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Abstract

Recent studies provide novel insights into the meso-scale organization of the brain,

highlighting the co-occurrence of different structures: classic assortative (modular),

disassortative, and core-periphery. However, the spectral properties of the brain

meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated

how the meso-scale structure is organized across the frequency domain. We ana-

lyzed the resting state activity of healthy participants with source-localized high-

density electroencephalography signals. Then, we inferred the community structure

using weighted stochastic block-model (WSBM) to capture the landscape of meso-

scale structures across the frequency domain. We found that different meso-scale

modalities co-exist and are diversely organized over the frequency spectrum. Specifi-

cally, we found a core-periphery structure dominance, but we also highlighted a

selective increase of disassortativity in the low frequency bands (<8 Hz), and of

assortativity in the high frequency band (30–50 Hz). We further described other fea-

tures of the meso-scale organization by identifying those brain regions which, at the

same time, (a) exhibited the highest degree of assortativity, disassortativity, and core-

peripheriness (i.e., participation) and (b) were consistently assigned to the same com-

munity, irrespective from the granularity imposed by WSBM (i.e., granularity-invari-

ance). In conclusion, we observed that the brain spontaneous activity shows

frequency-specific meso-scale organization, which may support spatially distributed

and local information processing.
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1 | INTRODUCTION

Functional connectivity (FC), that is the statistical association among

neural signals of separate brain regions (Friston, 2011), has received a

great deal of attention during the last years (Reid et al., 2019). FC has

been widely recognized as a tool to investigate spatio-temporal proper-

ties of brain networks. These networks have been characterized at dif-

ferent levels of topological organization (Betzel & Bassett, 2017), ranging

from local (single brain area or node) to global (whole-brain network;

Hallquist & Hillary, 2019), through the intermediate level, referred to as

meso-scale (Betzel, Medaglia, et al., 2018). The single unit of the meso-

scale architecture is a “community” (or module), which is composed by a

set of nodes sharing similar connectivity patterns. Modules are crucial

elements of FC network organization since they are essential to identify

areas belonging to the same functional domain. Moreover, modules well

describe network resilience and flexibility in response to external pertur-

bation (as in the case of occurred cerebral lesions) and also they shape

the information flow (Sporns, 2018). To date, the meso-scale structure

of the human brain has been extensively investigated by community

detection algorithms prone to detect “assortative” (also defined as “mod-

ular”) meso-scale structure (Betzel, Medaglia, et al., 2018;

Newman, 2006), for a review see (Garcia, Ashourvan, Muldoon, Vettel, &

Bassett, 2018). Briefly, in the assortative structure, the within-

community densities are greater than the between-community densities.

In other words, this structure facilitates information processing of segre-

gated modules while the integration capability between them is reduced

(Betzel, Bertolero, et al., 2018). Nonassortative community interactions

have been also described, such as the “disassortative” and the “core-
periphery” (Betzel, Medaglia, et al., 2018). A disassortative structure is

complementary to the assortative one. It is characterized by the connec-

tions between communities being greater than within communities, thus

suggesting a strong flow of information between different modules. In

the core-periphery structure, the nodes of a high-density core strongly

interact with nodes of other periphery communities, which are character-

ized by poorly connected nodes. This structure allows an efficient broad-

casting of information between core and peripheries (Betzel, Medaglia,

et al., 2018). Importantly, it has been recently shown that the meso-scale

organization is rich and diverse, being characterized by the co-existence

of these three classes (i.e., assortative, disassortative, and core-periphery)

also referred to as “community motifs”, which form the so-called mixed

meso-scale structure (Betzel, Medaglia, et al., 2018; Garcia et al., 2018).

To capture the meso-scale diversity, some algorithms have been pres-

ented in the literature (Fortunato, 2010), such as the Weighted Stochas-

tic Block Model—WSBM (Aicher, Jacobs, & Clauset, 2015). An important

feature of WSBM is the exploitation of the stochastic equivalence princi-

ple, according to which the network nodes belonging to a given commu-

nity have the same probability of being connected with all the remaining

nodes of the network (Aicher et al., 2015). The WSBM can detect other

modalities of meso-scale modules interactions, beyond assortativity

(Betzel, Medaglia, et al., 2018). Recent studies investigating human

(Betzel, Bertolero, et al., 2018; Betzel, Medaglia, et al., 2018; Faskowitz,

Yan, Zuo, & Sporns, 2018) and non-human brain networks (Faskowitz &

Sporns, 2020; Pavlovic, Vertes, Bullmore, Schafer, & Nichols, 2014) made

use of the WSBM method. In these investigations, human brain net-

works were derived with magnetic resonance imaging (MRI), using either

functional (during both rest (Betzel, Medaglia, et al., 2018) and task

(Betzel, Bertolero, et al., 2018)) or structural data (Betzel, Medaglia,

et al., 2018; Faskowitz et al., 2018). Overall, the above results reported

that assortativity dominates resting state FC with the co-existence of

non-assortative communities, thus indicating that brain networks are not

characterized by a unique community structure (Betzel, Bertolero,

et al., 2018).

Resting state networks can be derived from electrophysiologi-

cal recordings, such as magnetoencephalography (MEG) and elec-

troencephalography (EEG) with the advantage of exploring

oscillatory properties of FC (Brookes et al., 2011; Marzetti

et al., 2013; Vidaurre et al., 2018; Zhigalov, Arnulfo, Nobili, Palva, &

Palva, 2017). These studies have highlighted some frequency-

specific features of FC networks, which are predominant in the

alpha and beta bands (Zhigalov et al., 2017). Indeed, alpha and beta

bands have been identified as pivotal rhythm signature of the rest-

ing brain (de Pasquale, Corbetta, Betti, & Della Penna, 2018; Hipp,

Hawellek, Corbetta, Siegel, & Engel, 2012; Kabbara, Falou, Khalil,

Wendling, & Hassan, 2017; Marino, Arcara, Porcaro, &

Mantini, 2019), however, other studies have remarkably reported

significant FC patterns during resting state in delta (Marzetti

et al., 2013; Vidaurre et al., 2018), theta (Vidaurre et al., 2018;

Zhigalov et al., 2017), and gamma bands (Samogin et al., 2020;

Samogin, Liu, Marino, Wenderoth, & Mantini, 2019). Interestingly,

the MEG study by Zhigalov et al. (2017) demonstrated that the

dynamic of scale-free neuronal activity is related to FC patterns,

sharing a common meso-scale structure, as revealed by agglomera-

tive hierarchical clustering. This last study suggests the link

between meso-scale architecture and frequency content of FC net-

works. However, the hidden meso-scale structure of hdEEG-

derived resting state networks has been poorly explored as well as

its organization across the frequency spectrum.

