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Abstract 

Background:  Skull stripping remains a challenge for neonatal brain MR image 
analysis. However, little is known about the accuracy of how skull stripping affects the 
neonatal brain tissue segmentation and subsequent network construction. This paper 
therefore aimed to clarify this issue by comparing two automatic (FMRIB Software 
Library’s Brain Extraction Tool, BET; Infant Brain Extraction and Analysis Toolbox, iBEAT) 
and a semiautomatic (iBEAT with manual correction) processes in constructing 3D 
T1-weighted imaging (T1WI)-based brain structural network.

Methods:  Twenty-two full-term neonates (gestational age, 37–42 weeks; boys/girls, 
13/9) without abnormalities on MRI who underwent brain 3D T1WI were retrospec-
tively recruited. Two automatic (BET and iBEAT) and a semiautomatic preprocessing 
(iBEAT with manual correction) workflows were separately used to perform the skull 
stripping. Brain tissue segmentation and volume calculation were performed by a 
Johns Hopkins atlas-based method. Sixty-four gray matter regions were selected as 
nodes; volume covariance network and its properties (clustering coefficient, Cp; char-
acteristic path length, Lp; local efficiency, Elocal; global efficiency, Eglobal) were calculated 
by GRETNA. Analysis of variance (ANOVA) was used to compare the differences in the 
calculated volume between three workflows.

Results:  There were significant differences in volumes of 50 brain regions between 
the three workflows (P < 0.05). Three neonatal brain structural networks presented 
small-world topology. The semiautomatic workflow showed remarkably decreased Cp, 
increased Lp, decreased Elocal, and decreased Eglobal, in contrast to the two automatic 
ones.

Conclusions:  Imperfect skull stripping indeed affected the accuracy of brain structural 
network in full-term neonates.

Keywords:  Skull striping, Neonatal brain, Brain structural network, 3D T1-weighted 
imaging
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Background
It is known that magnetic resonance imaging (MRI) has become a very important tool 
for investigating the early brain development and injury in neonates [1–3]. In particu-
lar, MRI-based brain structural network analysis provides critical ways to understand 
the topological structure of brain information integration and transmission during the 
early development [4–7]. As a basic preprocessing, skull stripping, designed to elimi-
nate skull, scalp, dura, and other non-brain tissues and retain brain parenchyma from 
brain MRI, is an essential process in brain tissue segmentation and subsequent brain 
network construction [8]. For neonates, numerous efforts has been made to perform 
the automated processing [9–18], such as FMRIB Software Library’s (FSL) Brain Extrac-
tion Tool (BET) [19], infant brain extraction and analysis toolbox (iBEAT developed by 
the IDEA group at the University of North Carolina at Chapel Hill) [20]. In detail, BET 
performed the brain extraction by using a deformable surface model to detect the brain 
boundaries, and the results highly depend on the used parameters [19]. Differently, a 
learning-based method which combines a meta-algorithm and level-set fusion has been 
employed in iBEAT [20]. iBEAT shows good performance in infant skull stripping with 
extensive evaluations on more than 200 infants. Despite this, skull stripping remains a 
challenge for neonatal brain MRI analysis due to its low tissue contrast, large within-
tissue intensity variations, and regionally heterogeneous [21]. Besides, inaccurate skull 
stripping, e.g., unremoved non-brain tissues would result in the overestimation of local 
brain volume and cortical thickness [22]. And it would further affect the construction of 
brain structural network. To our knowledge, little is known about the impact of preproc-
essing accuracy on the accuracy of brain tissue segmentation and structural network 
construction.

The present study aimed to investigate the effects of skull stripping on brain tissue 
segmentation and structural network construction based on three-dimensional (3D) 
T1-weighted imaging (T1WI). Firstly, we  constructed the processing flow based on 
3D T1WI on brain  gray matter  in 22 term neonates; secondly, repeatability and con-
sistency of brain region volume’s segmentation were performed to verify the accuracy; 
in final part, the volumes of 64 brain region and properties of brain structural network 
were calculated and  compared between  three workflows, i.e., two automatic (BET, 
iBEAT) and a semiautomatic iBEAT with manual correction. Such a workflow could be 
applied to characterize brain structural connectivity and may provide valuable anticipa-
tory information about the potential for encountering abnormalities at a later stage in 
development.

