanced data distribution and learn a robust feature space.

2) An GA-based weighting scheme is designed to adaptively
optimize the importance of different classifiers.

3) Extensive experiments are conducted on various
imbalanced datasets to verify the effectiveness of the proposed
approach.

The main framework is as follows: Section 2 introduces the
related work about resampling, ensemble learning, and metric
learning; Section 3 discusses the proposed ensemble framework
in detail; Section 4 shows the experiments about our proposed
methods and discusses the result of the experiments. Section 5
draws the conclusion and future study.

2. RELATED WORK

The resampling method contains undersampling and
oversampling. To get a balanced dataset, undersamplingmethods
remove the majority of samples randomly or by informed rules.
Tomek link (Batista et al., 2004) removes samples that are of a
different class from the neighbor. Undersampling can reduce the
imbalance problem, while it may suffer from information loss.
When the number of samples in each class is quite different,
most of the majority of class samples are removed. Hence, the
information of the majority of class is lost severely. On the other
hand, oversampling proposes to generate synthesis minority
class samples to balance the dataset. SMOTE (Chawla et al.,
2002) propose to generate samples by interpolating between
a given sample and its neighbors. The synthesis sample x∗i is
generated as follows:

x∗i = xi + (xn − xi) ∗ r (1)

In which xn is the neighbor of sample xi and r is a random
value between [0, 1]. Adaptive Synthetic sampling approach
(ADASYN) (He et al., 2008) makes different samples generate
different numbers of synthetic samples. Some methods combine
oversampling with clustering to overcome the problem that
synthesized samples are located in the overlapped area. Majority
Weighted Minority Oversampling Technique (MWMOTE)
(Barua et al., 2014) generates minority samples within the
cluster. Additionally, geometric-SMOTE (Douzas and Bacao,
2019) proposes a universal method that can be used in
most oversampling methods. Mahalanobis Distance-based Over-
sampling technique (MDO) (Abdi and Hashemi, 2016) and its
variant (Yang et al., 2018) propose to generate samples in the
principal component space.

Euclidean distance is a traditional measure to reflect the
similarity between samples. However, dissimilar samples may be
closer to the similar samples in the overlapped area, which is
inefficient to apply Euclidean distance. Metric learning learns a
feature space that can reflect the relationship between samples
more correctly. In the feature space, similar samples are closer
while dissimilar samples are separated apart. To achieve this
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FIGURE 2 | The diagram of proposed data transformation. After the data transformation, the similar neighbors are closer, while the dissimilar neighbor samples are

pushed and hold a certain distance to the anchor sample. (A) Before data transformation. (B) After data transformation.

goal, many metric learning algorithms have been proposed.
LMNN (Weinberger and Saul, 2009) minimizes the distance
between the anchor sample and its neighbors of the same
class. At the same time, the anchor sample maintains a margin
with neighbors of a different class. Information-theoretic metric
learning (ITML) (Davis et al., 2007) makes distribution on the
feature space similar to the Gaussian distribution. Some methods
utilize metric learning on imbalanced datasets. Imbalance metric
learning (IML) (Gautheron et al., 2019) modified LMNN by
assigning different weights to sample pairs. Distance Metric by
Balancing KL-divergence (DMBK) (Feng et al., 2019) balances
the divergence of each class on the feature space. Iterative metric
learning (Wang et al., 2018) learns a feature space for the area
near each testing data.

Ensemble learning integrates classifiers to improve
the robustness and performance of classification results.
EasyEnsemble (Liu et al., 2009) trains several classifiers on the
subset, which contains part of majority class samples and whole
minority class samples. BalanceCascade (Liu et al., 2009) splits
the majority class samples as several subsets and trains AdaBoost
classifiers based on the subsets. Yang et al. (2021) proposes an
ensemble framework based on subspace feature space ensemble
and metric learning.

3. PROPOSED METHODOLOGY

In this section, we propose an ensemble framework combining
metric learning with oversampling. Figure 1 shows the overall
framework of our proposed algorithm. First, the metric learning
methods based on the imbalance problem(denoted as ImLMNN)
are applied for getting a better feature space L. The data X
is transformed by mapping matrix L and gets the mapped
data X∗. Then, the feature space Si is constructed. Next, the
oversampling method is employed for getting a balance training
dataset S∗i . Finally, different classifiers are applied in balance

TABLE 1 | The attributes of datasets.

IR Samples Features

climate 10.74 540 18

libras_move 14.00 360 90

ecoli2 5.46 90 7

glass_0_1_2_3_vs_4_5_6 3.20 214 9

yeast3 8.10 1484 8

cleveland_0_vs_4 12.31 173 13

winequality_red_4 29.17 1599 11

ecoli1 3.36 336 7

datasets and voting for the result. The pseudo-code is shown in
the Algorithm 1.