In this work, we aim at filling this knowledge gap and we posit

that describing the spectral features of FC meso-scale architecture

estimated from electrophysiological recordings will have important

implications to highlight novel properties of the human brain at rest

(de Pasquale et al., 2018; Hipp et al., 2012; Siems, Pape, Hipp, &

Siegel, 2016). To reach this goal, we exploited high-density electroen-

cephalography (hdEEG). Notably, hdEEG provides a unique opportu-

nity to capture the richness of neuronal oscillations' spectral content

(Siegel, Donner, & Engel, 2012), and it was recently employed to

reconstruct and unravel novel features of human brain activity during

resting state in health (Liu, Farahibozorg, Porcaro, Wenderoth, &

Mantini, 2017; Samogin et al., 2019; Seeber et al., 2019) and disease

(Cassani, Estarellas, San-Martin, Fraga, & Falk, 2018; Coito

et al., 2016; Damborská et al., 2020; Waninger et al., 2020). By cou-

pling hdEEG recordings with appropriately built head model conduc-

tors and with source reconstruction algorithms, it is possible to

achieve neural sources reconstruction with relatively good (i.e., in the

order of less than 1 cm) spatial resolution (He, Sohrabpour, Brown, &

Liu, 2018; Seeber et al., 2019). This permitted the estimation of large-
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scale resting state networks that spatially overlap with those obtained

with functional MRI (fMRI; Liu et al., 2017) and MEG (Coquelet

et al., 2020).

To best of our knowledge, all the previous works which identified

the meso-scale structure employed other approaches with MEG

resting-state recordings (Chavez, Valencia, Navarro, Latora, &

Martinerie, 2010; Vidaurre et al., 2018; Zhigalov et al., 2017). Con-

cerning hdEEG, Glomb et al. 2019a, employed a modularity maximiza-

tion approach and Puxeddu et al. performed the analysis in the sensor

space (Puxeddu et al., 2017; Puxeddu, Petti, Mattia, & Astolfi, 2019).

Instead, other works proposed novel methods for community detec-

tion in sensor space EEG data (Ahmadlou & Adeli, 2011; Huang,

Wang, & Chao, 2019). Therefore, to date, no study exists about the

characterization of the meso-scale structure diversity, employing

hdEEG, source imaging and WSBM, and no information is provided

about the interaction of different communities and its organization

over the frequency spectrum.

Here, we exploited the peculiar features of hdEEG-based source

imaging to identify modules of spontaneous oscillatory activity and to

characterize their properties. Specifically, we tested whether the

meso-scale structure is frequency-dependent, by examining if assorta-

tive, disassortative, and core-periphery community motifs are tuned

onto a specific frequency or if they are equally distributed over the

frequency domain. To address these questions, we applied the WSBM

to FC adjacency matrices estimated from source-localized hdEEG

recordings of healthy participants (Iandolo et al., 2020; Liu

et al., 2017; Samogin et al., 2019), in order to define the spatial cere-

bral distribution of modules at different number of partitions (Kth).

Then, we described the assortative, disassortative, and core-periphery

community interactions across the frequency spectrum and we identi-

fied those brain regions exhibiting the highest degree of each commu-

nity motif. Interestingly, we also observed that some regions were

consistently assigned to the same community, irrespective from the

granularity (i.e., the K partitions) that we imposed to the WSBM algo-

rithm. We then identified brain areas, which were, at the same time,

maintained across partitions and exhibited the highest degree of

assortativity, disassortativity, and core-peripheriness. We defined

those areas as Participation and Granularity-Invariant.

Overall, we observed that the spontaneous oscillatory activity

relies on frequency-specific topological meso-scale organization,

which may support spatially distributed and local information

processing in the brain.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited 29 healthy volunteers (28.8 ± 3.6 years, mean ± SD,

14 females). To be included, the participants had: (a) to be right-

handed according to the Edinburgh inventory (Oldfield, 1971); (b) to

be without neurological or psychiatric disorders; (c) to have normal or

corrected-to-normal vision; and (d) to be free of psychotropic and/or

vasoactive medication. Prior to the experimental procedure, all partici-

pants provided written informed consent. The study, which was in line

with the standard of the Declaration of Helsinki, was approved by the

local ethical committee (CER Liguria Ref. 1293 of September

12th, 2018).

2.2 | Resting state hdEEG recording and MRI
acquisition

HdEEG signals were recorded using a 128-channel amplifier

(ActiCHamp, Brain Products, Germany) while participants were com-

fortably sitting with their eyes open fixating a white cross on a black

screen for 5 min. Participants were required to relax as much as possi-

ble and to fixate the cross, located in the middle of a screen in front

of them. The experiment was performed according to the approved

guidelines, in a quiet laboratory with soft natural light. HdEEG signals

were collected at 1,000 Hz sampling frequency, using the electrode

FCz (over the vertex) as physical reference electrode. The horizontal

and vertical electrooculograms (EOG) were collected from the right

eye for further identification and removal of ocular-related artifacts.

Prior to resting state hdEEG recordings, the three-dimensional loca-

tions of the 128 electrodes on the scalp were collected with either

infrared color-enhanced 3D scanner (Taberna, Guarnieri, &

Mantini, 2019) or Xensor digitizier (ANT Neuro, The Netherlands). To

build each participant's high-resolution head model, the participants

underwent T1-weighted MRI acquisition using either a 3T (N = 25) or

a 1.5 T (N = 4) scanner (see Supporting Information for details about

T1-weighted images acquisition parameters).

2.3 | Preprocessing of hdEEG recordings

HdEEG preprocessing was performed according to the same steps

described in previous works (Liu et al., 2017; Samogin et al., 2019).

Briefly, we first attenuated the power noise in the EEG channels by

using a notch filter centered at 50 Hz. Later, we identified channels

with low signal to noise ratio by following an automatic procedure.

We combined information from two channel-specific parameters:

(a) the minimum Pearson correlation between a channel against all the

others in the frequency band of interest (i.e., 1–80 Hz); (b) the noise

variance that we defined in a band where the EEG information is neg-

ligible (i.e., 200–250 Hz). We defined a channel as “bad,” whenever

one of the two parameters described above were outliers as com-

pared to the total distribution of values. We interpolated the identi-

fied bad channels with the information of the neighboring channels,

using Field Trip (http://www.fieldtriptoolbox.org/). Then, hdEEG sig-

nals were band pass filtered (1–80 Hz) with a zero-phase distortion

FIR filter and downsampled to 250 Hz. We then visually inspected the

data and did not observed any major movement related artifact. We

thus selected an ICA-based method for removing biological artifacts,

arising from ocular or facial movements (Chen, Peng, Yu, &

Wang, 2017; Crespo-Garcia, Atienza, & Cantero, 2008; Uriguen &
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Garcia-Zapirain, 2015). Specifically, we employed the fast-ICA algorithm

(http://research.ics.aalto.fi/ica/fastica/) to identify independent compo-

nents (ICs) related to ocular and movement artifacts. To classify the ocular

artifacts we used the following parameters: (a) Pearson correlation

between the time-course of the ICs and the vertical and horizontal EOG;

(b) the coefficient of determination obtained by fitting the IC spectrum

with a 1/f function. We classified the IC as ocular artifacts if at least one

of the two parameters was above a predefined thresholds (0.2 and 0.5, as

in (Liu et al., 2017)). Finally, for movement-related artifacts, we used the

kurtosis of the IC (we considered a kurtosis exceeding the value of 20 (Liu

et al., 2017) indicative of a noisy IC). We re-referenced the artifacts-free

signals with the average reference approach (Liu et al., 2015).

2.4 | Head model of volume conduction and
source reconstruction

We followed the same procedure as detailed in (Iandolo et al., 2020).

