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Optical Bloch oscillation and 
Zener tunneling in the fractional 
Schrödinger equation
Yiqi Zhang1,2, Rong Wang1, Hua Zhong1, Jingwen Zhang1, Milivoj R. Belić3 & Yanpeng Zhang1

We demonstrate optical Bloch oscillation (OBO) and optical Zener tunneling (OZT) in the fractional 
Schrödinger equation (FSE) with periodic and linear potentials, numerically and theoretically. We 
investigate in parallel the regular Schrödinger equation and the FSE, by adjusting the Lévy index, and 
expound the differences between the two. We find that the spreading of the OBO decreases in the 
fractional case, due to the diminishing band width. Increasing the transverse force, due to the linear 
potential, leads to the appearance of OZT, but this process is suppressed in the FSE. Our results indicate 
that the adjustment of the Lévy index can effectively control the emergence of OBO and OZT, which can 
inspire new ideas in the design of optical switches and interconnects.

In 1929, F. Bloch predicted that electrons in a periodic potential excited with a dc external electric field will 
exhibit an oscillating rather than a straight accelerating behavior1. This phenomenon is the now well-known 
Bloch oscillation, named after him. It remained a fundamental problem in quantum mechanics and a classi-
cal prediction that was not verified for more than 60 years. An experimental observation was achieved only in 
1992, by Feldmann et al.2. In that pioneering research, the authors experimentally reported Bloch oscillation in 
a semiconductor superlattice by means of a transient degenerate four-wave mixing–a kind of optical process. 
Thus, Bloch oscillations were first observed in optics, in a photonic device; direct observation of Bloch oscil-
lations of electrons in quantum solid state is still an open problem. For optical observation, a few ingredients 
were necessary: First, a periodic potential with an external dc field that can be prepared by elaborately designing 
a photorefractive index change or the shape of waveguide arrays in a photonic crystal. Second, a paraxial wave 
equation describing the propagation of beams in this system that is formally equivalent to the Schrödinger equa-
tion describing the system of oscillating electrons. As a result, Bloch oscillations were quite intensely investigated 
in optics in the last few decades, and this interdisciplinary research opened a new avenue for checking quantum 
theorems that are difficult to prove in quantum mechanics but are easy to prove in optics. This approach consti-
tutes now the field of quantum-optical analogies3.

The convenience of quantum-optical analogies is that they map the temporal evolution of wave functions 
in quantum phenomena onto the spatial propagation of optical fields in photonic devices. As such, they display 
great applicative potential for making interesting new photonic devices such as beam combiners, splitters and 
interferometers. Concerning the optical Bloch oscillation (OBO), the related literature is available in a large sup-
ply, and most of the important results are presented in the few recent review papers3–6. Until now, OBO has been 
reported in but is not limited to cold atoms7–11, optical waveguides12–15, photonic lattices16–21, integrated photonic 
circuits22,23, and non-Hermitian systems24,25. However, to the best of our knowledge, Bloch oscillations in the 
fractional Schrödinger equation were not investigated before. This task is undertaken in this paper.

The fractional Schrödinger equation (FSE) is the fundamental equation of the fractional quantum mechan-
ics26–28. Compared to the standard Schrödinger equation, it features the fractional Laplacian operator instead of 
the regular one. This substitution brings a profound change in the behavior of the wave function. Until now, most 
of the research on FSE was focused on mathematical issues and the steady behavior of wave packets in simple 
potentials. However, even the relativistic massless harmonic oscillator29–31 associated with FSE turned out to 
be not so simple. The difficulty stems from the fact that the fractional Laplacian operator, which sits in the FSE 
instead of the ordinary Laplacian, is inherently a nonlocal mathematical operator.
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The FSE was introduced in optics in 2015, by S. Longhi32. In that work, an aspherical optical cavity was 
designed to realize FSE, and the dual Airy function31,32 was demonstrated to be the eigenmode of the massless 
harmonic oscillator. After that work, FSE with a harmonic potential was reported33, in which the beam prop-
agated according to a zig-zag trajectory and formed a filament-like structure during propagation. FSE with a 
periodic potential was also investigated34, and conical diffraction was demonstrated, due to the band structure 
becoming linear at certain locations. Since the fractional Laplacian causes non-parabolic dispersion, which sug-
gests the possibility of directly modulating the dispersion of a physical system, it is not easy to find real physical 
systems described by the FSE. To overcome this difficulty, a potential link between the FSE and the beam prop-
agation in honeycomb lattice was established, based on the Dirac-Weyl equation35. This represented one of the 
first attempts to identify a real physical system that can be described by the FSE. Also, a proposal for realization of 
the free FSE (without a potential) is made by utilizing the Fourier transform method36. Nowadays, investigations 
of the FSE are numerous, and interesting phenomena based on the FSE are reported37,38. We should note that the 
mentioned literature mainly concerns the linear FSE. But recently, the nonlinear FSE is also becoming intensely 
investigated, with a wealth of nonlinear effects reported39–42.