We aim at finding a feature space that can better describe the
sample relationship to improve the performance of classifiers.
LMNN transforms data to a latent feature space, in which similar
samples are closer while dissimilar samples are separated apart.
The loss function of LMNN is as follows:

f (L) = fpush(L)+ fpull(L) (2)

where

fpull(L) =
∑

i,j

∥

∥L
(

xi − xj
)∥

∥

2
(3)

fpush(L) =
∑

i,j

∑

l

(

1− yil
)

[

1+
∥

∥L
(

xi − xj
)∥

∥

2
− ‖L (xi − xl)‖

2
]

+

(4)
The loss function of LMNN contains fpush(L) and fpull(L).
fpull(L) reduces the distance between the anchor and its
similar neighbors, while fpush(L) penalizes the distance between
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TABLE 2 | Comparisons between imbalance learning algorithm and our proposed method in terms of AUC.

SMOTE RandomForest RUSboost Balance bagging LMNN ensemble ImLMNN ensemble

climate 0.8785 ± 0.0092 0.5353 ± 0.0188 0.7462 ± 0.0245 0.8496 ± 0.0206 0.8787 ± 0.0162 0.8796 ± 0.021

libras_move 0.8741 ± 0.0227 0.8133 ± 0.025 0.8015 ± 0.06 0.8544 ± 0.0153 0.8146 ± 0.0286 0.8975 ± 0.0144

ecoli2 0.8671 ± 0.0121 0.813 ± 0.0113 0.8252 ± 0.0504 0.8678 ± 0.0138 0.8537 ± 0.0102 0.873 ± 0.0086

glass_0_1_2_3_vs_4_5_6 0.8945 ± 0.0172 0.876 ± 0.0129 0.8441 ± 0.039 0.8804 ± 0.0251 0.827 ± 0.0295 0.9064 ± 0.0173

yeast3 0.8278 ± 0.8278 0.7348 ± 0.0219 0.8163 ± 0.0258 0.8256 ± 0.0273 0.8381 ± 0.0163 0.8395 ± 0.0125

cleveland_0_vs_4 0.8919 ± 0.0103 0.6367 ± 0.088 0.7547 ± 0.05 0.848 ± 0.0405 0.8871 ± 0.0236 0.8955 ± 0.0419

winequality_red_4 0.6667 ± 0.0175 0.5291 ± 0.0093 0.5919 ± 0.0323 0.6515 ± 0.6515 0.6615 ± 0.0111 0.6776 ± 0.0116

ecoli1 0.8715 ± 0.0208 0.8461 ± 0.0297 0.7868 ± 0.0464 0.8756 ± 0.0228 0.8786 ± 0.0062 0.8804 ± 0.0117

AVERAGE_AUC 0.8465 0.723 0.7708 0.8316 0.8299 0.8562

The bold value means the best result among the compared algorithms.

Algorithm 1 : Imbalance Ensemble Framework.

Input: Training set X = (x1, x2, . . . , xn)
Parameter: Number of subspace N
Procedure:

1: Obtain the feature space L by ImLMNN;
2: Map the data by learned feature space L and get the mapped

dataset X∗;
3: for i in 1,..., N do

4: Extract part of features by a threshold M and get the
subspace Si;

5: Apply SMOTE oversampling method on subspace Si and
get the balanced subset S∗i ;

6: Classify on subset S∗i and get predict result y∗i ;
7: end for

8: Vote for result by adaptive weightW = [w1,w2, ...,wN];

Output: The final result Y =

(

y1
final

, y2
final

, . . . , yn
final

)

.

dissimilar samples. [z]+ = max(z, 0) is the hinge loss. yil = 1
when xi and xl belong to the same class, otherwise yil = 0.

However, the LMNN algorithm is inappropriate directly to
apply in imbalanced datasets. To solve this problem, we assign
different weights to samples. The weight wi of sample xi is as
follows:

wi =
δi

|Nc| ∗ d
(

xi,Xc

) (5)

The loss of samples is divided by the number of samples Nc

in the corresponding class, such that the impact caused by the
imbalance problem is alleviated. To emphasize the samples near
decision boundaries, we compute the sum of the density of
majority class δin and minority class δip as density δi. The density

δi is defined as follows:

δi = δin + δip (6)

δin =
1

1
k

k
∑

j=1
dij

, δip =
1

1
h

h
∑

j=1
dij

(7)

δin and δip describe the aggregation of samples in neighboring
areas about majority class and minority class. k and h are
the number of neighbor samples in calculating δin and δip,

respectively. When the density δic is large, the samples in class c
are close to xi. Therefore, a large sum of density δi reflects that
sample xi is close to samples of bothmajority andminority classes
or in the inner of class with high density.