Briefly, we used T1-weighted structural images in order to generate a

realistic volume conductor model. In accordance with previous studies

(Liu et al., 2017; Samogin et al., 2019), we assigned conductivity

values to 12 tissue classes (skin, eyes, muscle, fat, spongy bone, com-

pact bone, gray matter, cerebellar gray matter, white matter, cerebel-

lar white matter, cerebrospinal fluid, and brainstem), based on the

literature (see (Liu et al., 2017) for the conductivity values assigned

per each tissue class). Then, given the intrinsic difficulty in segmenting

all the 12 classes directly on the T1-weighted individual space, we

warped the MNI (Montreal Neurological Institute) template to individ-

ual space using the normalization tool of SPM12 (http://www.fil.ion.

ucl.ac.uk/spm/software/spm12), as reported in (Liu et al., 2017). Then,

we spatially co-registered the 128 electrodes positions onto each indi-

vidual T1-weighted space. We approximated the volume conduction

model using a finite element method (FEM) and we employed the

Simbio FEM method (https://www.mrt.uni-jena.de/simbio/) to esti-

mate the relationship between the measured scalp potentials and the

dipoles corresponding to brain sources. Finally, by combining the indi-

vidual head model conductor and the artifacts-free hdEEG signals, we

reconstructed source activity using the eLORETA (Pascual-Marqui

et al., 2011) algorithm. Sources were constrained within a 6 mm regu-

lar grid covering the gray matter as in (Liu et al., 2017). Thus, we

reconstructed the sources (voxels) per each participant and we then

mapped the voxels time-courses into the 384 regions of interest

(ROIs) of the AICHA atlas (Joliot et al., 2015). In order to perform this

mapping, the activity of each ROI was estimated by computing the

first principal component of the voxels falling within a sphere (6 mm

radius) centered in the ROI center of mass. This procedure defines the

nodes for the subsequent FC meso-scale structure investigation. This

mapping procedure into the atlas' ROIs allows to account for the sig-

nal leakage problem. Indeed, if we had considered sources analysis,

the estimated connectivity coefficients would have been affected by

this problem. By contrast, with our mapping choice, the centers of our

spherical ROIs were selected such that the minimum distance

between ROIs was at least two voxels (≥12 mm).

2.5 | Spectral analysis and definition of
connectivity matrix

We decomposed each ROI time-course using Short-Time Fourier Trans-

form. We used a frequency bin of 1 Hz in the range (1–80 Hz) and a

Hamming window of 2 s duration with 1 s overlap between consecutive

windows. Then, for each participant, we estimated the FC adjacency

matrices per each frequency bin (80 in total) by calculating the pairwise

connection strength among the ROIs. To estimate connection strength

we employed the method of power envelope orthogonalization (Hipp

et al., 2012) that estimated the amplitude-amplitude coupling. Indeed,

although the brain activity estimation at the sources level is a promising

tool to investigate the brain dynamics at both good spatial and high tem-

poral resolutions, it is affected by the signal leakage problem (Hipp

et al., 2012; Siems et al., 2016). Reconstructing cortical and sub-cortical

sources (several thousand sources) from scalp potentials (here 128 elec-

trodes) is an ill-posed inverse problem, introducing artefactual cross-

correlations between sources. A recent validation study (Siems &

Siegel, 2020) established the power envelope orthogonalization as an

effective candidate to estimate the physiological FC properties in the

field of neuroimaging by electrophysiological recordings. Thus, we

followed the same orthogonalization procedure described and employed

in previous EEG studies (Samogin et al., 2019; Siems et al., 2016). Then,

per each participant, we averaged the adjacency matrices (i.e., see above)

within the following frequency ranges, according to (Brookes

et al., 2011; Kane et al., 2017; Samogin et al., 2019; Samogin

et al., 2020; Zhao, Marino, Samogin, Swinnen, & Mantini, 2019): delta (δ,

1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta (β, 13–30 Hz),

gamma low (γL, 30–50 Hz), and gamma high (γH, 50–80 Hz).

By averaging the subjects' connectivity matrices ADJS, we

obtained the group level adjacency matrices per each frequency band

ADJG ¼
PN

S¼1
ADJS

N ,N¼29

� �
. Then, we linearly mapped each ADJG

edges weights between the interval [0, +1]:

ADJ¼ b1þ val�a1ð Þ b2�b1ð Þ
a2�a1ð Þ

� �

where val is a single element of ADJG; a1, a2 are the minimum and

maximum edges value of ADJG; b1, b2 are the limits of the new range

0 and 1. This transformation allows for further comparison of the

meso-scale structure among different frequency content. It is indeed

necessary to normalize the weights of the adjacency matrices in the

same range to compare outputs of the WSBM, according to the litera-

ture (Aicher et al., 2015).

2.6 | Community detection via weighted stochastic
block models

WSBM is as an unsupervised learning algorithm for the identification

of network communities that group together network nodes that have

similar FC patterns (Aicher et al., 2015). The WSBM can work without
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the need of thresholding the adjacency matrix, as this procedure

might have a negative impact on the properties of the inferred com-

munity structure, as previously reported (Aicher et al., 2015). The

WSBM goal is to learn the hidden community structure that is esti-

mated from both the existence and the weights of edges. Moreover,

the algorithm retains the principle of stochastic equivalence, which

differentiates this community detection approach from the modularity

maximization algorithms, employed for community detection in net-

work neuroscience but biased toward assortativity (Betzel, Bertolero,

et al., 2018; Betzel, Medaglia, et al., 2018; Faskowitz & Sporns, 2020).

Additionally, it is important to note that stochastic block-modeling has

the unmet advantage of being a generative model, as it tries to esti-

mate the process underlying the observed network topology. The

WSBM learns two parameters starting from the adjacency matrix and

from a priori assumptions about the distributions of weights and exis-

tence of edges. An important parameter is the vector of nodes assign-

ment Z = [z1, …, zN] where zj ε {1, …, K}, with N the number of nodes

and K the number of communities the algorithm must learn. The other

parameter is the edge bundle matrix (or affinity matrix) θ ([K � K]),

representing the probability of two communities being connected. It

is worth noting that the probability of connection between two nodes

only depends on their community labels assignment, pij ¼ θzizj. In its

formulation, the log-likelihood of the adjacency matrix being

described by the parameters θ and Z, can be written as (Aicher

et al., 2015; Betzel, Medaglia, et al., 2018):

log p ADJjZ,θð Þ½ � ¼ α
X
ij

Te ADJij
� �

ηe θ eð Þ
zizj

� �" #

þ 1�αð Þ
X
ij

Tw ADJij
� �

ηw θ wð Þ
zizj

� �" #

where α is a tuning parameter that combines the contribution of the

two summations, which respectively model edges existence and edges

weights, to infer the latent community structure. Te ADJij
� �

,ηe θ eð Þ
zizj

� �
and Tw ADJij

� �
,ηw θ wð Þ

zizj

� �
are the sufficient statistics and the natural

parameters of the exponential family describing the distributions of

the edges existence (Te,ηe) and the edges weights (Tw ,ηw ). Last, i, j indi-

cate the edges of the adjacency matrix onto which we inferred the

latent community structure. Usually, when applying the WSBM frame-

work to structural and functional brain networks, the edges existence

and weights are drawn from Bernoulli and Normal distributions

(Betzel, Bertolero, et al., 2018; Betzel, Medaglia, et al., 2018), respec-

tively. In our case, α is set to zero because the graph is fully connected

(i.e., no thresholding applied) and thus we did not need to model the

edges existence. Hence, our likelihood maximization is simplified lead-

ing to a pure-WSBM (Aicher et al., 2015; WSBM indicates pure-

WSBM throughout the text) that learns from the weights information,

that are assumed to be normally-distributed between communities.