This paper is organized as follows. In “Results” section, we report the results on repeat-
ability and reliability, and comparisons of brain structural network between automatic 
and semiautomatic workflows. In “Discussion” section, we provide additional discus-
sions and followed by conclusion in “Conclusion” section. The methods for repeatabil-
ity and reliability test, and construction of brain structural network were provided in 
“Methods” section.



Page 3 of 13Wang et al. BioMed Eng OnLine           (2020) 19:41 	

Results
Repeatability and reliability

The Bland–Altman graph of two repeated measurements indicated that 95% of the dif-
ferences between two measurements located in the mean ± 1.96 SD (standard deviation) 
range that suggested good repeatability (Fig. 1a). Meanwhile, the ICC analysis indicated 
the average correlation coefficient was 0.894. Most of values were greater than 0.8, while 
those of a few brain regions, e.g., caudate nucleus, precuneus, superior occipital gyrus, 
and inferior occipital gyrus were relatively lower, but were greater than 0.7 (Fig. 1b).

Comparisons of brain structural network between three workflows

Brain region volume

The differences of volume of 64 brain regions performed through ANOVA analysis 
among the three workflows are shown below (Fig. 2). There were significant differences 
of volume between three workflows in 50 brain regions, while, no significant difference 
was found in the remaining 14 brain regions, such as bilateral superior frontal gyrus, 
bilateral pre- and post-central gyrus, bilateral superior parietal gyrus, bilateral precu-
neus, bilateral superior occipital gyrus and so on.

Small‑world properties

In the defined threshold range, the neonatal brain network exhibited high-efficiency 
small-world topology (Fig. 3).

Properties of brain structural network

The corrected workflow, compared with the others, showed a significantly decreased Cp 
and increased Lp. With regard to network efficiency, the corrected workflow showed a 
significantly decreased Elocal and Eglobal (Fig. 4).

Fig. 1  Results of repeatability and reliability of brain region volume calculated by iBEAT with correction. a 
Bland–Altman graph of whole brain volume between two measurements with 95% of the differences located 
in the mean ± 1.96 SD (standard deviation) range showing the good repeatability; b intraclass correlation 
coefficient (ICC) of volume of 64 brain regions between two repeated measurements
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Discussion
To investigate the impacts of skull stripping on the accuracy of brain tissue segmenta-
tion and structural network construction, three workflows (BET, iBEAT and iBEAT 
with manual correction) were compared to perform the 3D T1WI-based brain struc-
tural network. Our results indicated that the iBEAT with manual correction showed a 
more accurate consistency and repeatability in brain segmentation. Besides, significant 
differences in calculations of brain volume and structural network properties between 
the three workflows further implied the importance of accurate skull stripping in brain 
segmentation and subsequent brain network construction.

The ICC results indicated that the majority of brain regions showed good repeatability 
and reliability, while the ICC of some regions, such as caudate nucleus, gyrus rectus, left 
superior parietal gyrus, left precuneus, left superior occipital gyrus and right inferior 

Fig. 2  Comparisons of the calculated volume of 64 brain regions between BET, iBEAT and iBEAT with 
correction by analysis of variance (ANOVA)
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occipital gyrus, were relatively lower. One reason may be rooted in the inherently low 
spatial resolution, insufficient tissue contrast, and ambiguous tissue intensity distribu-
tions in neonatal MRI [21]. On the other hand, the adult head coil used in this study 
may affect the MR image quality in neonates [23, 24]. In this regard, MRI acquisition 
settings including the specific head coil and scanning parameters should be adjusted for 
neonates. In detail, a neonatal head coil with appropriate size and high signal-to-noise 
ratio, as well as the use of appropriate scanning parameters (e.g., smaller FOV, longer 