Outliers and noises are also in the border area. To alleviate
the influence of outliers and noises, we divide sample weight by
d(xi, X̄c) which is the distance between sample xi and the center
of class c. The center of class c is defined as:

Xc =
∑

{i|yi=c}

xi. (8)

Therefore, the overall objective function of the data
transformation algorithm is:

f (L) =
∑

i,j

wi

∥

∥L
(

xi − xj
)∥

∥

2

+
∑

i,j

∑

i

wi

(

1− yil
)

[

1+
∥

∥L
(

xi − xj
)∥

∥

2
− ‖L (xi − xl)‖

2
]

+

(9)

The diagram of data transformation is shown in Figure 2. Similar
to LMNN, Equation (9) contains fpull which pulls similar samples
closer and fpush which push dissimilar samples separate apart.
In addition, each sample has a different weight to deal with the
imbalance problem.

After the data transformation, we extract M features to build
the subspace Si:

Si = [f 1i , f
2
i , ..., f

M
i ] (10)

The feature is extracted N times to generate N subspace. In
the subspace, the dataset is still imbalanced, which affects the
classifier’s performance. To solve this problem, oversampling is
utilized in each feature subspace. Specifically, the subset is S∗i =

Si∪Syni. The Syni is the synthesis minority data that is generated
by SMOTE on feature subspace Si and helps to form a new
balanced subset S∗i with the original subspace.

The classifier ci is trained on the balance subset S∗i and
votes for obtaining the result. However, the performance of each
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FIGURE 3 | The Fashion-mnist dataset.

TABLE 3 | Comparisons between imbalance learning algorithm and our proposed method in terms of AUC.

SMOTE RandomForest RUSboost Balance bagging LMNN ensemble ImLMNN ensemble

Fashion-mnist 0.9384 ± 0.0018 0.9523 ± 0.0025 0.9414 ± 0.006 0.9561 ± 0.0043 0.9543 ± 0.0044 0.9610 ± 0.0012

The bold value means the best result among the compared algorithms.

FIGURE 4 | Effect of the number of subspaces on the performance of ensemble on six datasets.

classifier is different. The contribution of each classifier in voting
should be determined by the classification result, rather than
being treated equally. Therefore, we utilize the weight assign
process to progressively vote. In detail, the GA algorithm is
applied to obtain the weight of each classifier adaptively. The
detailed description is shown as Algorithm 2.

First, the initial genes G = (g1, g2, ...gn) is generated as the
weight of the classifier, in which n is the number of subspace and
gi is the weight of classifier i. Next, the GA algorithm finds the
n individual and does crossover and mutation. Given two parent

genes gi = [p1i , p
2
i , ..., p

S
i ] and gj = [p1j , p

2
j , ..., p

S
j ] with length S, the

crossover method exchanges part of features in genes. Suppose
the exchange occurs at position α (α ∈ [1, S]), then the genes
after the exchange are:

g∗i = [p1i , p
2
i , ..., p

α
j , ..., p

S
i ]

g∗j = [p1j , p
2
j , ..., p

α
i , ..., p

S
j ]

(11)
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Algorithm 2 : Adaptive weight Procedure.

Input: Classifier set C = (c1, c2, . . . , cn)
Parameter:Number of genes n, Population size of genes np, Max
iteration N
Initialize: genes G =

(

g1, g2, . . . , gn
)

Procedure:

1: while not converge do
2: Select genes as parent randomly;
3: Do crossover and mutation on parent genes to generate

nchild child genes by Eq. (11) and Eq. (12);
4: for i in 1,...,n do

5: Calculates the fitness of gene Fparenti;
6: end for

7: for j in 1,...,nchild do
8: Calculates the fitness of gene Fchildj;
9: end for

10: if Fchildh >Fparentl then
11: replace parent gene gl by child gene gh;
12: end if

13: Until N Converge

14: end while

Output: The optimal genes G∗ =
(

g∗1 , g
∗
2 , . . . , g

∗
n

)

.

The mutation may occur in each position of genes. Suppose the
mutation happens in position γ (γ ∈ [1, S]) of gene gk, then we
have:

g∗k = [p1k, p
2
k, ..., p

γ

k
, ..., pSk] (12)

in which p
γ

k
is a random value. After crossover and mutation,

the child’s genes are generated. We calculate the fitness of parent
genes Fparentl (l ∈ [1, n]) and child genes Fchildh (h ∈ [1, nchild]).
The fitness is set as AUC value. Finally, the parent genes are
replaced by child genes with higher fitness values. When the
iteration is over, the optimal classifier weight G∗ = (g∗1 , g

∗
2 , ..., g

∗
n)

is obtained.
We can get the final result by weighted voting integration. The

result of classifier ci is denoted as yi. Then, the final result is

yfinal =
∑

N

g∗i yi (13)

4. EXPERIMENT

In this section, we show the experiments about the proposed
ensemble framework and compare the algorithm on various
datasets from UCI (Dua and Graff, 2017) and KEEL (Alcala-Fdez
et al., 2010). Our algorithm is also applied in the Fashion-mnist
image dataset. Finally, we analyze the effect of parameters on our
proposed algorithm.