The remaining issue is to find a reliable estimation of the posterior dis-

tribution, that is, p Z,θð jADJÞ that has no explicit analytic formulation

(Aicher et al., 2015). To this purpose, we made use of the code freely

available here (http://tuvalu.santafe.edu/�aaronc/wsbm/). The code

finds an approximation of the posterior probability using a Variational

Bayes (VB) approach. VB provides a solution to approximate the

unknown posterior distribution by transforming an inference problem

into an optimization problem. The algorithm minimizes the Kullback–

Lieber divergence DKL (Fox & Roberts, 2012) to the posterior proba-

bility (for further information about DKL applied to WSBM, see (Aicher

et al., 2015)). The solution proposed by (Aicher et al., 2015) states that

minimizing the DKL is equivalent to maximize the evidence lower

bound of the model marginal log-likelihood (logEvidence), p ADJjZ,θð Þ.
Thus, the best approximation of the posterior is obtained through a

procedure aimed at maximizing the logEvidence score. If the log-

Evidence is maximized, the DKL is the closest possible to the posterior

distribution, p Z,θð jADJÞ. After properly initializing the priors for θ and

z, the VB algorithm takes the best (i.e., the greatest) logEvidence value

across multiple independent trials (or restarts) of the algorithm. We

choose a maximum of 100 independent trials to find the best log-

Evidence value. Within this limit, the algorithm searches for the best

logEvidence value. At each trial, the initial probability of a node being

assigned to a community is randomized. Every time a better log-

Evidence value (i.e., a better solution) is obtained, the algorithm

updates the solution. We selected the communities assignment with

the greatest logEvidence value. We run the WSBM model for differ-

ent values of K (ranging from 3 to 8) and, we performed 100 WSBM

fits per each value of K (Betzel & Bassett, 2017).

2.7 | Community assignment

In order to choose the best nodes assignment among all the WSBM

fits, we used the community assignment corresponding to the central

fit across the WSBM fits. We defined the central fit as the fit whose

distance is minimized from all the others fits using the Normalized

Variation of Information (NVI), as in a previous work (Faskowitz

et al., 2018; we used the function partition_distance.m of the Brain

Connectivity Toolbox [Rubinov & Sporns, 2010]). We used the central

fit not only to identify and to show the resulting communities at the

group level, but also for all the subsequent steps of our analysis:

the investigation of how the total amount of between-community

interactions varies across frequency bands. Indeed, in addition to fit

the WSBM to ADJ, we also fitted the model for all K values (i.e., from

3 to 8) at the single-subject level (ADJS). First, we mapped the edge

weights in the interval [0,+1], following the same procedure as above.

Then, for each participant, we performed 100 WSBM fits and we

selected as best fit the central one according to the NVI, as for the

group level. The central fit was calculated for each of the six fre-

quency bands.

2.8 | Characterizing the meso-scale structure:
community motifs

At the single-subject level, we investigated, for each choice of K,

how pairs of communities interacted with each other in order

to generate assortative, disassortative, and core-periphery
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architecture. This permitted us to investigate the spectral organiza-

tion of community motifs. For each pair of communities r and c, we

estimated the within- and between- community density (Betzel,

Bertolero, et al., 2018), a topological property of the detected mod-

ules (Garcia et al., 2018):

ωrr ¼ 1
NrNr

X
x � r

X
y � r

ADJS,xy;ωcc ¼ 1
NcNc

X
x � c

X
y � c

ADJS,xy;

ωrc ¼ 1
NrNc

X
x � r

X
y � c

ADJS,xy;

where, Nr andNc are the number of nodes assigned to the communi-

ties r and c at the central fit. We calculated community density for the

different bands at a given K partition. Then, the between-community

motifs (Mrc) fall into one of the three categories as reported in (Betzel,

Bertolero, et al., 2018), according to the following criteria:

Mrc ¼
Massortative if min ωrr ,ωccð Þ>ωrc

Mcore-periphery if ωrr >ωrc >ωccorωcc >ωrc >ωrr

Mdisassortative if ωrc >max ωrr ,ωccð Þ

8><
>:

We calculated the percentage of between-community interac-

tions for each participant with respect to the total number of possible

interactions, corresponding to 1
2 K � K�1ð Þ½ �. Then, we averaged the

occurrence of each community class across all the different

K partitions (K =3…8) to identify a measure, which can globally con-

sider the entire range of meso-scale granularity: we referred to it as

“global” community motif modality.

2.9 | Statistical analysis of motif interaction

To answer the question of the frequency-specificity of between-

community interactions, we needed to identify whether and how

global motif modality changes across frequency bands. Given the

non-normality of the motifs distributions, we performed a set of

Kruskal–Wallis nonparametric tests to examine, for each community

motif class (i.e., assortative, disassortative, and core-periphery),

whether the frequency band has a statistically significant effect.

Then, we employed a post-hoc comparison of mean ranks as

implemented in Statistica 13 software package (Statsoft Inc., Tulsa)

to further highlight the potential differences among the six bands

within each community class. Furthermore, we aimed to identify

those brain areas, which presented the greatest amount of

assortativity, disassortativity, and core-peripheriness (three inde-

pendent tests). To achieve this goal, we built each motifs' null distri-

bution by randomly shuffling each subject node-level motifs

(number of permutations: 104). Then, we obtained a mean null distri-

butions by averaging across participants. We computed the 99th

percentile of this null distribution and we searched for those nodes

belonging to the empirical distribution whose motifs' values fell

above this value (p <.01). Finally, we labeled these significant areas

with the same name assigned by the AICHA atlas.

2.10 | Identifying invariant behavior of
communities and nodes across K partitions

We also investigated how meso-scale organization changes for differ-

ent K partitions and explored the presence of nodes always clustered

together regardless of the specific K choice. For each frequency band,

we proceeded as follows. For each choice of K, ranging from 3 to

8, we first calculated how many nodes of each cluster of the K-th par-

tition fell into each cluster of the (K + 1)-th partition. We were there-

fore able to observe how communities obtained in the K-th partition,

diverge (branch), and/or converge (flow) into the communities

obtained in the (K + 1)-th partition. Then, we investigated whether

and how some nodes of the three clusters obtained for K = 3 were

maintained together in the partitions obtained for K >3. We described

such nodes as invariants to the WSBM-clustering procedure and iden-

tified them as those nodes meeting the following criteria: (a) nodes

belonging to the largest portion of the cluster found in the K-th parti-

tion; and (b) nodes belonging to the greatest flow reaching the cluster

found in the (K + 1)-th partition. Finally, we aimed at identifying those

nodes that were simultaneously invariant to the K-th partition and

also significantly exhibiting one specific community motif. We define

these nodes as Participation and Granularity-Invariant (PGI nodes

throughout the text).