Fig. 3  Comparisons of small-world property of brain structural network between BET, iBEAT and iBEAT with 
correction. A small-world network should fulfill the following conditions: Cp/Crand > 1 and Lp/Lrand ≈ 1; Cp and 
Lp indicate the clustering coefficient and characteristic path length, respectively

Fig. 4  Comparisons of properties of brain structural network between BET, iBEAT and iBEAT with correction. 
a clustering coefficient, b characteristic path length, c global efficiency, d local efficiency
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repetition time and echo time than adult scanning) would facilitate the signal acquisition 
[23, 25].

By comparing the three workflows, we found that slight adjustment for skull strip-
ping would remarkably affect the calculations of regional brain volume. Of 64 regions, 
significant differences existed in brain volume calculations of 50 regions between the 
three workflows. This further confirmed the difficulty of brain segmentation in neo-
natal MRI. Specifically, most brain volumes calculated by BET workflow were smaller 
than those by iBEAT and iBEAT with manual correction. This may be linked to the 
difference of skull stripping in neonatal MRI between BET and iBEAT [21]. It is worth 
noting that more unremoved skull components were found in BET than iBEAT; while 
unremoved components by iBEAT were mainly located in the base of skull (Fig.  5). 
It may be such facts that led to the larger brain volumes by iBEAT than iBEAT with 
manual correction. From the above, the accuracy of skull stripping would have con-
siderable effects on the neonatal brain segmentation.

By studying the brain structural network, we found the highly small-world topology 
in full-term neonates. This may suggest that a highly efficient brain network, serv-
ing for brain information integration and transfer, has been constructed in the early 
development. This is also in agreement with prior findings in neonates [7]. Besides, 
significant differences were found in local (Cp and Elocal) and global (Eglobal) topologi-
cal properties of brain structural network between the three workflows. These may 
indicate that these parameters were sensitive to the accuracy of preprocessing (skull 
stripping).

The study had several limitations. First, the sample size was relatively small in this 
study, and more data should be acquired to further improve the accuracy. Second, the 
template and atlas we used are made by foreign neonates. Given the differences of 
brain morphology between Western and Eastern neonates [26–29], it may lead to cer-
tain errors in the initial estimation of tissue intensity distributions and thus resulted 
in the large deformations in the registration procedure. In this regard, a dedicated 

Fig. 5  Illustrations of skull stripping and registration by BET, iBEAT and iBEAT with manual correction
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atlas and template appropriate for Chinese neonates need to be developed in further 
study. Besides, based on the above, further studies regarding the differences of brain 
structural network constructed by iBEAT and iBEAT with manual correction between 
Western and Eastern neonates are also required to facilitate the understandings of 
preprocessing’s impacts on the brain network construction. Third, skull stripping by 
the time-consuming semi-automated workflow, i.e., iBEAT with manual correction 
was implemented; an automated method is further required to perform a more accu-
rate skull stripping.

Conclusions
In this study, we quantitatively analyzed the influences of skull stripping on brain vol-
ume calculation and topological properties of brain structural network in neonates. 
Our results indicated that the brain networks had robust small-world configuration; in 
addition, there were significant differences in both local and global topological param-
eters between the three workflows. These findings enhanced the importance of accu-
rate skull stripping in calculation of brain tissue volume and brain structural network 
construction.

Methods
This study was approved by the local institutional review board of the first author’s affili-
ation. The parents of the neonates were informed regarding the goals and risks of the 
MRI scan, and requested for the written consent.

Subjects

This study recruited 22 full-term neonates (13 males and 9 females; gestational age 
range: 37–42  weeks) without any MRI abnormalities or evidences of any clinical epi-
sodes that might cause cerebral damages.