Based on the variety of models and exciting progress on OBO and FSE, in this paper we connect these two 
fundamental phenomena, and demonstrate the emergence of OBO in FSE. We also show how the linear potential 
brings the appearance of OZT in the same system. To the best of our knowledge, these topics have never been 
discussed before. As a reference, we first discuss the OBO and OZT in the regular Schrödinger equation, and then 
by adjusting the Lévy index α, switch to the FSE. Since the fractional Laplacian operator brings novel features 
that are absent from the regular Laplacian operator, the OBO and OZT in the FSE deserve adequate attention and 
promise to bring novel interesting phenomena. We believe that our research will not only enrich the OBO and 
OZT family of phenomena, but also inspire new ideas in the research of FSE.

Results
Optical Bloch oscillation.  Our results are presented in Figs 1–4. The results concerning OBO are shown in 
Fig. 1, in which the strength of the linear potential equals a = 0.05 and the modulation of the periodic potential 
equals d0 = 1 (for notation, see the Methods section). With a small influence of the transverse force, coming from 
a weak linear potential, the band structure of the periodic potential can be calculated using the plane-wave expan-
sion method. We first set the Lévy index to α = 2, corresponding to a regular Laplacian, and then calculate the 
(well-known) band structure, displayed in Fig. 1(a). For the fractional cases, we adopt two values of α: an inter-
mediate value of α = 1.5 and the limiting value of α = 1; the results are shown in Fig. 1(b) and (c). From Fig. 1(a) 
to (c), one may see that the first band changes gradually from parabolic to linear (especially around k = 0) and 
that the vertical width of the band decreases (4.4539 → 2.3267 → 1.1563). Since the phenomenon of OBO is due 
to the Bragg refection in one band, the shape of the band will influence the OBO greatly. Based on the split-step 

Figure 1.  Band structure and optical Bloch oscillation. (a)–(c) Band structures corresponding to α = 2, 1.5 and 
1, respectively. (d)–(f) Optical Bloch oscillations corresponding to (a)–(c). The dashed curves in (d)–(f) indicate 
the first (orange) band in (a)–(c). Other parameters: a = 0.05, d0 = 1, and  π= 40 .
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Fourier transform method (see the Methods section), the OBOs formed during propagation are displayed in 
Fig. 1(d)–(f), from which one finds that the beam is compressed from ∼100, to ∼50 and ∼25 units in the trans-
verse direction, respectively. Another interesting feature is that the trajectory of the beam during propagation 
indicates the profile of the band, which is elucidated by using the dashed curves in each panel. The two features 
agree well with the aforementioned formation mechanism – OBO indeed reflects the properties of the band: (i) 
the band width is halved and so is the spreading area of the beam, and (ii) the trajectory of the beam during prop-
agation follows the shape of the band (an intraband behavior). Considering that the properties of the band can be 
controlled by adjusting the Lévy index, one may claim that the Lévy index can be used to manipulate the OBO 
effectively. In other words, an effective manipulation of the OBO can be achieved by utilizing FSE.

Figure 2.  Optical Zener tunneling. (a)–(c) Wide input beam. (d)–(f) Narrow input beam. (a), (d) a = 0.5 and 
d0 = 1. (b), (e) a = 0.5 and d0 = 0.5. (c), (f) a = 0.5 and d0 = 0.125.

Figure 3.  Suppression of OZT in FSE. (a) Output intensity versus α. (b) Intensity of the peak [indicated 
between two dashed lines in (a)] versus α. Parameters are the same as those used in Fig. 2(d).
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Optical Zener tunneling.  If the transverse force coming from the linear potential is large enough, the tun-
neling between different bands will occur, and the interband phenomenon of the Zener tunneling will take place. 
To observe optical Zener tunneling (OZT) in FSE, we increase the value of a from 0.05 to 0.5; the results are 
shown in Fig. 2.