3 | RESULTS

In this study, we reconstructed neural sources per each participant

and we then mapped them onto 384 ROIs of the AICHA atlas (Joliot

et al., 2015). This procedure defined the nodes for the subsequent

meso-scale structure investigation. We then extracted the FC adja-

cency matrices using power envelope orthogonalization and we

applied the WSBM (for different K values, ranging from 3 until 8).

We investigated the organization of the meso-scale structure across

canonical frequency bands (see Methods): delta (δ, 1–4 Hz), theta (θ,

4–8 Hz), alpha (α, 8–13 Hz), beta (β, 13–30 Hz), gamma low (γL, 30–

50 Hz), and gamma high (γH, 50–80 Hz). We then described commu-

nity motif organization across frequency bands, and we identified

those brain areas which (a) showed the highest community motifs'

degree (i.e., statistically significant participation); (b) were consistently

assigned to same community for increasing meso-scale granularity

(i.e., granularity-invariant); (c) addressed, at the same time, the two

previous criteria (i.e., significant Participation and Granularity-Invari-

ance—PGI nodes).

3.1 | Spectral analysis of meso-scale connectivity
structure

We examined the spatial distribution of the community assignments

(K = 3…8) across frequency bands. In general, clusters are less sparse

and more compact when moving from low toward high rhythms (see

Figure 1 and Figures S1–S5). Let us take, as a representative example,
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the spatial distribution of five communities (K = 5, Figure 1 and

Tables S2–S7), which lies in the middle of the selected K range. First,

it resembles the pattern observed for all partitions: increasing the fre-

quency band corresponds to a compact and mirror symmetric (with

respect to brain midline) representation of clusters (see also

Figures S1–S5). As for the spatial distribution of the communities in

the δ band (see Figure 1, panel a1), we obtained an association cluster,

mostly located in the right hemisphere (corresponding roughly to

somatic areas, and association parieto-temporo-occipital [PTO] cortex,

red). Another lateralized cluster was obtained in the left hemisphere,

putatively associated with executive functions (frontal and temporal

lobe, purple). We found a sparse bilateral cluster, predominantly

located in the right hemisphere PTO cortex (yellow). Finally, other two

bilateral fragmented clusters were spanning several areas (prefrontal

areas including primary and premotor cortices as well as parietal and

temporal lobes, blue and green). They presented high-level of sparse-

ness in laterally located regions while they were consistent in right

medial regions (blue) and left medial regions (green).

As for the θ oscillations (see Figure 1, panel a2), the block-

modeling partitioning associated brain areas bilaterally in the frontal

F IGURE 1 Organization of the meso-scale structure in the frequency domain. Each row represents the K = 5 community assignments in each
of the considered frequency band: δ (a1), θ (a2), α (a3), β (a4), γL (a5), γH (a6). Left side of each row contains the re-ordered group level adjacency
matrix after WSBM estimation while the right side the spatial distribution of the same five partitions overlaid onto the brain. Colors on the left
side and at the bottom of each re-reordered adjacency matrix match with the colors overlaid on the brain. The anatomo-functional information
(according to the AICHA atlas) for each node of the six re-ordered adjacency matrices—one for each of the considered frequency bands—is
reported in the Tables S2–S7
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lobes (purple), and in two bilateral PTO clusters: one more posterior

(blue) than the other (green). Moreover, the PTO-anterior (green)

mainly covered the right hemisphere whereas PTO-posterior resem-

bled a more symmetric pattern between hemispheres. The remaining

two clusters were scattered bilaterally across the frontal lobe (yellow),

and in the cingulate gyrus and left parieto-temporal cortex (red).

As for the α rhythm (see Figure 1, panel a3), the generated cluster

approximately followed symmetric patterns across hemispheres: parti-

tions were the bilateral prefrontal cortex (green), premotor cortices

and temporal lobes (purple), primary motor and temporal cortices (yel-

low), right temporo-parietal cortex (red), which showed a less bilateral

pattern than previous partitions as it localized predominantly around

the lateral sulcus in the right hemisphere. The latter cluster belonged

to PTO cortex bilaterally (blue) roughly resembling the “dorsal/where

stream” originating from the occipital areas. Moreover, it covered

most nodes, which are contained in the PTO-posterior cluster of the

previous θ band.

As for the β band (see Figure 1, panel a4), the clusters covered

bilaterally prefrontal cortices and a small portion of the left temporal

lobe (purple), motor and premotor areas (blue), parietal areas (yellow),

PTO cortices (both red and green clusters). However, the more

posterior-PTO partition spanned the primary and high-order visual

areas as well as a portion of the temporal areas which approximately

resembles the “ventral/what stream,” while the more anterior-PTO

cluster did not include the primary visual cortex.

As for the γL oscillations (see Figure 1, panel a5), the clustering

showed a bilateral frontal partition that mainly gathered prefrontal

and premotor cortices (red). This cluster roughly merged together the

two separate frontal clusters of the β rhythm (blue and purple). Other

partitioning corresponded to frontal and parietal cortices (purple),

PTO association cortices (green and blue) and occipital areas (yellow).

Finally, as for the high γH (see Figure 1, panel a6), we found a

bilateral frontal cluster (blue), bilateral frontal, parietal, and temporal

(red), parietal cluster more located in medial regions (yellow), bilateral

PTO (green), and occipital (purple). This last cluster corresponds to the

occipital cluster of the γL.

Overall, for brain areas close to the midline, we found more com-

pact and symmetric spatial distribution of communities than in the

laterally-placed areas. Indeed, when moving toward more lateral

regions, the clusters spatial pattern became more complex than the

one observed in medial areas. Lower rhythms (δ, θ) presented more

shattered clusters than mid-low (α, β) and high oscillations (γL, γH).

Indeed, we found that higher rhythms were more likely characterized

by distinct and less fragmented clusters than lower frequency bands,

reflecting the general behavioral of the other partitioning (i.e., K = 3,

4, 6, 7, and 8, see Figures S1–S5). In support of this finding, we per-

formed a quantitative analysis by measuring, frequency by frequency,

the clusters' level of fragmentation and separation (Calinski–Harabasz

index), and we found that δ band shows the lowest level of compact-

ness while higher frequency bands (β, γL, and especially γH) show the

best cluster cohesion and separation from the others clusters (see

Supporting Information Section 5.7 and Figure S6 for the explanation

of the method and for the results).

3.2 | Nonassortativity of community structure in
the frequency domain

To investigate whether meso-scale structure is frequency-specific, we

evaluated possible differences among the six frequency bands consid-

ering all three community classes (i.e., assortative, disassortative, and

core-periphery) for each choice of the K parameter. We then averaged

the occurrence of each community class across different partitions

obtained for different values of K (K = 3…8). We found a statistically

significant effect of the frequency band for the assortative (p = .0024)

and disassortative (p <.0001) structure, as revealed by Kruskal–Wallis

nonparametric testing (see Figure S7 for an overview of motifs com-

munity interaction at each considered K-value). Specifically, when

considering the assortative structure the γL rhythm showed significant

increase with respect to the δ and θ rhythms, see Figure 2, panels a

and c. On the other hand, modules of spontaneous activity interacted

more disassortatively in the δ and θ bands than the γL and γH bands,

see Figure 2, panels a and d. By contrast, for the core-periphery class,

we did not find any significant difference across the six bands

(p = .11), suggesting that the core-periphery structure is homoge-

neously distributed across frequency bands (see Figure 2, panel a).