MRI data acquisition

All data were acquired on a 3.0-Tesla scanner (Signa HDxt, General Electric Medical Sys-
tem, Milwaukee, WI, USA) with an 8-channel phase array radio-frequency head coil. To 
reduce the head movement and complete the MRI procedure, the subjects were sedated 
with a relatively low dose of oral chloral hydrate (25–50 mg/kg). The potential risks of 
the chloral hydrate were fully considered. The selection, monitoring, and management 
of subjects were strictly performed following the guidelines [30]. Neonates were laid in 
a supine position and snugly swaddled in blankets. A pediatrician was present during 
the MRI scan. Micro-earplugs were inserted into the external auditory canal for hearing 
protection. Heads of the subjects were immobilized by molded foam, which was placed 
around the head. The temperature, heart rate, and oxygen saturation were monitored 
throughout the procedure.

Three-dimensional fast spoiled gradient-recalled echo (3D-FSPGR) T1-weighted 
magnetic resonance images were acquired with the parameters: repetition time/
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echo time = 10.28 ms/4.62 ms, inversion time = 400 ms, field of view = 240 mm, voxel 
size = 0.94 × 0.94 × 1 mm3.

Construction of brain structural network

Figure 6 provides the workflow for constructing the neonatal brain structural network. 
The three steps for the workflow were detailed as follows.

Fig. 6  Workflow for construction of neonatal brain structural network. AC–PC align refers to the alignment of 
MRI data according to anterior commissure–posterior commissure line
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Data preprocessing

To investigate the impacts of data preprocessing on network construction, three 
preprocessing workflows were performed by BET, iBEAT and iBEAT with manual 
correction.

BET workflow: non-brain tissues in each T1WI image were automatically removed 
by BET. iBEAT workflow: three automatic preprocessing steps, including brain con-
trast enhancement and skull stripping were sequentially performed. iBEAT with 
manual correction: (1) manually align the AC–PC line; (2) strip the skull by using 
iBEAT; (3) identify the remaining non-brain tissues by the boundaries of brain gray 
matter and manually remove these tissues. The manual correction was performed by 
two pediatric radiologists with 5 years of experience and differences in identifying the 
remaining non-brain tissues were resolved by consensus.

Calculations of brain region volume

To calculate the volume of each brain region, the preprocessed data were firstly regis-
tered to a standard 3D-T1WI-based template (Johns Hopkins University) by linear (rigid 
transformation) and nonlinear (affine transformation) registrations. And then the vol-
ume of each brain region can be estimated by Eq. (1):

where Vi is the brain volume of the ith region of individual subject, Vt represents the 
corresponding area in the template. 
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transformation, JF is a constant which is equal to the inverse of the determinant of the 
3 × 3 sub-matrix in the upper left corner of the transformation matrix; for nonlinear 
transformation, JF is a three-dimensional function.

Construction of brain structural network

By using the graph theoretic approaches, the cortical and subcortical regions were used 
as nodes to construct the brain networks, with connections between nodes defined as 
correlations between regional brain volumes. Here, 64 brain regions that mainly involved 
the gray matters and several important subcortical regions (thalamus, hippocampus and 
cerebellum) were selected as network nodes (Table 1). GRETNA (http://www.nitrc​.org/
proje​cts/gretn​a/) was used to construct the network. Partial correlations between all 
nodes’ volumes were firstly estimated as edges of the network, and then network was 
constructed by binary connective matrices. The network properties, such as clustering 
coefficient (Cp), characteristic path length (Lp), global (Eglobal) and local efficiency (Elocal) 
were calculated by the following Eqs. (2–5).