Similar to what was done for OBO, we start from the regular case of α = 2, as displayed in Fig. 2(a). There, 
one observes a strong OZT at the Bragg refection points, which dampens the OBO during propagation. For the 
fractional case of α = 1.5, as shown in Fig. 2(b), a significant OZT still occurs, together with a damped OBO, 
and the trajectory of the OBO again indicates the profile of the band, i.e., it is not parabolic as in Fig. 2(a). By 
further decreasing the Lévy index to the limiting case of α = 1, one can still observe OZT, but much suppressed 
[Fig. 2(c)]. The trajectory of the OBO becomes a zigzag line, due to the band becoming almost symmetric and 
linear in the first Brillouin zone, according to the parameters used in Fig. 2(c). Similar results have been reported 
earlier33,36. Since the trajectory of the beam is almost linear at the Bragg reflection point, the leaked OZT is along 
a linear trajectory, which is different from the cases seen in Fig. 2(a) and (b).

We would like to point out that many channels become excited by a wide Gaussian beam in Fig. 2(a)–(c). To 
contrast, we also investigate the case when only one channel is excited; the results are shown in Fig. 2(d)–(f). We 
pay special attention to the limiting case of α = 1, depicted in Fig. 2(f). The beam spreads linearly during propa-
gation and then is reflected to form a rhombus-like pattern. At the reflection point, a bit of energy is shedded, to 
form OZT. Numerical simulations demonstrate that OZT for the fractional case is practically forbidden, if one 
uses the same parameters as for the regular case in Fig. 2(d). In addition, the beam can be well localized in the 
band of the fractional case, although the band width is significantly smaller than the regular case. Thus, essentially 
diffractionless propagation can be achieved even though one deals with a linear optical process.

Discussion
It is interesting to check beam propagation in the Fourier space. For OBO, the beam will be confined to the first 
Brillouin zone (FBZ) [−π/d0,π/d0], while for OZT, the beam will escape to the higher Brillouin zone. Numerical 
simulations are displayed in Fig. 4.

Corresponding to the OBO displayed in Fig. 1(a)–(c), we display the same results in the Fourier space in 
Fig. 4(a)–(c), respectively. One can clearly see that the energy of the beam is indeed confined to the FBZ during 
propagation. Thus, (i) the momentum of the beam increases linearly from 0 under the action of the transverse 
force, (ii) the momentum changes its sign and the beam jumps across the FBZ when it undergoes the Bragg 
reflection at k = π/d0 (see the Methods section), (iii) the momentum continues to increase linearly until it reaches 
0. The processes (i)–(iii) then repeat periodically. But, the confinement in the regular case is better than in the 
fractional case. The potential explanation is that the band for the fractional case becomes linear gradually with 
decreasing the Lévy index α, so the slope (the “speed” of the beam, dβ/dk) around the Bragg reflection point is 
bigger for the fractional case, which would help some energy escape to the higher band. However, such a situation 

Figure 4.  Propagation in Fourier space. (a)–(c) OBO, corresponding to Fig. 1(a)–(c). (d)–(f) OZT, 
corresponding to Fig. 2(a)–(c).
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will not hold if one adopts other parameters, e.g., the bigger value of a (viz. a larger transverse force), which will 
lead to pronounced OZT during propagation. In general, it is more difficult to observe OZT in the fractional case. 
The potential explanation for this phenomenon is that the beam in the regular case acquires an “acceleration” (the 
second-order derivative of the band, d2β/dk2, is not zero) under a transverse force. The bigger the a, the bigger the 
“acceleration”, therefore OZT happens more easily in the regular case. Such an “acceleration” in the fractional case 
becomes smaller with decreasing the Lévy index.

To qualitatively display the suppression of OZT in FSE, we present in Fig. 3(a) the beam intensity distribution 
at the output position z = 4π [one Bloch oscillation period; the parameters are same as those used in Fig. 2(d)] 
as a function of α. Clearly, one observes that with increasing α, more and more beam intensity leaks out, to form 
OZT. Therefore, the intensity of the main peak, i.e., the recovered input beam, decreases with increasing α. In 
Fig. 3(b), we exhibit the intensity of the main peak I = ∫D|ψ|2dx where D indicates the region marked by the two 
dashed lines in Fig. 3(a). As expected, the intensity of the main peak decreases monotonously with increasing α. 
In other words, the adjustment of the Lévy index can effectively control the emergence of OZT – that is, the OZT 
in FSE can be effectively suppressed by α.