Albeit not statistically significant, core-peripheriness was the most

predominant community motif across subjects and partitions (see also

Figure S7).

Overall, we observed, within the assortative and disassortative

classes, complementary trends along the entire range of oscillatory

rhythms (with significant difference between some low and high

bands, that is, δ and θ vs. γL). Specifically, for increasing frequencies

we found a decreasing disassortative and an increasing assortative

trend, respectively (see Figure 2, panel b1). The same trend shown by

data subdivided into the canonical bands can be appreciated when

looking at data across the entire frequency range (i.e., 1–80 Hz) with a

single bin resolution of 1 Hz, as reported in Figure 2, panel b2.

In order to appreciate motifs distribution at the node level, we

averaged across participants the total amount of meso-scale modali-

ties obtained in each node for different choices of K (K = 3…8) and

we then overlaid these values (at the node level) onto the brain tem-

plate (see Figures 3–5). We observed that the core-periphery struc-

ture (Figure 5) was clearly predominant in all frequency bands and for

most brain areas. Instead, assortative (Figure 3) and disassortative

(Figure 4) modalities exhibited trends across bands and whole-brain

variations within the same band. With reference to Figure 3, the PTO

areas in γL showed the highest degree of assortativity. In this band,

there was a spatial gradient in assortativity increasing from anterior to

posterior areas. Disassortative structure peaked in δ and θ bands, with

a whole-brain maximum in δ. We performed a custom nonparametric

test to identify areas with the highest degree of assortativity, as

depicted in Figure 3. Significant areas were located in temporal cortex,

precuneus, and nucleus caudate for the δ band (subcortical nuclei are

not overlaid in Figure 3, see Table S8). Frontal, superior, and middle

frontal areas for α (bilaterally) and β (left hemisphere) band, while

bilateral areas of the PTO cortex for γL and γH band (see Tables S8–

S13 for further information).
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F IGURE 2 Organization of the meso-scale structure in the frequency domain. (a) Boxplots representing distributions across participants of
the three meso-scale motifs for each frequency band. Red: assortative; green: disassortative; and light blue: core-periphery. Between-subject
variability is depicted thanks to boxplots showing upper and lower bound of the distributions at 25th and 75th percentile. Whiskers extend to the
most extreme data points not considered outliers. The black horizontal lines represent the median, while the small colored squares indicate the
mean of the distributions. (b1) Median values of each meso-scale structure distributions (black horizontal lines in panel a) across frequency bands.
(b2) Median values of each meso-scale structure distributions for each frequency in the range 1–80 Hz binned at 1 Hz, obtained by fixing K = 5.
(c,d) Post-hoc comparison of mean ranks across frequencies. Tables highlight statistically significant assortative and disassortative between-
communities interaction, panels c and d, respectively. Note that, core-periphery interactions across bands were nonstatistically significant and
thus we did not perform the multiple comparison test

F IGURE 3 Global mean
assortative community
interactions in the frequency
domain across participants. (Left
panel) spatial distribution of
assortativity overlaid onto the
brain. Each row indicates the

considered frequency band. The
color-bar is customized between
minimum and maximum values
within the considered meso-scale
modality. (Right panel) significant
nodes according to the
community motif, as revealed by
the nonparametric permutation
test. Columns and rows as in the
left panel. See also Tables S8–
S13, for further information
about each significant node's
name and MNI coordinate,
according to the definition given
in the AICHA atlas
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As for the disassortative structure (Figure 4), significant areas

were mostly located in temporal gyrus, insula, and in subcortical

areas such as caudate nucleus, putamen, and thalamus for δ band,

whereas thalamus and occipital areas for θ band (again, subcortical

areas are not depicted, for their description see Table S8 (for δ) and

Table S9 (for θ)). Precuneus, posterior cingulate cortex, and parietal

areas were instead significant for the β band. It is worth noting that

thalamus was significantly disassortative in all bands (with the excep-

tion of γL, see Tables S8–S13).

Finally, the overall level of core-periphery motif (Figure 5) was

mostly uniform in the whole-brain, resulting in generally sparse and

less significant brain areas than for the other two motifs. Notably, for

slow oscillations we found statistically significant core-peripheriness

mostly in the occipital and temporal areas (δ) as well as in the frontal,

motor areas and insula (θ).

3.3 | Meso-scale invariants across partitions

We further characterized the meso-scale structure by looking at

invariant modules across partitions. We observed how nodes belong-

ing to the three communities in K = 3 were maintained clustered

together or, on the contrary, they were assigned to other partitions

from K >3. With this procedure, we identified modules whose brain

F IGURE 4 Global mean
disassortative community
interactions in the frequency
domain across participants. (Left
panel) spatial distribution of
disassortativity overlaid onto the
brain. Each row indicates the
considered frequency band. The
color-bar is customized between

minimum and maximum values
within the considered meso-scale
modality. (Right panel) significant
nodes according to the
community motifs, as revealed by
the nonparametric permutation
test. Columns and rows as in the
left panel. See also Tables S8–
S13, for further information
about each significant node's
name and MNI coordinate,
according to the definition given
in the AICHA

F IGURE 5 Global mean core-
periphery community interactions
in the frequency domain across
participants. (Left panel) Spatial
distribution of core-periphery
overlaid onto the brain. Each row
indicates the considered
frequency band. The color-bar is
customized between minimum
and maximum values within the
considered meso-scale modality.
(Right panel) Significant nodes
according to the community
motifs, as revealed by the
nonparametric permutation test.
Columns and rows as in the left
panel. See also Tables S8–S13,
for further information about
each significant node's name and
MNI coordinate, according to the
definition given in the AICHA
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regions were assigned by the WSBM to the same clusters indepen-

dently from the number of partitions required to be detected (see allu-

vial plots in Figure 6). Each transition identified the assignment of each

clusters from K = 3 until K = 8 partitions. When nodes were clustered

together across partitions, we assigned the same color-code to the

corresponding flow (i.e., light-red, yellow and dark blue, see Figure 6).

Albeit communities reconfigured across K-values, we highlighted invari-

ant meso-scale pattern, regardless of the Kth partition.

We further identified those brain areas that belonged to these

invariant clusters and, at the same time, showed a maximally signifi-

cant amount of between-community interactions (see Figure 6 and

Tables S14–S19). Interestingly, different areas across bands addressed

these two criteria, and we defined these areas as PGI. Several occipital

and temporal areas which showed significant level of core-

peripheriness (see Figure 5), were also found invariant to the number

of communities imposed in the δ band (see Figure 7, panel a1 and

Table S14). The same held for superior, middle frontal gyrus

and precentral sulcus, but for the θ band (see Figure 7, panel a2 and

Table S15). Instead, we found that a large portion of left frontal areas

in the α band had a significant level of assortativity (see Figure 3) and

were assigned to same community across partitions (see Figures 7,

panel a3 and Table S16). The β band, unlike the three previous

rhythms, exhibited PGI areas in all three community motifs: left frontal

areas (assortative), various parietal areas, cingulate and posterior cin-

gulate cortex (PCC), precuneus and thalamus (disassortative), and right

inferior frontal areas (core-periphery) (see Figures 7, panel a4 and

Table S17). Both γL and γH exhibited PGI regions in occipital and tem-

poral areas (assortative), and for γH only also in cingulate sulcus and

supplementary motor area (disassortative; see Figures 7, panel a5

and a6, and Tables S18 and S19).