The clustering coefficient of a node i (C(i)) is defined as the likelihood that the neigh-
borhoods of a given node i are connected to each other:
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where ki represents the number of edges connected to the node i, and ̟ij is equal to the 
weight between node i and j. The clustering coefficient, Cp, of a network is the average of 
the clustering coefficient over all nodes:

where N is the number of nodes in the network, and Lij is the shortest path length 
between nodes i and j in a network G. Lp is the average of the shortest path length 
between all pairs of nodes in the network:

(2)C(i) =
2

ki(ki − 1)

∑

j,k
(̟ij̟jk̟ki)

1/3,

(3)LP(G) =
1

N (N − 1)

∑

i �=j∈G
Lij ,

Table 1  The list of 64 brain regions

No. Region Hemisphere No. Region Hemisphere

1 Thalamus Left 33 Angular gyrus Left

2 Thalamus Right 34 Angular gyrus Right

3 Putamen Left 35 Superior temporal gyrus Left

4 Putamen Right 36 Superior temporal gyrus Right

5 Globus pallidus Left 37 Middle temporal gyrus Left

6 Globus pallidus Right 38 Middle temporal gyrus Right

7 Caudate nucleus Left 39 Inferior temporal gyrus Left

8 Caudate nucleus Right 40 Inferior temporal gyrus Right

9 Superior frontal gyrus Left 41 Fusiform gyrus Left

10 Superior frontal gyrus Right 42 Fusiform gyrus Right

11 Middle frontal gyrus Left 43 Parahippocampal gyrus Left

12 Middle frontal gyrus Right 44 Parahippocampal gyrus Right

13 Inferior frontal gyrus Left 45 Entorhinal cortex Left

14 Inferior frontal gyrus Right 46 Entorhinal cortex Right

15 Medial fronto-orbital gyrus Left 47 Superior occipital gyrus Left

16 Medial fronto-orbital gyrus Right 48 Superior occipital gyrus Right

17 Lateral fronto-orbital gyrus Left 49 Middle occipital gyrus Left

18 Lateral fronto-orbital gyrus Right 50 Middle occipital gyrus Right

19 Gyrus rectus Left 51 Inferior occipital gyrus Left

20 Gyrus rectus Right 52 Inferior occipital gyrus Right

21 Precentral gyrus Left 53 Cuneus Left

22 Precentral gyrus Right 54 Cuneus Right

23 Postcentral gyrus Left 55 Lingual gyrus Left

24 Postcentral gyrus Right 56 Lingual gyrus Right

25 Superior parietal gyrus Left 57 Amygdala Left

26 Superior parietal gyrus Right 58 Amygdala Right

27 Precuneus Left 59 Hippocampus Left

28 Precuneus Right 60 Hippocampus Right

29 Cingular gyrus Left 61 Cerebellar hemisphere Left

30 Cingular gyrus Right 62 Cerebellar hemisphere Right

31 Supramarginal gyrus Left 63 Insular cortex Left

32 Supramarginal gyrus Right 64 Insular cortex Right
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where Lij is the shortest path length between node i and node j in G, and N represents all 
nodes in the network:

where Eglob (Gi) is the global efficiency of Gi, the subgraph of the neighbors of node i.
The Cp of a network is defined by the average of the clustering coefficients across 

nodes, where the Cp of a node is the ratio of the number of actual connections nearest 
neighbors of this node to the maximum number of possible connections [31]. Cp quanti-
fies the local interconnectivity of a graph. The Lp of a graph is the average of the shortest 
path length between all pairs of nodes in the network, and it is an indicator of overall 
routing efficiency of a graph [32]. The Elocal of a network is the average of the local effi-
ciency over all nodes. It measures the mean local efficiency of the network. The Eglobal 
of a network is defined by the mean shortest path length [33]. It measures the extent of 
information propagation through the whole network. Typically, a small-world network 
should fulfill the following conditions: Cp/Crand > 1 and Lp/Lrand≈ 1.

Statistical analysis

Regarding the manual corrections for anterior commissure–posterior commissure (AC–
PC) alignment and skull stripping, the repeatability and consistency of brain volume 
calculations between two repeated measurements were evaluated by the Bland–Altman 
graph and intraclass correlation coefficient (ICC). Analysis of variance (ANOVA) was 
used to compare the differences in the volumes of 64 brain regions between the three 
workflows.

All the segmentation, calculation of brain region volume and network parameters, 
and statistical analysis were performed by using the MATLAB R2016b (Mathworks Inc, 
Natick, MA, USA).
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