Corresponding to the OZT in Fig. 2(a)–(c), the same results in the Fourier space are shown in Fig. 4(d)–(f). 
One observes that the beam energy indeed leaks to the higher-order Brillouin zone when it reaches the left 
boundary (−π/d0) of the FBZ. This indicates the transfer of energy between different bands during propagation, 
i.e., the OZT in the real space. Note that the OZT is most pronounced in the regular Schrödinger equation, and 
then it is gradually reduced in the FSE. We also mention that even though the OBO and OZT when only one 
channel is excited will lead to a wider beams in the Fourier space, most of the energy will still be confined to the 
FBZ; hence, we do not show these results here. Also, one may introduce an initial momentum −π/d0 < kin < π/d0 
to the input beam. In this case, the OBO and OZT phenomena will still exist, but the Bragg reflection point will 
shift from /2  to π+ d k[1/2 /(2 )]0 in  (see the Methods section). These effects will not be pursued in this paper.

In summary, we have investigated the OBO and OZT in FSE. The fractional Laplacian will not only decrease 
the spreading of OBO, but also suppress the formation of OZT. As a result, the findings obtained in this paper may 
help in the design of optical switches and interconnects, by allowing the manipulation of band structure with the 
adjustment of the Lévy index.

Methods
Band structure – the plane wave expansion method.  The governing FSE in dimensional units for the 
scalar optical field is of the form:
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where V = cos(2π/d0x) is the periodic potential with d0 modulating the period, and a determines the strength 
of the transverse linear potential, modeling an external dc force. In Eq. (1), α is the Lévy index (1 < α ≤ 2). 
When α = 2, one recovers the usual Schrödinger equation. Since the potential in Eq. (1) is periodic and there is a 
transverse potential gradient, light beams will exhibit OBO behavior during propagation, and the corresponding 
oscillation period is
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Without considering the last term axψ, the solution of Eq. (1) can naturally be written in the form φn(x, k)
exp[iβn(k)z], in which φn(x, k) is the Bloch mode and βn(k) is the propagation constant. Plugging this ansatz into 
Eq. (1), one obtains
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According to the Floquet-Bloch theorem, φ(x) can be written as φ(x) = wk(x)exp(ikx), where wk(x) = wk(x + 
d0) is spatially periodic. One can expand wk(x) and the potential in series of plane-waves, wk(x) = ∑ncnexp(iKnx), 
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Multiplying the above equation by exp[−i(k + Kq)x] and integrating over x ∈ (−∞, +∞), one ends up with

∑ β− | + | − =α
−k K c P c c1

2
,

(5)q q
m

m q m q

which is an eigenvalue problem in matrix form. By solving it, one obtains the band structure. By choosing differ-
ent values of α, one obtains the corresponding band structures of FSE.
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Propagation – the split-step Fourier transform method.  The propagation is executed using the 
split-step Fourier transform (FT) method, which demands a separate treatment of the diffraction term and the 
potential term,
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Doing the FT of the diffraction term, one obtains
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where ψ∼ is the FT of ψ. The solution of Eq. (7) after one step can be written as
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By performing inverse FT, one obtains ψ(x, z + dz). Considering that the potential term gives the solution 
after one step

ψ ψ+ = − +x z dz i V x ax dz x z( , ) exp{ [ ( ) ] } ( , ), (9)

one achieves the whole propagation step by step. This one-step FT method is the lowest-order method in dz. In a 
more accurate procedure, one must take into account that the operators D̂ and P̂ do not commute with each other. 
To improve the accuracy, higher-order split-step FT methods are introduced, which go by the name of split-step 
symplectic algorithms.

Bragg reflection condition.  Generally, the Bragg reflection condition is

θ λ=d n2 sin , (10)0

in which λ is the wavelength, and n = ±1, ±2, … is an integer, the order of Bragg reflection. Since the transverse 
force is exerted along the periodic potential, the incident angle is θ = π/2; therefore one ends up with
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where k = 2π/λ. We consider the principal reflection, so we adopt n = ±1.
However, if there is an initial momentum kin in the incident beam (the incident angle is still θ = 0), the trans-
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