4.1. Datasets
To evaluate the performance of our algorithm, we choose eight
datasets from UCI and KEEL with different attributes, such
as imbalance ratio (IR), number of samples, and features. The
attributes are shown in Table 1 in detail.

4.2. Evaluation Criteria
Accuracy is the typical criterion to evaluate the performance of
the algorithm. However, due to the imbalance problem, accuracy
is inappropriate for imbalance learning. AUC (Fawcett, 2004)
is the area under the receiver operating characteristic curve,
which is not sensitive to the imbalance data, and it is widely
used in imbalance learning. In the experiments, we use AUC as
evaluation criteria.

4.3. Comparison With Other Algorithms
To show the superiority, several algorithms and imbalance
ensemble frameworks are compared with our algorithm.
Specifically, we choose RandomForest, RUSboost, and
BalanceBagging as the baseline. In addition, SMOTE algorithm
is also chosen. The baseline algorithms are shown as follows:

1. SMOTE: A typical oversampling method. It generates samples
by interpolating between samples and their neighbors.

2. RandomForest: An ensemble framework that uses bagging to
build subsets for tree classifiers. The number of trees we set is
15.

3. RUSboost: A hybrid method that combines sampling with
boosting. The number of iterations is 15.

4. BalanceBagging: A variant of Bagging that is applied sampling
in each bootstrap. The number of subspaces we set is 15.

For our proposed algorithm, the number of subspaces is 15,
and the ratio of extracted features is 0.7. To show the ablation
experiment, we compare the LMNN ensemble, which replaces
our proposed data transformation algorithm ImLMNN with the
original LMNN algorithm. We choose linear SVM as the base
classifier. The algorithms run five times and calculate average
AUC as evaluation criteria. The 5-fold cross-validation is also
applied. The result of the experiment is shown in Table 2.

From Table 2, we can see that our algorithm has the
highest average AUC on given datasets, which is superior to
other compared algorithms. Compared with other algorithms,
the proposed algorithm has at least a 1% improvement in
average AUC. Also, compared with the ensemble algorithm that
applied the original LMNN algorithm as data transformation,
our proposed method has a near 3% improvement in
average AUC. Our method takes data transformation in the
imbalanced datasets into account, which is superior to other
compared algorithms.

4.4. Comparison With Different Algorithms
on Image Dataset
Our algorithm is applied in the image dataset and compared with
other algorithms. Figure 3 shows part of samples in the Fashion-
mnist dataset. Fashion-mnist is a famous image dataset that has
784 features and 60,000 samples. The dataset has 10 classes.
To build the imbalanced dataset, we choose the T-shirt class as
the majority class and the pullover class as the minority class.
The majority and minority class samples are 3,000 and 600,
respectively, which means the imbalance ratio is 5:1. Considering
that the feature size is similar to the number of samples, we
set the feature extraction ratio to 0.1. Table 3 shows the result
of the experiment.
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We can see that our method also has the best performance
in the Fashion-mnist dataset. The reason is that our proposed
method can deal with the imbalance problem in the image
dataset.

4.5. The Effect of Parameter
In this section, we show the impact of the parameter
in our algorithm. The number of subspaces influences the
performance of our ensemble framework. We set the number
of subspace to [5,10,15,20]. The parameter experiment result is
shown in Figure 4.

For Cleveland_0_vs_4, ecoli2, and winequality_red_4
datasets, the AUC is improved when the value of subspace is
increased. However, when the number of subspaces exceeds a
specific number, the AUC decreases as the subspace increases.
The reason is that the increasing value of subspaces improves the
diversity of subspace, while the excessive subspaces introduce
redundant information and are harmful to the algorithm’s
performance. For other datasets, the trend of AUC is diverse
due to the uncertainty of the GA algorithm. Considering the
algorithm result on the overall dataset, the proposed number of
the subspace is 15.

5. CONCLUSION AND FUTURE WORK

In this article, we propose an ensemble framework to deal
with imbalanced datasets. We explore an effective feature space
to improve the performance of the subsequent procedure. In
addition, we propose an adaptive integrated voting process
to assign weights for classifiers. The experiments on various

real-world imbalanced datasets, including the imbalanced
image dataset, show the superiority of the proposed ensemble
framework. Finally, we show the experiment to explore the effect
of the parameter.

Future study contains several points: (1) Various
methods can transform data into other feature spaces,
so choosing appropriate methods should be considered.
(2) A more effective adaptive weight process should be
explored to assign weight based on the performance of the
base classifiers.
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