In sum, we found PGI-assortative nodes in frontal areas for α and

β rhythms, and in posterior areas, mainly occipital and temporal, for

both γ oscillations. PGI-disassortative nodes was predominant in the

cingulate cortex in β and γH (also PCC in β band), precuneus and some

F IGURE 6 Communities
reconfiguration across K-th partitions.
Alluvial plots indicating three set of
nodes (light-red, yellow, and dark blue)
assigned to the same community
regardless of the partitions in each
band—δ (a1), θ (a2), α (a3), β (a4), γL (a5),
and γH (a6). Gray flows indicate nodes
failing to address the criteria defining

main flows across partitions. Every time
a colored flow's branch fades toward
gray indicates that nodes terminated in
a different cluster. Vertical black lines
on each side of the transitions indicates
originating (from the lower-grain
partition—left side) and arrival clusters
(to the adjacent higher-grain partition—
right side)
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parietal areas (β). Finally, slow rhythms were characterized by PGI-

core-peripheriness mostly in the occipital, temporal (δ), and frontal

regions (θ), as well as small portion of the right frontal lobe (β).

4 | DISCUSSION

To date, the features of human brain meso-scale structure during rest-

ing state have not been fully investigated. Specifically, meso-scale

spectral features are still largely unexplored, and evidence about how

the repertoire of community motifs (i.e., assortative, disassortative,

and core-periphery) is associated with different neural oscillations is

missing. Thus, we aimed at filling this knowledge gap by using WSBM

to infer the diversity of the latent community structure, estimated

from source-reconstructed hdEEG resting state signals. By relying on

the spectral richness of hdEEG recordings, we could investigate how

FC network meso-scale is organized across frequency bands. We

described the spatial distribution of communities and we character-

ized their interactions across the frequency domain. According to our

results, the meso-scale is characterized by a frequency-specific organi-

zation. Also, with our experiments and analyses, we highlighted a rele-

vant amount of nonassortative community structure. Additionally, we

found that specific brain areas preferably participate in specific com-

munity motifs, depending on the oscillatory rhythms. Finally, we iden-

tified the so-called PGI areas exhibiting invariance across partitions

and the highest community motif level.

4.1 | Meso-scale structure is frequency-dependent

We observed an increasing occurrence of the assortative structure when

increasing the neuronal oscillation frequency from δ to γH, with greater

values in the γL band. Conversely, the disassortative structure showed an

opposite trend, exhibiting highest values in δ and θ slow rhythms. Impor-

tantly, communities mostly followed a core-periphery structure to inter-

act among each other, regardless of the specific frequency band. Indeed,

core-periphery was uniformly distributed across the spectrum, without

any particular trend. Given this frequency-specific organization, we pro-

pose in the following that each of the three meso-scale structure might

underlie a particular mechanism of neuronal oscillations.

Slow brain rhythms, are characterized by long-range communica-

tion (Leong et al., 2016; Samogin et al., 2020), and information is

exchanged over long-distance. We suggest that this behavior might be

expressed by the disassortative structure which, we found, is higher in δ

and θ when compared to the γL rhythm, thus favoring integration

between long-distance areas belonging to spatially distinct modules

(Betzel, Bertolero, et al., 2018). Therefore, we can consider the dis-

assortative structure as a meso-scale property of the slow oscillations.

Moreover, in δ and θ bands, the WSBM clustering is more fragmented

than in the higher frequency bands (lower Calinski–Harabasz index, as

reported in Figure S6), likely because these oscillatory regimens are

characterized by long-range interactions (Leong et al., 2016), which

might complicate the formation of communities whose brain nodes are

spatially closed and/or belong to the same functional domain. This com-

munities' shattering in slow rhythms can be observed at each of the K-

th partition (see Figures 1 and S1–S5) and might further support the

hypothesis of central role of disassortativity for slow oscillations.

On the other hand, for higher frequencies (from δ to γL and γH

band) we encountered not only an increase of the assortative meso-

scale structure (with a significant peak in γL), but also a clearer subdivi-

sion of the communities with respect to the low bands (see Figures 1

and S6) that, in turn, may reflect a local and spatially–segregated

processing. In further support of this, there are few branches deviating

from the originating community for the high rhythms (see Figure 6),

F IGURE 7 Participation and
granularity invariant regions.
Highlighted areas indicate areas that
both belong to an invariant community
across partitions and show significant
level of assortativity (PGI-assortative
areas, orange), disassortativity (PGI-
disassortative, dark red) and core-
peripheriness (white, PGI-core-

periphery). Each row indicates a
frequency band—δ (a1), θ (a2), α (a3), β
(a4), γL (a5), γH (a6). For a complete
description of PGI areas, see also
Tables S14–S19 as some subcortical
regions are not depicted
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further corroborating the idea that, for fast oscillations, the community

detection found more segregated clusters (higher Calinski–Harabasz

index, as reported in Figure S6). In fact, gamma-oscillations might repre-

sent a rhythmic synaptic inhibition mediated by parvalbumin-expressing

inhibitory interneurons and the interconnected pyramidal neurons

(Buzsaki, Logothetis, & Singer, 2013; Sohal, 2012, 2016). Gamma-

oscillations and the associated assortative structure, might thus resem-

ble a local processing mediated by short-range connectivity patterns, as

also recently demonstrated (Samogin et al., 2020).

Core-periphery community structure, which is the most represen-

ted in all the frequency bands, may underlie the meso-scale backbone

supporting two well-known strictly interconnected principles of brain

organization: local segregation and functional integration

(Sporns, 2010). The highly dense core could represent the segregation

while the interactions between the core and the nodes located in the

peripheries could indicate the presence of functional connections,

which might in turn reflect an efficient integration. From this perspec-

tive, a plausible interpretation is that the core-periphery meso-scale

structure might be a good candidate to support this physiological bal-

ance between segregation and integration across frequency bands

(Sporns, 2010). Previous studies have indeed demonstrated that neu-

ronal oscillations in the gamma band reflect not only a local

processing, but may also exhibit synchronization across long-distance

areas (Buzsáki & Schomburg, 2015; Sohal, 2016).

However, all these interpretations have a speculative nature and

further EEG studies are needed to potentially validate these claims.

Therefore, the meso-scale structure might be inferred starting from

others FC methods, such as phase synchronization (Zhigalov

et al., 2017). As an alternative to FC, WSBM works also with directed

graph, which can be estimated with hdEEG trough effective connec-

tivity measures (Damborská et al., 2020). Finally, a new method which

combines information of FC with structural connectivity from MRI

(Glomb et al., 2019a) is promising to increase the quality of the hdEEG

source-reconstructed signals and it has been validated using the Lou-

vain (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) algorithm

which is nevertheless limited to detect assortative community motif.

In summary, we found the emergence of nonassortative meso-scale

structures, by means of noninvasive electrophysiological recordings.

According to previous studies focusing on structural and functional

MRI, the brain presents a mixed meso-scale organization, but the net-

work predominantly exhibits modular/assortative meso-scale structures,

specifically during resting state (Betzel, Bertolero, et al., 2018; Betzel,

Medaglia, et al., 2018) and, to a lesser extent, during cognitive tasks

(Betzel, Bertolero, et al., 2018). Our analysis showed that the amount of

assortative modules was reduced when decomposing the time-course

in the frequency domain, and a clear nonassortative organization arose.

4.2 | Community motifs rely on brain areas
location and frequency band

We further aimed at identifying which brain regions were at the same

time insensitive to partitioning and exhibited the highest community

motifs in each band (PGI areas). PGI-assortative areas were located,

for γ oscillations, in posterior areas spanning portions of the occipital

and temporal lobes, where they potentially resembled the local

processing that is peculiar of γ oscillations (see above). Furthermore,

some of these posterior areas, were the visual cortices and the inferior

temporal lobe, which are components of the visual what/ventral

stream, associated with object recognition (Reddy &

Kanwisher, 2006). Interestingly, our subjects were fixating a cross in

the middle of a computer screen (eyes-open resting state paradigm).

By contrast, some of the PGI-disassortative areas were located in

PCC and angular gyrus (in the β band), which are well-known areas of

the default mode network (DMN) (Marino et al., 2019; Raichle, 2015)

and also identified in MEG recordings as cortical hubs (de Pasquale

et al., 2018). Albeit the typical oscillatory fingerprint of the DMN is

the α rhythm, significant connectivity values between the areas of the

DMN, including PCC and angular gyrus, were also found within the β

and γ bands (Samogin et al., 2019). Again in the β band, the precuneus

showed high disassortativity and this region has been usually associ-

ated to self-referential processing (Cavanna & Trimble, 2006), but it

has been also identified as another key area of the DMN, according to

fMRI studies (Greicius, Krasnow, Reiss, & Menon, 2003; Utevsky,

Smith, & Huettel, 2014). As PCC and angular gyrus, bilateral

precuneus is considered a cortical core for β and γ oscillations (Garces

et al., 2016). In sum, these areas are cortical cores, which dynamically

orchestrate integration of information between networks

(de Pasquale et al., 2018). Hence, they may provide a further support

of the integrative nature of communities interacting disassortatively

(Betzel, Bertolero, et al., 2018).

Frontal areas in α and β showed significant PGI-assortativity.

Some of these frontal areas are part of the dorsal-lateral prefrontal

cortex that is a pivotal area involved in several high-order executive

functions (Barbey, Colom, & Grafman, 2013), such as decision making

(Heekeren, Marrett, Ruff, Bandettini, & Ungerleider, 2006) and work-

ing memory (Lara & Wallis, 2015), among others (Miller &

Cohen, 2001).

Regions showing significant PGI-core-peripheriness are instead

typical of slow oscillations in frontal lobe (θ) and in occipital and tem-

poral lobes (δ). Particularly, these areas were assortative in higher

bands: posterior areas in gamma bands and frontal areas in β. We

therefore posit that the same regions might exhibit a community motif

depending on the specific neuronal oscillation.

4.3 | Study limitations and further development

One possible limitation of our study is that we based our analysis on

measurements of spontaneous brain activity, which is brain activity

generated in the absence of an explicit task. However, we must recall

that many studies about resting state paradigm supported the inter-

pretation that plasticity mechanisms, which depend on previous sub-

jects' interaction with the external world (Carrillo-Reid, Miller, Hamm,

Jackson, & Yuste, 2015; Guerra-Carrillo, Mackey, & Bunge, 2014;

Northoff, 2016), sculpt the activity and bridge together neurons
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belonging to the same functional domain (motor, visual, auditory,

default mode network, among others; Kelly & Castellanos, 2014;

Smith et al., 2009; Vincent et al., 2007). Hence, also during spontane-

ous activity, the co-activation of these neurons is facilitated and suc-

cessfully detected by resting state processing pipelines, independently

from the noninvasive neuroimaging dataset (Coquelet et al., 2020; Liu

et al., 2017). Thus, upon this framework, albeit no specific goal-

directed task is being performed, we can say that the spontaneous

activity organization at the meso-scale level, might largely reflect

experience-dependent plasticity mechanisms, posing the above-

described interpretation as possible candidate of how the brain

shapes information flow.

To perform our analysis, we averaged our data in the canonical fre-

quency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz),

beta (β, 13–30 Hz), gamma low (γL, 30–50 Hz), and gamma high (γH,

50–80 Hz; Samogin et al., 2019; Zhao et al., 2019). However, a data-

driven clustering procedure could be used during data processing prior

to WSBM application, in order to optimize the frequency bands subdivi-

sion and possibly highlight different meso-scale properties. This is a limi-

tation of our work and it can constitute the starting point for a further

exploration of these methodologies in future studies.

As a further improvement, the impact of a different brain atlas on

the findings of the present study could be investigated. We selected

the AICHA atlas because it is a functionally defined digital atlas of the

human brain, developed using resting-state fMRI connectivity mea-

sures (Joliot et al., 2015). However, because a large number of other

atlases are defined based on brain structure, we believe that future

studies should be conducted to address the role of atlas choice on

meso-scale identification.

An additional observation refers to the number of communities K,

which is a free parameter in the context of community detection by

WSBM. Here, it has been varied across a range of partitions, allowing

for multiple-grains meso-scale analysis. This examination showed that

each of the frequency band might exhibit its own optimal number of

communities. In support of this claim, the flows' reconfiguration in

Figure 6 indicates that each band has its own reconfiguration pattern

over the partitions, possibly suggesting, in particular for the lower

bands, a sub-optimal fragmentation of modules (when the partition

number increases). Moreover, modules fade away and/or remained

invariant, depending on the frequency band of interest. Therefore, we

suggest that future works should also focus on finding the best K-

granularity per each of the band considered, by performing appropri-

ate parameter selection procedures.

Further expansion of this work should take into account the repro-

ducibility of resting state EEG power spectrum by making use of test–

retest validations (Babiloni et al., 2020; Duan et al., 2021). This is espe-

cially important when dealing with data from a clinical population.

5 | CONCLUSIONS

Our analysis allowed to observe WSBM-estimated meso-scale

organization with a different focus: by investigating FC in different

frequency bands, we captured peculiar features of module interac-

tions revealing the nonassortative nature of resting state networks,

demonstrating its frequency-specificity. Furthermore, this study

showed that WSBM applied to sources-level neuronal oscillations

is able to reveal yet unknown properties of FC topological

organization.

Overall, these results may be taken into consideration for future

studies that will address the pathophysiological mechanisms underly-

ing neurological/psychiatric disorders (Babiloni et al., 2020; Siegel

et al., 2012). It would indeed be crucial to examine how the presence

of a neurological disease can affect the meso-scale structure and

whether and how a neurorehabilitation intervention can impact the

re-organization of brain networks and the interactions among commu-

nities. This will have a direct impact in the clinical assessment of sen-

sory, motor, and cognitive functions, being EEG acquisitions widely

employed in the clinical setting. Collectively, the results of our study

advance the network neuroscience field by highlighting new features

of brain meso-scale organization.
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